| //===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// |
| /// The AMDGPUAsmPrinter is used to print both assembly string and also binary |
| /// code. When passed an MCAsmStreamer it prints assembly and when passed |
| /// an MCObjectStreamer it outputs binary code. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| |
| #include "AMDGPUAsmPrinter.h" |
| #include "AMDGPU.h" |
| #include "AMDGPUSubtarget.h" |
| #include "AMDGPUTargetMachine.h" |
| #include "InstPrinter/AMDGPUInstPrinter.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "MCTargetDesc/AMDGPUTargetStreamer.h" |
| #include "R600AsmPrinter.h" |
| #include "R600Defines.h" |
| #include "R600MachineFunctionInfo.h" |
| #include "R600RegisterInfo.h" |
| #include "SIDefines.h" |
| #include "SIInstrInfo.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "SIRegisterInfo.h" |
| #include "Utils/AMDGPUBaseInfo.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCSectionELF.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/Support/AMDGPUMetadata.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| |
| using namespace llvm; |
| using namespace llvm::AMDGPU; |
| |
| // TODO: This should get the default rounding mode from the kernel. We just set |
| // the default here, but this could change if the OpenCL rounding mode pragmas |
| // are used. |
| // |
| // The denormal mode here should match what is reported by the OpenCL runtime |
| // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but |
| // can also be override to flush with the -cl-denorms-are-zero compiler flag. |
| // |
| // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double |
| // precision, and leaves single precision to flush all and does not report |
| // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports |
| // CL_FP_DENORM for both. |
| // |
| // FIXME: It seems some instructions do not support single precision denormals |
| // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, |
| // and sin_f32, cos_f32 on most parts). |
| |
| // We want to use these instructions, and using fp32 denormals also causes |
| // instructions to run at the double precision rate for the device so it's |
| // probably best to just report no single precision denormals. |
| static uint32_t getFPMode(const MachineFunction &F) { |
| const GCNSubtarget& ST = F.getSubtarget<GCNSubtarget>(); |
| // TODO: Is there any real use for the flush in only / flush out only modes? |
| |
| uint32_t FP32Denormals = |
| ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; |
| |
| uint32_t FP64Denormals = |
| ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; |
| |
| return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | |
| FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | |
| FP_DENORM_MODE_SP(FP32Denormals) | |
| FP_DENORM_MODE_DP(FP64Denormals); |
| } |
| |
| static AsmPrinter * |
| createAMDGPUAsmPrinterPass(TargetMachine &tm, |
| std::unique_ptr<MCStreamer> &&Streamer) { |
| return new AMDGPUAsmPrinter(tm, std::move(Streamer)); |
| } |
| |
| extern "C" void LLVMInitializeAMDGPUAsmPrinter() { |
| TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), |
| llvm::createR600AsmPrinterPass); |
| TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), |
| createAMDGPUAsmPrinterPass); |
| } |
| |
| AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, |
| std::unique_ptr<MCStreamer> Streamer) |
| : AsmPrinter(TM, std::move(Streamer)) { |
| AMDGPUASI = static_cast<AMDGPUTargetMachine*>(&TM)->getAMDGPUAS(); |
| } |
| |
| StringRef AMDGPUAsmPrinter::getPassName() const { |
| return "AMDGPU Assembly Printer"; |
| } |
| |
| const MCSubtargetInfo* AMDGPUAsmPrinter::getSTI() const { |
| return TM.getMCSubtargetInfo(); |
| } |
| |
| AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { |
| if (!OutStreamer) |
| return nullptr; |
| return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer()); |
| } |
| |
| void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) { |
| if (IsaInfo::hasCodeObjectV3(getSTI()) && |
| TM.getTargetTriple().getOS() == Triple::AMDHSA) |
| return; |
| |
| if (TM.getTargetTriple().getOS() != Triple::AMDHSA && |
| TM.getTargetTriple().getOS() != Triple::AMDPAL) |
| return; |
| |
| if (TM.getTargetTriple().getOS() == Triple::AMDHSA) |
| HSAMetadataStream.begin(M); |
| |
| if (TM.getTargetTriple().getOS() == Triple::AMDPAL) |
| readPALMetadata(M); |
| |
| // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2. |
| if (TM.getTargetTriple().getOS() == Triple::AMDHSA) |
| getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1); |
| |
| // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2. |
| IsaInfo::IsaVersion ISA = IsaInfo::getIsaVersion(getSTI()->getFeatureBits()); |
| getTargetStreamer()->EmitDirectiveHSACodeObjectISA( |
| ISA.Major, ISA.Minor, ISA.Stepping, "AMD", "AMDGPU"); |
| } |
| |
| void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) { |
| // TODO: Add metadata to code object v3. |
| if (IsaInfo::hasCodeObjectV3(getSTI()) && |
| TM.getTargetTriple().getOS() == Triple::AMDHSA) |
| return; |
| |
| // Following code requires TargetStreamer to be present. |
| if (!getTargetStreamer()) |
| return; |
| |
| // Emit ISA Version (NT_AMD_AMDGPU_ISA). |
| std::string ISAVersionString; |
| raw_string_ostream ISAVersionStream(ISAVersionString); |
| IsaInfo::streamIsaVersion(getSTI(), ISAVersionStream); |
| getTargetStreamer()->EmitISAVersion(ISAVersionStream.str()); |
| |
| // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). |
| if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { |
