| //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that PPC uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H |
| #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H |
| |
| #include "PPC.h" |
| #include "PPCInstrInfo.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include <utility> |
| |
| namespace llvm { |
| |
| namespace PPCISD { |
| |
| // When adding a NEW PPCISD node please add it to the correct position in |
| // the enum. The order of elements in this enum matters! |
| // Values that are added after this entry: |
| // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE |
| // are considerd memory opcodes and are treated differently than entries |
| // that come before it. For example, ADD or MUL should be placed before |
| // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come |
| // after it. |
| enum NodeType : unsigned { |
| // Start the numbering where the builtin ops and target ops leave off. |
| FIRST_NUMBER = ISD::BUILTIN_OP_END, |
| |
| /// FSEL - Traditional three-operand fsel node. |
| /// |
| FSEL, |
| |
| /// FCFID - The FCFID instruction, taking an f64 operand and producing |
| /// and f64 value containing the FP representation of the integer that |
| /// was temporarily in the f64 operand. |
| FCFID, |
| |
| /// Newer FCFID[US] integer-to-floating-point conversion instructions for |
| /// unsigned integers and single-precision outputs. |
| FCFIDU, FCFIDS, FCFIDUS, |
| |
| /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64 |
| /// operand, producing an f64 value containing the integer representation |
| /// of that FP value. |
| FCTIDZ, FCTIWZ, |
| |
| /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for |
| /// unsigned integers with round toward zero. |
| FCTIDUZ, FCTIWUZ, |
| |
| /// Floating-point-to-interger conversion instructions |
| FP_TO_UINT_IN_VSR, FP_TO_SINT_IN_VSR, |
| |
| /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in |
| /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer. |
| VEXTS, |
| |
| /// SExtVElems, takes an input vector of a smaller type and sign |
| /// extends to an output vector of a larger type. |
| SExtVElems, |
| |
| /// Reciprocal estimate instructions (unary FP ops). |
| FRE, FRSQRTE, |
| |
| // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking |
| // three v4f32 operands and producing a v4f32 result. |
| VMADDFP, VNMSUBFP, |
| |
| /// VPERM - The PPC VPERM Instruction. |
| /// |
| VPERM, |
| |
| /// XXSPLT - The PPC VSX splat instructions |
| /// |
| XXSPLT, |
| |
| /// VECINSERT - The PPC vector insert instruction |
| /// |
| VECINSERT, |
| |
| /// XXREVERSE - The PPC VSX reverse instruction |
| /// |
| XXREVERSE, |
| |
| /// VECSHL - The PPC vector shift left instruction |
| /// |
| VECSHL, |
| |
| /// XXPERMDI - The PPC XXPERMDI instruction |
| /// |
| XXPERMDI, |
| |
| /// The CMPB instruction (takes two operands of i32 or i64). |
| CMPB, |
| |
| /// Hi/Lo - These represent the high and low 16-bit parts of a global |
| /// address respectively. These nodes have two operands, the first of |
| /// which must be a TargetGlobalAddress, and the second of which must be a |
| /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C', |
| /// though these are usually folded into other nodes. |
| Hi, Lo, |
| |
| /// The following two target-specific nodes are used for calls through |
| /// function pointers in the 64-bit SVR4 ABI. |
| |
| /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX) |
| /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to |
| /// compute an allocation on the stack. |
| DYNALLOC, |
| |
| /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to |
| /// compute an offset from native SP to the address of the most recent |
| /// dynamic alloca. |
| DYNAREAOFFSET, |
| |
| /// GlobalBaseReg - On Darwin, this node represents the result of the mflr |
| /// at function entry, used for PIC code. |
| GlobalBaseReg, |
| |
| /// These nodes represent PPC shifts. |
| /// |
| /// For scalar types, only the last `n + 1` bits of the shift amounts |
| /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc. |
| /// for exact behaviors. |
| /// |
| /// For vector types, only the last n bits are used. See vsld. |
| SRL, SRA, SHL, |
| |
| /// The combination of sra[wd]i and addze used to implemented signed |
| /// integer division by a power of 2. The first operand is the dividend, |
| /// and the second is the constant shift amount (representing the |
| /// divisor). |
| SRA_ADDZE, |
| |
| /// CALL - A direct function call. |
| /// CALL_NOP is a call with the special NOP which follows 64-bit |
| /// SVR4 calls. |
| CALL, CALL_NOP, |
| |
| /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a |
| /// MTCTR instruction. |
| MTCTR, |
| |
| /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a |
