| //===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the targeting of the Machinelegalizer class for |
| /// AMDGPU. |
| /// \todo This should be generated by TableGen. |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPU.h" |
| #include "AMDGPULegalizerInfo.h" |
| #include "AMDGPUTargetMachine.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Debug.h" |
| |
| using namespace llvm; |
| using namespace LegalizeActions; |
| |
| AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST, |
| const GCNTargetMachine &TM) { |
| using namespace TargetOpcode; |
| |
| auto GetAddrSpacePtr = [&TM](unsigned AS) { |
| return LLT::pointer(AS, TM.getPointerSizeInBits(AS)); |
| }; |
| |
| auto AMDGPUAS = ST.getAMDGPUAS(); |
| |
| const LLT S1 = LLT::scalar(1); |
| const LLT V2S16 = LLT::vector(2, 16); |
| |
| const LLT S32 = LLT::scalar(32); |
| const LLT S64 = LLT::scalar(64); |
| const LLT S512 = LLT::scalar(512); |
| |
| const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS); |
| const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS); |
| const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS); |
| const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS.FLAT_ADDRESS); |
| const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS.PRIVATE_ADDRESS); |
| |
| const LLT AddrSpaces[] = { |
| GlobalPtr, |
| ConstantPtr, |
| LocalPtr, |
| FlatPtr, |
| PrivatePtr |
| }; |
| |
| setAction({G_ADD, S32}, Legal); |
| setAction({G_ASHR, S32}, Legal); |
| setAction({G_SUB, S32}, Legal); |
| setAction({G_MUL, S32}, Legal); |
| setAction({G_AND, S32}, Legal); |
| setAction({G_OR, S32}, Legal); |
| setAction({G_XOR, S32}, Legal); |
| |
| setAction({G_BITCAST, V2S16}, Legal); |
| setAction({G_BITCAST, 1, S32}, Legal); |
| |
| setAction({G_BITCAST, S32}, Legal); |
| setAction({G_BITCAST, 1, V2S16}, Legal); |
| |
| getActionDefinitionsBuilder(G_FCONSTANT) |
| .legalFor({S32, S64}); |
| |
| // G_IMPLICIT_DEF is a no-op so we can make it legal for any value type that |
| // can fit in a register. |
| // FIXME: We need to legalize several more operations before we can add |
| // a test case for size > 512. |
| getActionDefinitionsBuilder(G_IMPLICIT_DEF) |
| .legalIf([=](const LegalityQuery &Query) { |
| return Query.Types[0].getSizeInBits() <= 512; |
| }) |
| .clampScalar(0, S1, S512); |
| |
| getActionDefinitionsBuilder(G_CONSTANT) |
| .legalFor({S1, S32, S64}); |
| |
| // FIXME: i1 operands to intrinsics should always be legal, but other i1 |
| // values may not be legal. We need to figure out how to distinguish |
| // between these two scenarios. |
| setAction({G_CONSTANT, S1}, Legal); |
| |
| setAction({G_FADD, S32}, Legal); |
| |
| setAction({G_FCMP, S1}, Legal); |
| setAction({G_FCMP, 1, S32}, Legal); |
| setAction({G_FCMP, 1, S64}, Legal); |
| |
| setAction({G_FMUL, S32}, Legal); |
| |
| setAction({G_ZEXT, S64}, Legal); |
| setAction({G_ZEXT, 1, S32}, Legal); |
| |
| setAction({G_FPTOSI, S32}, Legal); |
| setAction({G_FPTOSI, 1, S32}, Legal); |
| |
| setAction({G_SITOFP, S32}, Legal); |
| setAction({G_SITOFP, 1, S32}, Legal); |
| |
| setAction({G_FPTOUI, S32}, Legal); |
| setAction({G_FPTOUI, 1, S32}, Legal); |
| |
| for (LLT PtrTy : AddrSpaces) { |
| LLT IdxTy = LLT::scalar(PtrTy.getSizeInBits()); |
| setAction({G_GEP, PtrTy}, Legal); |
| setAction({G_GEP, 1, IdxTy}, Legal); |
| } |
| |
| setAction({G_ICMP, S1}, Legal); |
| setAction({G_ICMP, 1, S32}, Legal); |
| |
| |
| getActionDefinitionsBuilder({G_LOAD, G_STORE}) |
| .legalIf([=, &ST](const LegalityQuery &Query) { |
| const LLT &Ty0 = Query.Types[0]; |
| |
| // TODO: Decompose private loads into 4-byte components. |
| // TODO: Illegal flat loads on SI |
| switch (Ty0.getSizeInBits()) { |
| case 32: |
| case 64: |
| case 128: |
| return true; |
| |
| case 96: |
| // XXX hasLoadX3 |
| return (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS); |
| |
| case 256: |
| case 512: |
| // TODO: constant loads |
| default: |
| return false; |
| } |
| }); |
| |
| |
| |
| setAction({G_SELECT, S32}, Legal); |
| setAction({G_SELECT, 1, S1}, Legal); |
| |
| setAction({G_SHL, S32}, Legal); |
| |
| |
| // FIXME: When RegBankSelect inserts copies, it will only create new |
| // registers with scalar types. This means we can end up with |
| // G_LOAD/G_STORE/G_GEP instruction with scalar types for their pointer |
| // operands. In assert builds, the instruction selector will assert |
| // if it sees a generic instruction which isn't legal, so we need to |
| // tell it that scalar types are legal for pointer operands |
| setAction({G_GEP, S64}, Legal); |
| |
| for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) { |
| getActionDefinitionsBuilder(Op) |
| .legalIf([=](const LegalityQuery &Query) { |
| const LLT &VecTy = Query.Types[1]; |
| const LLT &IdxTy = Query.Types[2]; |
| return VecTy.getSizeInBits() % 32 == 0 && |
| VecTy.getSizeInBits() <= 512 && |
| IdxTy.getSizeInBits() == 32; |
| }); |
| } |
| |
| // FIXME: Doesn't handle extract of illegal sizes. |
| getActionDefinitionsBuilder({G_EXTRACT, G_INSERT}) |
| .legalIf([=](const LegalityQuery &Query) { |
| const LLT &Ty0 = Query.Types[0]; |
| const LLT &Ty1 = Query.Types[1]; |
| return (Ty0.getSizeInBits() % 32 == 0) && |
| (Ty1.getSizeInBits() % 32 == 0); |
| }); |
| |
| // Merge/Unmerge |
| for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { |
| unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; |
| unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; |
| |
| getActionDefinitionsBuilder(Op) |
| .legalIf([=](const LegalityQuery &Query) { |
| const LLT &BigTy = Query.Types[BigTyIdx]; |
| const LLT &LitTy = Query.Types[LitTyIdx]; |
| return BigTy.getSizeInBits() % 32 == 0 && |
| LitTy.getSizeInBits() % 32 == 0 && |
| BigTy.getSizeInBits() <= 512; |
| }) |
| // Any vectors left are the wrong size. Scalarize them. |
| .fewerElementsIf([](const LegalityQuery &Query) { return true; }, |
| [](const LegalityQuery &Query) { |
| return std::make_pair( |
| 0, Query.Types[0].getElementType()); |
| }) |
| .fewerElementsIf([](const LegalityQuery &Query) { return true; }, |
| [](const LegalityQuery &Query) { |
| return std::make_pair( |
| 1, Query.Types[1].getElementType()); |
| }); |
| |
| } |
| |
| computeTables(); |
| verify(*ST.getInstrInfo()); |
| } |