| HSAMetadataStream.end(); |
| getTargetStreamer()->EmitHSAMetadata(HSAMetadataStream.getHSAMetadata()); |
| } |
| |
| // Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA). |
| if (TM.getTargetTriple().getOS() == Triple::AMDPAL) { |
| // Copy the PAL metadata from the map where we collected it into a vector, |
| // then write it as a .note. |
| PALMD::Metadata PALMetadataVector; |
| for (auto i : PALMetadataMap) { |
| PALMetadataVector.push_back(i.first); |
| PALMetadataVector.push_back(i.second); |
| } |
| getTargetStreamer()->EmitPALMetadata(PALMetadataVector); |
| } |
| } |
| |
| bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( |
| const MachineBasicBlock *MBB) const { |
| if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) |
| return false; |
| |
| if (MBB->empty()) |
| return true; |
| |
| // If this is a block implementing a long branch, an expression relative to |
| // the start of the block is needed. to the start of the block. |
| // XXX - Is there a smarter way to check this? |
| return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); |
| } |
| |
| void AMDGPUAsmPrinter::EmitFunctionBodyStart() { |
| const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); |
| if (!MFI.isEntryFunction()) |
| return; |
| if (IsaInfo::hasCodeObjectV3(getSTI()) && |
| TM.getTargetTriple().getOS() == Triple::AMDHSA) |
| return; |
| |
| const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); |
| const Function &F = MF->getFunction(); |
| if (STM.isAmdCodeObjectV2(F) && |
| (F.getCallingConv() == CallingConv::AMDGPU_KERNEL || |
| F.getCallingConv() == CallingConv::SPIR_KERNEL)) { |
| amd_kernel_code_t KernelCode; |
| getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); |
| getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); |
| } |
| |
| if (TM.getTargetTriple().getOS() != Triple::AMDHSA) |
| return; |
| |
| HSAMetadataStream.emitKernel(*MF, CurrentProgramInfo); |
| } |
| |
| void AMDGPUAsmPrinter::EmitFunctionBodyEnd() { |
| const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); |
| if (!MFI.isEntryFunction()) |
| return; |
| if (!IsaInfo::hasCodeObjectV3(getSTI()) || |
| TM.getTargetTriple().getOS() != Triple::AMDHSA) |
| return; |
| |
| auto &Streamer = getTargetStreamer()->getStreamer(); |
| auto &Context = Streamer.getContext(); |
| auto &ObjectFileInfo = *Context.getObjectFileInfo(); |
| auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection(); |
| |
| Streamer.PushSection(); |
| Streamer.SwitchSection(&ReadOnlySection); |
| |
| // CP microcode requires the kernel descriptor to be allocated on 64 byte |
| // alignment. |
| Streamer.EmitValueToAlignment(64, 0, 1, 0); |
| if (ReadOnlySection.getAlignment() < 64) |
| ReadOnlySection.setAlignment(64); |
| |
| SmallString<128> KernelName; |
| getNameWithPrefix(KernelName, &MF->getFunction()); |
| getTargetStreamer()->EmitAmdhsaKernelDescriptor( |
| *getSTI(), KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo), |
| CurrentProgramInfo.NumVGPRsForWavesPerEU, |
| CurrentProgramInfo.NumSGPRsForWavesPerEU - |
| IsaInfo::getNumExtraSGPRs(getSTI()->getFeatureBits(), |
| CurrentProgramInfo.VCCUsed, |
| CurrentProgramInfo.FlatUsed), |
| CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed, |
| hasXNACK(*getSTI())); |
| |
| Streamer.PopSection(); |
| } |
| |
| void AMDGPUAsmPrinter::EmitFunctionEntryLabel() { |
| if (IsaInfo::hasCodeObjectV3(getSTI()) && |
| TM.getTargetTriple().getOS() == Triple::AMDHSA) { |
| AsmPrinter::EmitFunctionEntryLabel(); |
| return; |
| } |
| |
| const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); |
| const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); |
| if (MFI->isEntryFunction() && STM.isAmdCodeObjectV2(MF->getFunction())) { |
| SmallString<128> SymbolName; |
| getNameWithPrefix(SymbolName, &MF->getFunction()), |
| getTargetStreamer()->EmitAMDGPUSymbolType( |
| SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); |
| } |
| const GCNSubtarget &STI = MF->getSubtarget<GCNSubtarget>(); |
| if (STI.dumpCode()) { |
| // Disassemble function name label to text. |
| DisasmLines.push_back(MF->getName().str() + ":"); |
| DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); |
| HexLines.push_back(""); |
| } |
| |
| AsmPrinter::EmitFunctionEntryLabel(); |
| } |
| |
| void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { |
| const GCNSubtarget &STI = MBB.getParent()->getSubtarget<GCNSubtarget>(); |
| if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) { |
| // Write a line for the basic block label if it is not only fallthrough. |
| DisasmLines.push_back( |
| (Twine("BB") + Twine(getFunctionNumber()) |
| + "_" + Twine(MBB.getNumber()) + ":").str()); |
| DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); |
| HexLines.push_back(""); |
| } |
| AsmPrinter::EmitBasicBlockStart(MBB); |
| } |
| |
| void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { |
| |
| // Group segment variables aren't emitted in HSA. |
| if (AMDGPU::isGroupSegment(GV)) |
| return; |
| |
| AsmPrinter::EmitGlobalVariable(GV); |
| } |
| |
| bool AMDGPUAsmPrinter::doFinalization(Module &M) { |
| CallGraphResourceInfo.clear(); |
| return AsmPrinter::doFinalization(M); |
| } |
| |
| // For the amdpal OS type, read the amdgpu.pal.metadata supplied by the |
| // frontend into our PALMetadataMap, ready for per-function modification. It |
| // is a NamedMD containing an MDTuple containing a number of MDNodes each of |
| // which is an integer value, and each two integer values forms a key=value |