| /// BCTRL instruction. |
| BCTRL, |
| |
| /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl |
| /// instruction and the TOC reload required on SVR4 PPC64. |
| BCTRL_LOAD_TOC, |
| |
| /// Return with a flag operand, matched by 'blr' |
| RET_FLAG, |
| |
| /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction. |
| /// This copies the bits corresponding to the specified CRREG into the |
| /// resultant GPR. Bits corresponding to other CR regs are undefined. |
| MFOCRF, |
| |
| /// Direct move from a VSX register to a GPR |
| MFVSR, |
| |
| /// Direct move from a GPR to a VSX register (algebraic) |
| MTVSRA, |
| |
| /// Direct move from a GPR to a VSX register (zero) |
| MTVSRZ, |
| |
| /// Direct move of 2 consective GPR to a VSX register. |
| BUILD_FP128, |
| |
| /// Extract a subvector from signed integer vector and convert to FP. |
| /// It is primarily used to convert a (widened) illegal integer vector |
| /// type to a legal floating point vector type. |
| /// For example v2i32 -> widened to v4i32 -> v2f64 |
| SINT_VEC_TO_FP, |
| |
| /// Extract a subvector from unsigned integer vector and convert to FP. |
| /// As with SINT_VEC_TO_FP, used for converting illegal types. |
| UINT_VEC_TO_FP, |
| |
| // FIXME: Remove these once the ANDI glue bug is fixed: |
| /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the |
| /// eq or gt bit of CR0 after executing andi. x, 1. This is used to |
| /// implement truncation of i32 or i64 to i1. |
| ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT, |
| |
| // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit |
| // target (returns (Lo, Hi)). It takes a chain operand. |
| READ_TIME_BASE, |
| |
| // EH_SJLJ_SETJMP - SjLj exception handling setjmp. |
| EH_SJLJ_SETJMP, |
| |
| // EH_SJLJ_LONGJMP - SjLj exception handling longjmp. |
| EH_SJLJ_LONGJMP, |
| |
| /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP* |
| /// instructions. For lack of better number, we use the opcode number |
| /// encoding for the OPC field to identify the compare. For example, 838 |
| /// is VCMPGTSH. |
| VCMP, |
| |
| /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the |
| /// altivec VCMP*o instructions. For lack of better number, we use the |
| /// opcode number encoding for the OPC field to identify the compare. For |
| /// example, 838 is VCMPGTSH. |
| VCMPo, |
| |
| /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This |
| /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the |
| /// condition register to branch on, OPC is the branch opcode to use (e.g. |
| /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is |
| /// an optional input flag argument. |
| COND_BRANCH, |
| |
| /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based |
| /// loops. |
| BDNZ, BDZ, |
| |
| /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding |
| /// towards zero. Used only as part of the long double-to-int |
| /// conversion sequence. |
| FADDRTZ, |
| |
| /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register. |
| MFFS, |
| |
| /// TC_RETURN - A tail call return. |
| /// operand #0 chain |
| /// operand #1 callee (register or absolute) |
| /// operand #2 stack adjustment |
| /// operand #3 optional in flag |
| TC_RETURN, |
| |
| /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls |
| CR6SET, |
| CR6UNSET, |
| |
| /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS |
| /// on PPC32. |
| PPC32_GOT, |
| |
| /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and |
| /// local dynamic TLS on PPC32. |
| PPC32_PICGOT, |
| |
| /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec |
| /// TLS model, produces an ADDIS8 instruction that adds the GOT |
| /// base to sym\@got\@tprel\@ha. |
| ADDIS_GOT_TPREL_HA, |
| |
| /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec |
| /// TLS model, produces a LD instruction with base register G8RReg |
| /// and offset sym\@got\@tprel\@l. This completes the addition that |
| /// finds the offset of "sym" relative to the thread pointer. |
| LD_GOT_TPREL_L, |
| |
| /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS |
| /// model, produces an ADD instruction that adds the contents of |
| /// G8RReg to the thread pointer. Symbol contains a relocation |
| /// sym\@tls which is to be replaced by the thread pointer and |
| /// identifies to the linker that the instruction is part of a |
| /// TLS sequence. |
| ADD_TLS, |
| |
| /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS |
| /// model, produces an ADDIS8 instruction that adds the GOT base |
| /// register to sym\@got\@tlsgd\@ha. |
| ADDIS_TLSGD_HA, |
| |
| /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS |
| /// model, produces an ADDI8 instruction that adds G8RReg to |
| /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by |
| /// ADDIS_TLSGD_L_ADDR until after register assignment. |