| // pair that we store as PALMetadataMap[key]=value in the map. |
| void AMDGPUAsmPrinter::readPALMetadata(Module &M) { |
| auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata"); |
| if (!NamedMD || !NamedMD->getNumOperands()) |
| return; |
| auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0)); |
| if (!Tuple) |
| return; |
| for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) { |
| auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I)); |
| auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1)); |
| if (!Key || !Val) |
| continue; |
| PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue(); |
| } |
| } |
| |
| // Print comments that apply to both callable functions and entry points. |
| void AMDGPUAsmPrinter::emitCommonFunctionComments( |
| uint32_t NumVGPR, |
| uint32_t NumSGPR, |
| uint64_t ScratchSize, |
| uint64_t CodeSize, |
| const AMDGPUMachineFunction *MFI) { |
| OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); |
| OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); |
| OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); |
| OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); |
| OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), |
| false); |
| } |
| |
| uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties( |
| const MachineFunction &MF) const { |
| const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); |
| uint16_t KernelCodeProperties = 0; |
| |
| if (MFI.hasPrivateSegmentBuffer()) { |
| KernelCodeProperties |= |
| amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; |
| } |
| if (MFI.hasDispatchPtr()) { |
| KernelCodeProperties |= |
| amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; |
| } |
| if (MFI.hasQueuePtr()) { |
| KernelCodeProperties |= |
| amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; |
| } |
| if (MFI.hasKernargSegmentPtr()) { |
| KernelCodeProperties |= |
| amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; |
| } |
| if (MFI.hasDispatchID()) { |
| KernelCodeProperties |= |
| amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; |
| } |
| if (MFI.hasFlatScratchInit()) { |
| KernelCodeProperties |= |
| amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; |
| } |
| |
| return KernelCodeProperties; |
| } |
| |
| amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor( |
| const MachineFunction &MF, |
| const SIProgramInfo &PI) const { |
| amdhsa::kernel_descriptor_t KernelDescriptor; |
| memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor)); |
| |
| assert(isUInt<32>(PI.ScratchSize)); |
| assert(isUInt<32>(PI.ComputePGMRSrc1)); |
| assert(isUInt<32>(PI.ComputePGMRSrc2)); |
| |
| KernelDescriptor.group_segment_fixed_size = PI.LDSSize; |
| KernelDescriptor.private_segment_fixed_size = PI.ScratchSize; |
| KernelDescriptor.compute_pgm_rsrc1 = PI.ComputePGMRSrc1; |
| KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2; |
| KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF); |
| |
| return KernelDescriptor; |
| } |
| |
| bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { |
| CurrentProgramInfo = SIProgramInfo(); |
| |
| const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); |
| |
| // The starting address of all shader programs must be 256 bytes aligned. |
| // Regular functions just need the basic required instruction alignment. |
| MF.setAlignment(MFI->isEntryFunction() ? 8 : 2); |
| |
| SetupMachineFunction(MF); |
| |
| const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); |
| MCContext &Context = getObjFileLowering().getContext(); |
| // FIXME: This should be an explicit check for Mesa. |
| if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) { |
| MCSectionELF *ConfigSection = |
| Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); |
| OutStreamer->SwitchSection(ConfigSection); |
| } |
| |
| if (MFI->isEntryFunction()) { |
| getSIProgramInfo(CurrentProgramInfo, MF); |
| } else { |
| auto I = CallGraphResourceInfo.insert( |
| std::make_pair(&MF.getFunction(), SIFunctionResourceInfo())); |
| SIFunctionResourceInfo &Info = I.first->second; |
| assert(I.second && "should only be called once per function"); |
| Info = analyzeResourceUsage(MF); |
| } |
| |
| if (STM.isAmdPalOS()) |
| EmitPALMetadata(MF, CurrentProgramInfo); |
| else if (!STM.isAmdHsaOS()) { |
| EmitProgramInfoSI(MF, CurrentProgramInfo); |
| } |
| |
| DisasmLines.clear(); |
| HexLines.clear(); |
| DisasmLineMaxLen = 0; |
| |
| EmitFunctionBody(); |
| |
| if (isVerbose()) { |
| MCSectionELF *CommentSection = |
| Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); |
| OutStreamer->SwitchSection(CommentSection); |
| |
| if (!MFI->isEntryFunction()) { |
| OutStreamer->emitRawComment(" Function info:", false); |
| SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()]; |
| emitCommonFunctionComments( |
| Info.NumVGPR, |
| Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()), |
| Info.PrivateSegmentSize, |
| getFunctionCodeSize(MF), MFI); |
| return false; |
| } |
| |
| OutStreamer->emitRawComment(" Kernel info:", false); |
| emitCommonFunctionComments(CurrentProgramInfo.NumVGPR, |
| CurrentProgramInfo.NumSGPR, |
| CurrentProgramInfo.ScratchSize, |
| getFunctionCodeSize(MF), MFI); |
| |
| OutStreamer->emitRawComment( |
| " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); |
| OutStreamer->emitRawComment( |
| " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); |
| OutStreamer->emitRawComment( |
| " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + |
| " bytes/workgroup (compile time only)", false); |
| |
| OutStreamer->emitRawComment( |
| " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false); |
| OutStreamer->emitRawComment( |
| " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false); |
| |
| OutStreamer->emitRawComment( |
| " NumSGPRsForWavesPerEU: " + |
| Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); |
| OutStreamer->emitRawComment( |
| " NumVGPRsForWavesPerEU: " + |
| Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); |
| |
| OutStreamer->emitRawComment( |
| " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false); |
| |
| if (MF.getSubtarget<GCNSubtarget>().debuggerEmitPrologue()) { |
| OutStreamer->emitRawComment( |
| " DebuggerWavefrontPrivateSegmentOffsetSGPR: s" + |
| Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false); |
| OutStreamer->emitRawComment( |
| " DebuggerPrivateSegmentBufferSGPR: s" + |
| Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false); |
| } |
| |
| OutStreamer->emitRawComment( |
| " COMPUTE_PGM_RSRC2:USER_SGPR: " + |
| Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false); |
| OutStreamer->emitRawComment( |
| " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + |
| Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false); |
| OutStreamer->emitRawComment( |
| " COMPUTE_PGM_RSRC2:TGID_X_EN: " + |
| Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); |
| OutStreamer->emitRawComment( |
| " COMPUTE_PGM_RSRC2:TGID_Y_EN: " + |
| Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); |
| OutStreamer->emitRawComment( |
| " COMPUTE_PGM_RSRC2:TGID_Z_EN: " + |
| Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); |
| OutStreamer->emitRawComment( |
| " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + |
| Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)), |
| false); |
| } |
| |
| if (STM.dumpCode()) { |
| |
| OutStreamer->SwitchSection( |
| Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0)); |
| |
| for (size_t i = 0; i < DisasmLines.size(); ++i) { |
| std::string Comment = "\n"; |
| if (!HexLines[i].empty()) { |
| Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); |
| Comment += " ; " + HexLines[i] + "\n"; |
| } |
| |
| OutStreamer->EmitBytes(StringRef(DisasmLines[i])); |
| OutStreamer->EmitBytes(StringRef(Comment)); |
| } |
| } |
| |
| return false; |
| } |
| |
| uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { |
| const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); |
| const SIInstrInfo *TII = STM.getInstrInfo(); |
| |
| uint64_t CodeSize = 0; |
| |
| for (const MachineBasicBlock &MBB : MF) { |
| for (const MachineInstr &MI : MBB) { |
| // TODO: CodeSize should account for multiple functions. |
| |
| // TODO: Should we count size of debug info? |
| if (MI.isDebugInstr()) |
| continue; |
| |
| CodeSize += TII->getInstSizeInBytes(MI); |
| } |
| } |
| |
| return CodeSize; |
| } |
| |
| static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI, |
| const SIInstrInfo &TII, |
| unsigned Reg) { |
| for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) { |
| if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent())) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs( |
| const GCNSubtarget &ST) const { |
| return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(ST.getFeatureBits(), |
| UsesVCC, UsesFlatScratch); |
| } |
| |
| AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage( |
| const MachineFunction &MF) const { |
| SIFunctionResourceInfo Info; |
| |
| const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const SIInstrInfo *TII = ST.getInstrInfo(); |
| const SIRegisterInfo &TRI = TII->getRegisterInfo(); |
| |
| Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) || |
| MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI); |
| |
| // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat |
| // instructions aren't used to access the scratch buffer. Inline assembly may |
| // need it though. |
| // |
| // If we only have implicit uses of flat_scr on flat instructions, it is not |
| // really needed. |
| if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() && |
| (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) && |
| !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) && |
| !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) { |
| Info.UsesFlatScratch = false; |
| } |
| |
| Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects(); |
| Info.PrivateSegmentSize = FrameInfo.getStackSize(); |
| if (MFI->isStackRealigned()) |
| Info.PrivateSegmentSize += FrameInfo.getMaxAlignment(); |
| |
| |
| Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) || |
| MRI.isPhysRegUsed(AMDGPU::VCC_HI); |
| |
| // If there are no calls, MachineRegisterInfo can tell us the used register |
| // count easily. |
| // A tail call isn't considered a call for MachineFrameInfo's purposes. |
| if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) { |
| MCPhysReg HighestVGPRReg = AMDGPU::NoRegister; |
| for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) { |
| if (MRI.isPhysRegUsed(Reg)) { |
| HighestVGPRReg = Reg; |
| break; |
| } |
| } |
| |
| MCPhysReg HighestSGPRReg = AMDGPU::NoRegister; |
| for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) { |
| if (MRI.isPhysRegUsed(Reg)) { |
| HighestSGPRReg = Reg; |
| break; |
| } |
| } |
| |
| // We found the maximum register index. They start at 0, so add one to get the |
| // number of registers. |
| Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 : |
| TRI.getHWRegIndex(HighestVGPRReg) + 1; |
| Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 : |