| ADDI_TLSGD_L, |
| |
| /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS |
| /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by |
| /// ADDIS_TLSGD_L_ADDR until after register assignment. |
| GET_TLS_ADDR, |
| |
| /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that |
| /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following |
| /// register assignment. |
| ADDI_TLSGD_L_ADDR, |
| |
| /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS |
| /// model, produces an ADDIS8 instruction that adds the GOT base |
| /// register to sym\@got\@tlsld\@ha. |
| ADDIS_TLSLD_HA, |
| |
| /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS |
| /// model, produces an ADDI8 instruction that adds G8RReg to |
| /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by |
| /// ADDIS_TLSLD_L_ADDR until after register assignment. |
| ADDI_TLSLD_L, |
| |
| /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS |
| /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by |
| /// ADDIS_TLSLD_L_ADDR until after register assignment. |
| GET_TLSLD_ADDR, |
| |
| /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that |
| /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion |
| /// following register assignment. |
| ADDI_TLSLD_L_ADDR, |
| |
| /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS |
| /// model, produces an ADDIS8 instruction that adds X3 to |
| /// sym\@dtprel\@ha. |
| ADDIS_DTPREL_HA, |
| |
| /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS |
| /// model, produces an ADDI8 instruction that adds G8RReg to |
| /// sym\@got\@dtprel\@l. |
| ADDI_DTPREL_L, |
| |
| /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded |
| /// during instruction selection to optimize a BUILD_VECTOR into |
| /// operations on splats. This is necessary to avoid losing these |
| /// optimizations due to constant folding. |
| VADD_SPLAT, |
| |
| /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned |
| /// operand identifies the operating system entry point. |
| SC, |
| |
| /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer. |
| CLRBHRB, |
| |
| /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch |
| /// history rolling buffer entry. |
| MFBHRBE, |
| |
| /// CHAIN = RFEBB CHAIN, State - Return from event-based branch. |
| RFEBB, |
| |
| /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little |
| /// endian. Maps to an xxswapd instruction that corrects an lxvd2x |
| /// or stxvd2x instruction. The chain is necessary because the |
| /// sequence replaces a load and needs to provide the same number |
| /// of outputs. |
| XXSWAPD, |
| |
| /// An SDNode for swaps that are not associated with any loads/stores |
| /// and thereby have no chain. |
| SWAP_NO_CHAIN, |
| |
| /// QVFPERM = This corresponds to the QPX qvfperm instruction. |
| QVFPERM, |
| |
| /// QVGPCI = This corresponds to the QPX qvgpci instruction. |
| QVGPCI, |
| |
| /// QVALIGNI = This corresponds to the QPX qvaligni instruction. |
| QVALIGNI, |
| |
| /// QVESPLATI = This corresponds to the QPX qvesplati instruction. |
| QVESPLATI, |
| |
| /// QBFLT = Access the underlying QPX floating-point boolean |
| /// representation. |
| QBFLT, |
| |
| /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a |
| /// byte-swapping store instruction. It byte-swaps the low "Type" bits of |
| /// the GPRC input, then stores it through Ptr. Type can be either i16 or |
| /// i32. |
| STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE, |
| |
| /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a |
| /// byte-swapping load instruction. It loads "Type" bits, byte swaps it, |
| /// then puts it in the bottom bits of the GPRC. TYPE can be either i16 |
| /// or i32. |
| LBRX, |
| |
| /// STFIWX - The STFIWX instruction. The first operand is an input token |
| /// chain, then an f64 value to store, then an address to store it to. |
| STFIWX, |
| |
| /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point |
| /// load which sign-extends from a 32-bit integer value into the |
| /// destination 64-bit register. |
| LFIWAX, |
| |
| /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point |
| /// load which zero-extends from a 32-bit integer value into the |
| /// destination 64-bit register. |
| LFIWZX, |
| |
| /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an |
| /// integer smaller than 64 bits into a VSR. The integer is zero-extended. |
| /// This can be used for converting loaded integers to floating point. |
| LXSIZX, |
| |
| /// STXSIX - The STXSI[bh]X instruction. The first operand is an input |
| /// chain, then an f64 value to store, then an address to store it to, |
| /// followed by a byte-width for the store. |
| STXSIX, |
| |
| /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian. |
| /// Maps directly to an lxvd2x instruction that will be followed by |
| /// an xxswapd. |
| LXVD2X, |
| |
| /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian. |
| /// Maps directly to an stxvd2x instruction that will be preceded by |
| /// an xxswapd. |
| STXVD2X, |
| |
| /// Store scalar integers from VSR. |
| ST_VSR_SCAL_INT, |
| |
| /// QBRC, CHAIN = QVLFSb CHAIN, Ptr |
| /// The 4xf32 load used for v4i1 constants. |
| QVLFSb, |
| |
| /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes |
| /// except they ensure that the compare input is zero-extended for |
| /// sub-word versions because the atomic loads zero-extend. |
| ATOMIC_CMP_SWAP_8, ATOMIC_CMP_SWAP_16, |
| |
| /// GPRC = TOC_ENTRY GA, TOC |
| /// Loads the entry for GA from the TOC, where the TOC base is given by |
| /// the last operand. |
| TOC_ENTRY |
| }; |
| |
| } // end namespace PPCISD |
| |
| /// Define some predicates that are used for node matching. |
| namespace PPC { |
| |
| /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUHUM instruction. |
| bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG); |
| |
| /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUWUM instruction. |
| bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG); |
| |
| /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a |
| /// VPKUDUM instruction. |
| bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG); |
| |
| /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). |
| bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, |
| unsigned ShuffleKind, SelectionDAG &DAG); |
| |
| /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). |
| bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, |
| unsigned ShuffleKind, SelectionDAG &DAG); |
| |
| /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for |
| /// a VMRGEW or VMRGOW instruction |
| bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, |
| unsigned ShuffleKind, SelectionDAG &DAG); |
| /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXSLDWI instruction. |
| bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, |
| bool &Swap, bool IsLE); |
| |
| /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXBRH instruction. |
| bool isXXBRHShuffleMask(ShuffleVectorSDNode *N); |
| |
| /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXBRW instruction. |
| bool isXXBRWShuffleMask(ShuffleVectorSDNode *N); |
| |
| /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXBRD instruction. |
| bool isXXBRDShuffleMask(ShuffleVectorSDNode *N); |
| |
| /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXBRQ instruction. |
| bool isXXBRQShuffleMask(ShuffleVectorSDNode *N); |
| |
| /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable |
| /// for a XXPERMDI instruction. |
| bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, |
| bool &Swap, bool IsLE); |
| |
| /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the |
| /// shift amount, otherwise return -1. |
| int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, |
| SelectionDAG &DAG); |
| |
| /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a splat of a single element that is suitable for input to |
| /// VSPLTB/VSPLTH/VSPLTW. |
| bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize); |
| |
| /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by |
| /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any |
| /// shuffle of v4f32/v4i32 vectors that just inserts one element from one |
| /// vector into the other. This function will also set a couple of |
| /// output parameters for how much the source vector needs to be shifted and |
| /// what byte number needs to be specified for the instruction to put the |
| /// element in the desired location of the target vector. |
| bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, |
| unsigned &InsertAtByte, bool &Swap, bool IsLE); |
| |
| /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the |
| /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. |
| unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG); |
| |
| /// get_VSPLTI_elt - If this is a build_vector of constants which can be |
| /// formed by using a vspltis[bhw] instruction of the specified element |
| /// size, return the constant being splatted. The ByteSize field indicates |
| /// the number of bytes of each element [124] -> [bhw]. |
| SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG); |
| |
| /// If this is a qvaligni shuffle mask, return the shift |
| /// amount, otherwise return -1. |
| int isQVALIGNIShuffleMask(SDNode *N); |
| |
| } // end namespace PPC |
| |
| class PPCTargetLowering : public TargetLowering { |
| const PPCSubtarget &Subtarget; |
| |
| public: |
| explicit PPCTargetLowering(const PPCTargetMachine &TM, |
| const PPCSubtarget &STI); |
| |
| /// getTargetNodeName() - This method returns the name of a target specific |