| TRI.getHWRegIndex(HighestSGPRReg) + 1; |
| |
| return Info; |
| } |
| |
| int32_t MaxVGPR = -1; |
| int32_t MaxSGPR = -1; |
| uint64_t CalleeFrameSize = 0; |
| |
| for (const MachineBasicBlock &MBB : MF) { |
| for (const MachineInstr &MI : MBB) { |
| // TODO: Check regmasks? Do they occur anywhere except calls? |
| for (const MachineOperand &MO : MI.operands()) { |
| unsigned Width = 0; |
| bool IsSGPR = false; |
| |
| if (!MO.isReg()) |
| continue; |
| |
| unsigned Reg = MO.getReg(); |
| switch (Reg) { |
| case AMDGPU::EXEC: |
| case AMDGPU::EXEC_LO: |
| case AMDGPU::EXEC_HI: |
| case AMDGPU::SCC: |
| case AMDGPU::M0: |
| case AMDGPU::SRC_SHARED_BASE: |
| case AMDGPU::SRC_SHARED_LIMIT: |
| case AMDGPU::SRC_PRIVATE_BASE: |
| case AMDGPU::SRC_PRIVATE_LIMIT: |
| continue; |
| |
| case AMDGPU::NoRegister: |
| assert(MI.isDebugInstr()); |
| continue; |
| |
| case AMDGPU::VCC: |
| case AMDGPU::VCC_LO: |
| case AMDGPU::VCC_HI: |
| Info.UsesVCC = true; |
| continue; |
| |
| case AMDGPU::FLAT_SCR: |
| case AMDGPU::FLAT_SCR_LO: |
| case AMDGPU::FLAT_SCR_HI: |
| continue; |
| |
| case AMDGPU::XNACK_MASK: |
| case AMDGPU::XNACK_MASK_LO: |
| case AMDGPU::XNACK_MASK_HI: |
| llvm_unreachable("xnack_mask registers should not be used"); |
| |
| case AMDGPU::TBA: |
| case AMDGPU::TBA_LO: |
| case AMDGPU::TBA_HI: |
| case AMDGPU::TMA: |
| case AMDGPU::TMA_LO: |
| case AMDGPU::TMA_HI: |
| llvm_unreachable("trap handler registers should not be used"); |
| |
| default: |
| break; |
| } |
| |
| if (AMDGPU::SReg_32RegClass.contains(Reg)) { |
| assert(!AMDGPU::TTMP_32RegClass.contains(Reg) && |
| "trap handler registers should not be used"); |
| IsSGPR = true; |
| Width = 1; |
| } else if (AMDGPU::VGPR_32RegClass.contains(Reg)) { |
| IsSGPR = false; |
| Width = 1; |
| } else if (AMDGPU::SReg_64RegClass.contains(Reg)) { |
| assert(!AMDGPU::TTMP_64RegClass.contains(Reg) && |
| "trap handler registers should not be used"); |
| IsSGPR = true; |
| Width = 2; |
| } else if (AMDGPU::VReg_64RegClass.contains(Reg)) { |
| IsSGPR = false; |
| Width = 2; |
| } else if (AMDGPU::VReg_96RegClass.contains(Reg)) { |
| IsSGPR = false; |
| Width = 3; |
| } else if (AMDGPU::SReg_128RegClass.contains(Reg)) { |
| assert(!AMDGPU::TTMP_128RegClass.contains(Reg) && |
| "trap handler registers should not be used"); |
| IsSGPR = true; |
| Width = 4; |
| } else if (AMDGPU::VReg_128RegClass.contains(Reg)) { |
| IsSGPR = false; |
| Width = 4; |
| } else if (AMDGPU::SReg_256RegClass.contains(Reg)) { |
| assert(!AMDGPU::TTMP_256RegClass.contains(Reg) && |
| "trap handler registers should not be used"); |
| IsSGPR = true; |
| Width = 8; |
| } else if (AMDGPU::VReg_256RegClass.contains(Reg)) { |
| IsSGPR = false; |
| Width = 8; |
| } else if (AMDGPU::SReg_512RegClass.contains(Reg)) { |
| assert(!AMDGPU::TTMP_512RegClass.contains(Reg) && |
| "trap handler registers should not be used"); |
| IsSGPR = true; |
| Width = 16; |
| } else if (AMDGPU::VReg_512RegClass.contains(Reg)) { |
| IsSGPR = false; |
| Width = 16; |
| } else { |
| llvm_unreachable("Unknown register class"); |
| } |
| unsigned HWReg = TRI.getHWRegIndex(Reg); |
| int MaxUsed = HWReg + Width - 1; |
| if (IsSGPR) { |
| MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR; |
| } else { |
| MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR; |
| } |
| } |
| |
| if (MI.isCall()) { |
| // Pseudo used just to encode the underlying global. Is there a better |
| // way to track this? |
| |
| const MachineOperand *CalleeOp |
| = TII->getNamedOperand(MI, AMDGPU::OpName::callee); |
| const Function *Callee = cast<Function>(CalleeOp->getGlobal()); |
| if (Callee->isDeclaration()) { |
| // If this is a call to an external function, we can't do much. Make |
| // conservative guesses. |
| |
| // 48 SGPRs - vcc, - flat_scr, -xnack |
| int MaxSGPRGuess = |
| 47 - IsaInfo::getNumExtraSGPRs(ST.getFeatureBits(), true, |
| ST.hasFlatAddressSpace()); |
| MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess); |
| MaxVGPR = std::max(MaxVGPR, 23); |
| |
| CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384)); |
| Info.UsesVCC = true; |
| Info.UsesFlatScratch = ST.hasFlatAddressSpace(); |
| Info.HasDynamicallySizedStack = true; |
| } else { |
| // We force CodeGen to run in SCC order, so the callee's register |
| // usage etc. should be the cumulative usage of all callees. |
| auto I = CallGraphResourceInfo.find(Callee); |
| assert(I != CallGraphResourceInfo.end() && |
| "callee should have been handled before caller"); |
| |
| MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR); |
| MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR); |
| CalleeFrameSize |
| = std::max(I->second.PrivateSegmentSize, CalleeFrameSize); |
| Info.UsesVCC |= I->second.UsesVCC; |
| Info.UsesFlatScratch |= I->second.UsesFlatScratch; |
| Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack; |
| Info.HasRecursion |= I->second.HasRecursion; |
| } |
| |
| if (!Callee->doesNotRecurse()) |
| Info.HasRecursion = true; |
| } |
| } |
| } |
| |
| Info.NumExplicitSGPR = MaxSGPR + 1; |
| Info.NumVGPR = MaxVGPR + 1; |
| Info.PrivateSegmentSize += CalleeFrameSize; |
| |
| return Info; |
| } |
| |
| void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, |
| const MachineFunction &MF) { |
| SIFunctionResourceInfo Info = analyzeResourceUsage(MF); |
| |
| ProgInfo.NumVGPR = Info.NumVGPR; |
| ProgInfo.NumSGPR = Info.NumExplicitSGPR; |
| ProgInfo.ScratchSize = Info.PrivateSegmentSize; |
| ProgInfo.VCCUsed = Info.UsesVCC; |
| ProgInfo.FlatUsed = Info.UsesFlatScratch; |
| ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion; |
| |
| if (!isUInt<32>(ProgInfo.ScratchSize)) { |
| DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), |
| ProgInfo.ScratchSize, DS_Error); |
| MF.getFunction().getContext().diagnose(DiagStackSize); |
| } |
| |
| const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); |
| const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| const SIInstrInfo *TII = STM.getInstrInfo(); |
| const SIRegisterInfo *RI = &TII->getRegisterInfo(); |
| |
| // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are |
| // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be |
| // unified. |
| unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs( |
| STM.getFeatureBits(), ProgInfo.VCCUsed, ProgInfo.FlatUsed); |
| |
| // Check the addressable register limit before we add ExtraSGPRs. |
| if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && |
| !STM.hasSGPRInitBug()) { |
| unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); |
| if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { |
| // This can happen due to a compiler bug or when using inline asm. |
| LLVMContext &Ctx = MF.getFunction().getContext(); |
| DiagnosticInfoResourceLimit Diag(MF.getFunction(), |
| "addressable scalar registers", |
| ProgInfo.NumSGPR, DS_Error, |
| DK_ResourceLimit, |
| MaxAddressableNumSGPRs); |
| Ctx.diagnose(Diag); |
| ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1; |
| } |
| } |
| |
| // Account for extra SGPRs and VGPRs reserved for debugger use. |
| ProgInfo.NumSGPR += ExtraSGPRs; |
| |
| // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave |
| // dispatch registers are function args. |
| unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0; |
| for (auto &Arg : MF.getFunction().args()) { |
| unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32; |
| if (Arg.hasAttribute(Attribute::InReg)) |
| WaveDispatchNumSGPR += NumRegs; |
| else |
| WaveDispatchNumVGPR += NumRegs; |
| } |
| ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR); |
| ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR); |
| |
| // Adjust number of registers used to meet default/requested minimum/maximum |
| // number of waves per execution unit request. |
| ProgInfo.NumSGPRsForWavesPerEU = std::max( |
| std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU())); |
| ProgInfo.NumVGPRsForWavesPerEU = std::max( |
| std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU())); |
| |
| if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || |
| STM.hasSGPRInitBug()) { |
| unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); |
| if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { |
| // This can happen due to a compiler bug or when using inline asm to use |
| // the registers which are usually reserved for vcc etc. |
| LLVMContext &Ctx = MF.getFunction().getContext(); |
| DiagnosticInfoResourceLimit Diag(MF.getFunction(), |
| "scalar registers", |
| ProgInfo.NumSGPR, DS_Error, |
| DK_ResourceLimit, |
| MaxAddressableNumSGPRs); |
| Ctx.diagnose(Diag); |
| ProgInfo.NumSGPR = MaxAddressableNumSGPRs; |
| ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs; |
| } |
| } |
| |
| if (STM.hasSGPRInitBug()) { |
| ProgInfo.NumSGPR = |
| AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; |
| ProgInfo.NumSGPRsForWavesPerEU = |
| AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; |
| } |
| |
| if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { |
| LLVMContext &Ctx = MF.getFunction().getContext(); |
| DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", |
| MFI->getNumUserSGPRs(), DS_Error); |
| Ctx.diagnose(Diag); |
| } |
| |
| if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) { |
| LLVMContext &Ctx = MF.getFunction().getContext(); |
| DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory", |
| MFI->getLDSSize(), DS_Error); |
| Ctx.diagnose(Diag); |
| } |
| |
| ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks( |
| STM.getFeatureBits(), ProgInfo.NumSGPRsForWavesPerEU); |
| ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks( |
| STM.getFeatureBits(), ProgInfo.NumVGPRsForWavesPerEU); |
| |
| // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and |
| // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue" |
| // attribute was requested. |
| if (STM.debuggerEmitPrologue()) { |
| ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR = |
| RI->getHWRegIndex(MFI->getScratchWaveOffsetReg()); |
| ProgInfo.DebuggerPrivateSegmentBufferSGPR = |
| RI->getHWRegIndex(MFI->getScratchRSrcReg()); |
| } |
| |
| // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode |
| // register. |
| ProgInfo.FloatMode = getFPMode(MF); |
| |
| ProgInfo.IEEEMode = STM.enableIEEEBit(MF); |
| |
| // Make clamp modifier on NaN input returns 0. |
| ProgInfo.DX10Clamp = STM.enableDX10Clamp(); |
| |
| unsigned LDSAlignShift; |
| if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { |
| // LDS is allocated in 64 dword blocks. |
| LDSAlignShift = 8; |
| } else { |
| // LDS is allocated in 128 dword blocks. |
| LDSAlignShift = 9; |
| } |
| |
| unsigned LDSSpillSize = |
| MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize(); |
| |
| ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; |
| ProgInfo.LDSBlocks = |
| alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; |
| |
| // Scratch is allocated in 256 dword blocks. |
| unsigned ScratchAlignShift = 10; |
| // We need to program the hardware with the amount of scratch memory that |
| // is used by the entire wave. ProgInfo.ScratchSize is the amount of |
| // scratch memory used per thread. |
| ProgInfo.ScratchBlocks = |
| alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), |
| 1ULL << ScratchAlignShift) >> |
| ScratchAlignShift; |
| |
| ProgInfo.ComputePGMRSrc1 = |
| S_00B848_VGPRS(ProgInfo.VGPRBlocks) | |
| S_00B848_SGPRS(ProgInfo.SGPRBlocks) | |
| S_00B848_PRIORITY(ProgInfo.Priority) | |
| S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | |
| S_00B848_PRIV(ProgInfo.Priv) | |
| S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | |
| S_00B848_DEBUG_MODE(ProgInfo.DebugMode) | |
| S_00B848_IEEE_MODE(ProgInfo.IEEEMode); |
| |
| // 0 = X, 1 = XY, 2 = XYZ |
| unsigned TIDIGCompCnt = 0; |
| if (MFI->hasWorkItemIDZ()) |
| TIDIGCompCnt = 2; |
| else if (MFI->hasWorkItemIDY()) |
| TIDIGCompCnt = 1; |
| |
| ProgInfo.ComputePGMRSrc2 = |
| S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | |
| S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | |
| // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP. |
| S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) | |
| S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | |
| S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | |
| S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | |
| S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | |
| S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | |
| S_00B84C_EXCP_EN_MSB(0) | |
| // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. |
| S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) | |
| S_00B84C_EXCP_EN(0); |
| } |
| |
| static unsigned getRsrcReg(CallingConv::ID CallConv) { |
| switch (CallConv) { |
| default: LLVM_FALLTHROUGH; |
| case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; |
| case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; |
| case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; |
| case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; |
| case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; |
| case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; |
| case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; |
| } |
| } |
| |
| void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, |
| const SIProgramInfo &CurrentProgramInfo) { |
| const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); |
| const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); |
| |
| if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { |
| OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); |
| |
| OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4); |
| |
| OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); |
| OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4); |
| |
| OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); |
| OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); |
| |
| // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = |
| // 0" comment but I don't see a corresponding field in the register spec. |
| } else { |
| OutStreamer->EmitIntValue(RsrcReg, 4); |
| OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | |
| S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4); |
| if (STM.isVGPRSpillingEnabled(MF.getFunction())) { |
| OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4); |
| OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); |
| } |
| } |
| |
| if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { |
| OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4); |
| OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks), 4); |
| OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); |
| OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4); |
| OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4); |
| OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4); |
| } |
| |
| OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4); |
| OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4); |
| OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4); |
| OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4); |
| } |
| |
| // This is the equivalent of EmitProgramInfoSI above, but for when the OS type |
| // is AMDPAL. It stores each compute/SPI register setting and other PAL |
| // metadata items into the PALMetadataMap, combining with any provided by the |
| // frontend as LLVM metadata. Once all functions are written, PALMetadataMap is |
| // then written as a single block in the .note section. |
| void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, |
| const SIProgramInfo &CurrentProgramInfo) { |
| const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| // Given the calling convention, calculate the register number for rsrc1. In |
| // principle the register number could change in future hardware, but we know |
| // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so |
| // we can use the same fixed value that .AMDGPU.config has for Mesa. Note |
| // that we use a register number rather than a byte offset, so we need to |
| // divide by 4. |
| unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4; |
| unsigned Rsrc2Reg = Rsrc1Reg + 1; |
| // Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used |
| // with a constant offset to access any non-register shader-specific PAL |
| // metadata key. |
| unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE; |
| switch (MF.getFunction().getCallingConv()) { |
| case CallingConv::AMDGPU_PS: |
| ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE; |
| break; |
| case CallingConv::AMDGPU_VS: |
| ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE; |