| /// DAG node. |
| const char *getTargetNodeName(unsigned Opcode) const override; |
| |
| /// getPreferredVectorAction - The code we generate when vector types are |
| /// legalized by promoting the integer element type is often much worse |
| /// than code we generate if we widen the type for applicable vector types. |
| /// The issue with promoting is that the vector is scalaraized, individual |
| /// elements promoted and then the vector is rebuilt. So say we load a pair |
| /// of v4i8's and shuffle them. This will turn into a mess of 8 extending |
| /// loads, moves back into VSR's (or memory ops if we don't have moves) and |
| /// then the VPERM for the shuffle. All in all a very slow sequence. |
| TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT) |
| const override { |
| if (VT.getScalarSizeInBits() % 8 == 0) |
| return TypeWidenVector; |
| return TargetLoweringBase::getPreferredVectorAction(VT); |
| } |
| |
| bool useSoftFloat() const override; |
| |
| bool hasSPE() const; |
| |
| MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override { |
| return MVT::i32; |
| } |
| |
| bool isCheapToSpeculateCttz() const override { |
| return true; |
| } |
| |
| bool isCheapToSpeculateCtlz() const override { |
| return true; |
| } |
| |
| bool isCtlzFast() const override { |
| return true; |
| } |
| |
| bool hasAndNotCompare(SDValue) const override { |
| return true; |
| } |
| |
| bool convertSetCCLogicToBitwiseLogic(EVT VT) const override { |
| return VT.isScalarInteger(); |
| } |
| |
| bool supportSplitCSR(MachineFunction *MF) const override { |
| return |
| MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS && |
| MF->getFunction().hasFnAttribute(Attribute::NoUnwind); |
| } |
| |
| void initializeSplitCSR(MachineBasicBlock *Entry) const override; |
| |
| void insertCopiesSplitCSR( |
| MachineBasicBlock *Entry, |
| const SmallVectorImpl<MachineBasicBlock *> &Exits) const override; |
| |
| /// getSetCCResultType - Return the ISD::SETCC ValueType |
| EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, |
| EVT VT) const override; |
| |
| /// Return true if target always beneficiates from combining into FMA for a |
| /// given value type. This must typically return false on targets where FMA |
| /// takes more cycles to execute than FADD. |
| bool enableAggressiveFMAFusion(EVT VT) const override; |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const override; |
| |
| /// SelectAddressRegReg - Given the specified addressed, check to see if it |
| /// can be represented as an indexed [r+r] operation. Returns false if it |
| /// can be more efficiently represented with [r+imm]. |
| bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index, |
| SelectionDAG &DAG) const; |
| |
| /// SelectAddressRegImm - Returns true if the address N can be represented |
| /// by a base register plus a signed 16-bit displacement [r+imm], and if it |
| /// is not better represented as reg+reg. If Aligned is true, only accept |
| /// displacements suitable for STD and friends, i.e. multiples of 4. |
| bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base, |
| SelectionDAG &DAG, unsigned Alignment) const; |
| |
| /// SelectAddressRegRegOnly - Given the specified addressed, force it to be |
| /// represented as an indexed [r+r] operation. |
| bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, |
| SelectionDAG &DAG) const; |
| |
| Sched::Preference getSchedulingPreference(SDNode *N) const override; |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; |
| |
| /// ReplaceNodeResults - Replace the results of node with an illegal result |
| /// type with new values built out of custom code. |
| /// |
| void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) const override; |
| |
| SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const; |
| |
| SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; |
| |
| SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, |
| SmallVectorImpl<SDNode *> &Created) const override; |
| |
| unsigned getRegisterByName(const char* RegName, EVT VT, |
| SelectionDAG &DAG) const override; |
| |
| void computeKnownBitsForTargetNode(const SDValue Op, |
| KnownBits &Known, |
| const APInt &DemandedElts, |
| const SelectionDAG &DAG, |
| unsigned Depth = 0) const override; |
| |
| unsigned getPrefLoopAlignment(MachineLoop *ML) const override; |
| |
| bool shouldInsertFencesForAtomic(const Instruction *I) const override { |
| return true; |
| } |
| |
| Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst, |
| AtomicOrdering Ord) const override; |
| Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst, |
| AtomicOrdering Ord) const override; |
| |
| MachineBasicBlock * |
| EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *MBB) const override; |
| MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI, |
| MachineBasicBlock *MBB, |
| unsigned AtomicSize, |
| unsigned BinOpcode, |
| unsigned CmpOpcode = 0, |
| unsigned CmpPred = 0) const; |
| MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI, |
| MachineBasicBlock *MBB, |
| bool is8bit, |
| unsigned Opcode, |
| unsigned CmpOpcode = 0, |
| unsigned CmpPred = 0) const; |
| |
| MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI, |
| MachineBasicBlock *MBB) const; |
| |
| MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI, |
| MachineBasicBlock *MBB) const; |
| |
| ConstraintType getConstraintType(StringRef Constraint) const override; |
| |
| /// Examine constraint string and operand type and determine a weight value. |
| /// The operand object must already have been set up with the operand type. |
| ConstraintWeight getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const override; |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, |
| StringRef Constraint, MVT VT) const override; |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. This is the actual |
| /// alignment, not its logarithm. |
| unsigned getByValTypeAlignment(Type *Ty, |
| const DataLayout &DL) const override; |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void LowerAsmOperandForConstraint(SDValue Op, |
| std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const override; |
| |
| unsigned |
| getInlineAsmMemConstraint(StringRef ConstraintCode) const override { |
| if (ConstraintCode == "es") |
| return InlineAsm::Constraint_es; |
| else if (ConstraintCode == "o") |
| return InlineAsm::Constraint_o; |
| else if (ConstraintCode == "Q") |
| return InlineAsm::Constraint_Q; |
| else if (ConstraintCode == "Z") |
| return InlineAsm::Constraint_Z; |
| else if (ConstraintCode == "Zy") |
| return InlineAsm::Constraint_Zy; |
| return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, |
| Type *Ty, unsigned AS, |
| Instruction *I = nullptr) const override; |
| |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal |
| /// icmp immediate, that is the target has icmp instructions which can |
| /// compare a register against the immediate without having to materialize |
| /// the immediate into a register. |
| bool isLegalICmpImmediate(int64_t Imm) const override; |
| |
| /// isLegalAddImmediate - Return true if the specified immediate is legal |
| /// add immediate, that is the target has add instructions which can |
| /// add a register and the immediate without having to materialize |
| /// the immediate into a register. |
| bool isLegalAddImmediate(int64_t Imm) const override; |
| |
| /// isTruncateFree - Return true if it's free to truncate a value of |
| /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in |
| /// register X1 to i32 by referencing its sub-register R1. |
| bool isTruncateFree(Type *Ty1, Type *Ty2) const override; |
| bool isTruncateFree(EVT VT1, EVT VT2) const override; |
| |
| bool isZExtFree(SDValue Val, EVT VT2) const override; |
| |
| bool isFPExtFree(EVT DestVT, EVT SrcVT) const override; |
| |
| /// Returns true if it is beneficial to convert a load of a constant |
| /// to just the constant itself. |
| bool shouldConvertConstantLoadToIntImm(const APInt &Imm, |
| Type *Ty) const override; |
| |
| bool convertSelectOfConstantsToMath(EVT VT) const override { |
| return true; |
| } |
| |
| bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; |
| |
| bool getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &I, |
| MachineFunction &MF, |
| unsigned Intrinsic) const override; |
| |
| /// getOptimalMemOpType - Returns the target specific optimal type for load |
| /// and store operations as a result of memset, memcpy, and memmove |
| /// lowering. If DstAlign is zero that means it's safe to destination |
| /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it |
| /// means there isn't a need to check it against alignment requirement, |
| /// probably because the source does not need to be loaded. If 'IsMemset' is |
| /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that |
| /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy |
| /// source is constant so it does not need to be loaded. |
| /// It returns EVT::Other if the type should be determined using generic |
| /// target-independent logic. |
| EVT |
| getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, |
| bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, |
| MachineFunction &MF) const override; |
| |
| /// Is unaligned memory access allowed for the given type, and is it fast |
| /// relative to software emulation. |
| bool allowsMisalignedMemoryAccesses(EVT VT, |
| unsigned AddrSpace, |
| unsigned Align = 1, |
| bool *Fast = nullptr) const override; |
| |
| /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster |
| /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be |
| /// expanded to FMAs when this method returns true, otherwise fmuladd is |
| /// expanded to fmul + fadd. |
| bool isFMAFasterThanFMulAndFAdd(EVT VT) const override; |
| |
| const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override; |
| |
| // Should we expand the build vector with shuffles? |
| bool |
| shouldExpandBuildVectorWithShuffles(EVT VT, |
| unsigned DefinedValues) const override; |
| |
| /// createFastISel - This method returns a target-specific FastISel object, |
| /// or null if the target does not support "fast" instruction selection. |
| FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, |
| const TargetLibraryInfo *LibInfo) const override; |
| |
| /// Returns true if an argument of type Ty needs to be passed in a |
| /// contiguous block of registers in calling convention CallConv. |
| bool functionArgumentNeedsConsecutiveRegisters( |
| Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override { |
| // We support any array type as "consecutive" block in the parameter |
| // save area. The element type defines the alignment requirement and |
| // whether the argument should go in GPRs, FPRs, or VRs if available. |
| // |
| // Note that clang uses this capability both to implement the ELFv2 |
| // homogeneous float/vector aggregate ABI, and to avoid having to use |
| // "byval" when passing aggregates that might fully fit in registers. |
| return Ty->isArrayTy(); |
| } |
| |
| /// If a physical register, this returns the register that receives the |
| /// exception address on entry to an EH pad. |
| unsigned |
| getExceptionPointerRegister(const Constant *PersonalityFn) const override; |
| |
| /// If a physical register, this returns the register that receives the |
| /// exception typeid on entry to a landing pad. |
| unsigned |
| getExceptionSelectorRegister(const Constant *PersonalityFn) const override; |
| |
| /// Override to support customized stack guard loading. |
| bool useLoadStackGuardNode() const override; |
| void insertSSPDeclarations(Module &M) const override; |
| |
| bool isFPImmLegal(const APFloat &Imm, EVT VT) const override; |
| |
| unsigned getJumpTableEncoding() const override; |
| bool isJumpTableRelative() const override; |
| SDValue getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const override; |
| const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF, |
| unsigned JTI, |
| MCContext &Ctx) const override; |
| |
| unsigned getNumRegistersForCallingConv(LLVMContext &Context, |
| CallingConv:: ID CC, |
| EVT VT) const override; |
| |
| MVT getRegisterTypeForCallingConv(LLVMContext &Context, |
| CallingConv:: ID CC, |
| EVT VT) const override; |
| |
| private: |
| struct ReuseLoadInfo { |
| SDValue Ptr; |
| SDValue Chain; |
| SDValue ResChain; |
| MachinePointerInfo MPI; |
| bool IsDereferenceable = false; |
| bool IsInvariant = false; |
| unsigned Alignment = 0; |
| AAMDNodes AAInfo; |
| const MDNode *Ranges = nullptr; |
| |
| ReuseLoadInfo() = default; |
| |
| MachineMemOperand::Flags MMOFlags() const { |
| MachineMemOperand::Flags F = MachineMemOperand::MONone; |
| if (IsDereferenceable) |
| F |= MachineMemOperand::MODereferenceable; |
| if (IsInvariant) |
| F |= MachineMemOperand::MOInvariant; |
| return F; |
| } |
| }; |
| |
| bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override { |
| // Addrspacecasts are always noops. |
| return true; |
| } |
| |
| bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI, |
| SelectionDAG &DAG, |
| ISD::LoadExtType ET = ISD::NON_EXTLOAD) const; |
| void spliceIntoChain(SDValue ResChain, SDValue NewResChain, |
| SelectionDAG &DAG) const; |
| |
| void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, |
| SelectionDAG &DAG, const SDLoc &dl) const; |
| SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG, |
| const SDLoc &dl) const; |
| |
| bool directMoveIsProfitable(const SDValue &Op) const; |
| SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG, |
| const SDLoc &dl) const; |
| |
| SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const; |
| SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const; |
| |
| bool |
| IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const; |
| |
| bool |
| IsEligibleForTailCallOptimization_64SVR4( |
| SDValue Callee, |
| CallingConv::ID CalleeCC, |
| ImmutableCallSite CS, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const; |
| |
| SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff, |
| SDValue Chain, SDValue &LROpOut, |
| SDValue &FPOpOut, |
| const SDLoc &dl) const; |
| |
| SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, |
| const SDLoc &dl) const; |
| SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerREM(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const; |
| |
| SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const; |
| |
| SDValue LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const; |
| SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl, |
| bool isTailCall, bool isVarArg, bool isPatchPoint, |
| bool hasNest, SelectionDAG &DAG, |
| SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, |
| SDValue InFlag, SDValue Chain, SDValue CallSeqStart, |
| SDValue &Callee, int SPDiff, unsigned NumBytes, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SmallVectorImpl<SDValue> &InVals, |
| ImmutableCallSite CS) const; |
| |
| SDValue |
| LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const override; |
| |
| SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const override; |
| |
| bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| LLVMContext &Context) const override; |
| |
| SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &dl, SelectionDAG &DAG) const override; |
| |
| SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, |
| SelectionDAG &DAG, SDValue ArgVal, |
| const SDLoc &dl) const; |
| |
| SDValue LowerFormalArguments_Darwin( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; |
| SDValue LowerFormalArguments_64SVR4( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; |
| SDValue LowerFormalArguments_32SVR4( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const; |
| |
| SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff, |
| SDValue CallSeqStart, |
| ISD::ArgFlagsTy Flags, SelectionDAG &DAG, |
| const SDLoc &dl) const; |
| |
| SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, |
| bool isTailCall, bool isPatchPoint, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals, |
| ImmutableCallSite CS) const; |
| SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, |
| bool isTailCall, bool isPatchPoint, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals, |
| ImmutableCallSite CS) const; |
| SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, |
| bool isTailCall, bool isPatchPoint, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| const SDLoc &dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals, |
| ImmutableCallSite CS) const; |
| |
| SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; |
| SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const; |
| |
| SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const; |
| SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const; |
| |
| /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces |
| /// SETCC with integer subtraction when (1) there is a legal way of doing it |
| /// (2) keeping the result of comparison in GPR has performance benefit. |
| SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const; |
| |
| SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, |
| int &RefinementSteps, bool &UseOneConstNR, |
| bool Reciprocal) const override; |
| SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, |
| int &RefinementSteps) const override; |
| unsigned combineRepeatedFPDivisors() const override; |
| |
| CCAssignFn *useFastISelCCs(unsigned Flag) const; |
| |
| SDValue |
| combineElementTruncationToVectorTruncation(SDNode *N, |
| DAGCombinerInfo &DCI) const; |
| |
| /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be |
| /// handled by the VINSERTH instruction introduced in ISA 3.0. This is |
| /// essentially any shuffle of v8i16 vectors that just inserts one element |
| /// from one vector into the other. |
| SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const; |
| |
| /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be |
| /// handled by the VINSERTB instruction introduced in ISA 3.0. This is |
| /// essentially v16i8 vector version of VINSERTH. |
| SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const; |
| |
| // Return whether the call instruction can potentially be optimized to a |
| // tail call. This will cause the optimizers to attempt to move, or |
| // duplicate return instructions to help enable tail call optimizations. |
| bool mayBeEmittedAsTailCall(const CallInst *CI) const override; |
| bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override; |
| }; // end class PPCTargetLowering |
| |
| namespace PPC { |
| |
| FastISel *createFastISel(FunctionLoweringInfo &FuncInfo, |
| const TargetLibraryInfo *LibInfo); |
| |
| } // end namespace PPC |
| |
| bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| |
| bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| |
| bool |
| CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| |
| bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT, |
| MVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| |
| bool isIntS16Immediate(SDNode *N, int16_t &Imm); |
| bool isIntS16Immediate(SDValue Op, int16_t &Imm); |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H |