| break; |
| case CallingConv::AMDGPU_GS: |
| ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE; |
| break; |
| case CallingConv::AMDGPU_ES: |
| ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE; |
| break; |
| case CallingConv::AMDGPU_HS: |
| ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE; |
| break; |
| case CallingConv::AMDGPU_LS: |
| ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE; |
| break; |
| } |
| unsigned NumUsedVgprsKey = ScratchSizeKey + |
| PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE; |
| unsigned NumUsedSgprsKey = ScratchSizeKey + |
| PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE; |
| PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU; |
| PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU; |
| if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { |
| PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1; |
| PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2; |
| // ScratchSize is in bytes, 16 aligned. |
| PALMetadataMap[ScratchSizeKey] |= |
| alignTo(CurrentProgramInfo.ScratchSize, 16); |
| } else { |
| PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | |
| S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks); |
| if (CurrentProgramInfo.ScratchBlocks > 0) |
| PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1); |
| // ScratchSize is in bytes, 16 aligned. |
| PALMetadataMap[ScratchSizeKey] |= |
| alignTo(CurrentProgramInfo.ScratchSize, 16); |
| } |
| if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { |
| PALMetadataMap[Rsrc2Reg] |= |
| S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks); |
| PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable(); |
| PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr(); |
| } |
| } |
| |
| // This is supposed to be log2(Size) |
| static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { |
| switch (Size) { |
| case 4: |
| return AMD_ELEMENT_4_BYTES; |
| case 8: |
| return AMD_ELEMENT_8_BYTES; |
| case 16: |
| return AMD_ELEMENT_16_BYTES; |
| default: |
| llvm_unreachable("invalid private_element_size"); |
| } |
| } |
| |
| void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out, |
| const SIProgramInfo &CurrentProgramInfo, |
| const MachineFunction &MF) const { |
| const Function &F = MF.getFunction(); |
| assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || |
| F.getCallingConv() == CallingConv::SPIR_KERNEL); |
| |
| const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); |
| |
| AMDGPU::initDefaultAMDKernelCodeT(Out, STM.getFeatureBits()); |
| |
| Out.compute_pgm_resource_registers = |
| CurrentProgramInfo.ComputePGMRSrc1 | |
| (CurrentProgramInfo.ComputePGMRSrc2 << 32); |
| Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64; |
| |
| if (CurrentProgramInfo.DynamicCallStack) |
| Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK; |
| |
| AMD_HSA_BITS_SET(Out.code_properties, |
| AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, |
| getElementByteSizeValue(STM.getMaxPrivateElementSize())); |
| |
| if (MFI->hasPrivateSegmentBuffer()) { |
| Out.code_properties |= |
| AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; |
| } |
| |
| if (MFI->hasDispatchPtr()) |
| Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; |
| |
| if (MFI->hasQueuePtr()) |
| Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; |
| |
| if (MFI->hasKernargSegmentPtr()) |
| Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; |
| |
| if (MFI->hasDispatchID()) |
| Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; |
| |
| if (MFI->hasFlatScratchInit()) |
| Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; |
| |
| if (MFI->hasDispatchPtr()) |
| Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; |
| |
| if (STM.debuggerSupported()) |
| Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED; |
| |
| if (STM.isXNACKEnabled()) |
| Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; |
| |
| unsigned MaxKernArgAlign; |
| Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign); |
| Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; |
| Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; |
| Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; |
| Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; |
| |
| // These alignment values are specified in powers of two, so alignment = |
| // 2^n. The minimum alignment is 2^4 = 16. |
| Out.kernarg_segment_alignment = std::max((size_t)4, |
| countTrailingZeros(MaxKernArgAlign)); |
| |
| if (STM.debuggerEmitPrologue()) { |
| Out.debug_wavefront_private_segment_offset_sgpr = |
| CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; |
| Out.debug_private_segment_buffer_sgpr = |
| CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR; |
| } |
| } |
| |
| bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, |
| unsigned AsmVariant, |
| const char *ExtraCode, raw_ostream &O) { |
| // First try the generic code, which knows about modifiers like 'c' and 'n'. |
| if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O)) |
| return false; |
| |
| if (ExtraCode && ExtraCode[0]) { |
| if (ExtraCode[1] != 0) |
| return true; // Unknown modifier. |
| |
| switch (ExtraCode[0]) { |
| case 'r': |
| break; |
| default: |
| return true; |
| } |
| } |
| |
| // TODO: Should be able to support other operand types like globals. |
| const MachineOperand &MO = MI->getOperand(OpNo); |
| if (MO.isReg()) { |
| AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, |
| *MF->getSubtarget().getRegisterInfo()); |
| return false; |
| } |
| |
| return true; |
| } |