| //===-- Local.cpp - Functions to perform local transformations ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This family of functions perform various local transformations to the |
| // program. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Constants.h" |
| #include "llvm/GlobalAlias.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Metadata.h" |
| #include "llvm/Operator.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/Analysis/DIBuilder.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/ProfileInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/IRBuilder.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/ValueHandle.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Local constant propagation. |
| // |
| |
| /// ConstantFoldTerminator - If a terminator instruction is predicated on a |
| /// constant value, convert it into an unconditional branch to the constant |
| /// destination. This is a nontrivial operation because the successors of this |
| /// basic block must have their PHI nodes updated. |
| /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch |
| /// conditions and indirectbr addresses this might make dead if |
| /// DeleteDeadConditions is true. |
| bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions) { |
| TerminatorInst *T = BB->getTerminator(); |
| IRBuilder<> Builder(T); |
| |
| // Branch - See if we are conditional jumping on constant |
| if (BranchInst *BI = dyn_cast<BranchInst>(T)) { |
| if (BI->isUnconditional()) return false; // Can't optimize uncond branch |
| BasicBlock *Dest1 = BI->getSuccessor(0); |
| BasicBlock *Dest2 = BI->getSuccessor(1); |
| |
| if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { |
| // Are we branching on constant? |
| // YES. Change to unconditional branch... |
| BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; |
| BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; |
| |
| //cerr << "Function: " << T->getParent()->getParent() |
| // << "\nRemoving branch from " << T->getParent() |
| // << "\n\nTo: " << OldDest << endl; |
| |
| // Let the basic block know that we are letting go of it. Based on this, |
| // it will adjust it's PHI nodes. |
| OldDest->removePredecessor(BB); |
| |
| // Replace the conditional branch with an unconditional one. |
| Builder.CreateBr(Destination); |
| BI->eraseFromParent(); |
| return true; |
| } |
| |
| if (Dest2 == Dest1) { // Conditional branch to same location? |
| // This branch matches something like this: |
| // br bool %cond, label %Dest, label %Dest |
| // and changes it into: br label %Dest |
| |
| // Let the basic block know that we are letting go of one copy of it. |
| assert(BI->getParent() && "Terminator not inserted in block!"); |
| Dest1->removePredecessor(BI->getParent()); |
| |
| // Replace the conditional branch with an unconditional one. |
| Builder.CreateBr(Dest1); |
| Value *Cond = BI->getCondition(); |
| BI->eraseFromParent(); |
| if (DeleteDeadConditions) |
| RecursivelyDeleteTriviallyDeadInstructions(Cond); |
| return true; |
| } |
| return false; |
| } |
| |
| if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { |
| // If we are switching on a constant, we can convert the switch into a |
| // single branch instruction! |
| ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition()); |
| BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest |
| BasicBlock *DefaultDest = TheOnlyDest; |
| assert(TheOnlyDest == SI->getDefaultDest() && |
| "Default destination is not successor #0?"); |
| |
| // Figure out which case it goes to. |
| for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) { |
| // Found case matching a constant operand? |
| if (SI->getSuccessorValue(i) == CI) { |
| TheOnlyDest = SI->getSuccessor(i); |
| break; |
| } |
| |
| // Check to see if this branch is going to the same place as the default |
| // dest. If so, eliminate it as an explicit compare. |
| if (SI->getSuccessor(i) == DefaultDest) { |
| // Remove this entry. |
| DefaultDest->removePredecessor(SI->getParent()); |
| SI->removeCase(i); |
| --i; --e; // Don't skip an entry... |
| continue; |
| } |
| |
| // Otherwise, check to see if the switch only branches to one destination. |
| // We do this by reseting "TheOnlyDest" to null when we find two non-equal |
| // destinations. |
| if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0; |
| } |
| |
| if (CI && !TheOnlyDest) { |
| // Branching on a constant, but not any of the cases, go to the default |
| // successor. |
| TheOnlyDest = SI->getDefaultDest(); |
| } |
| |
| // If we found a single destination that we can fold the switch into, do so |
| // now. |
| if (TheOnlyDest) { |
| // Insert the new branch. |
| Builder.CreateBr(TheOnlyDest); |
| BasicBlock *BB = SI->getParent(); |
| |
| // Remove entries from PHI nodes which we no longer branch to... |
| for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { |
| // Found case matching a constant operand? |
| BasicBlock *Succ = SI->getSuccessor(i); |
| if (Succ == TheOnlyDest) |
| TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest |
| else |
| Succ->removePredecessor(BB); |
| } |
| |
| // Delete the old switch. |
| Value *Cond = SI->getCondition(); |
| SI->eraseFromParent(); |
| if (DeleteDeadConditions) |
| RecursivelyDeleteTriviallyDeadInstructions(Cond); |
| return true; |
| } |
| |
| if (SI->getNumSuccessors() == 2) { |
| // Otherwise, we can fold this switch into a conditional branch |
| // instruction if it has only one non-default destination. |
| Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), |
| SI->getSuccessorValue(1), "cond"); |
| |
| // Insert the new branch. |
| Builder.CreateCondBr(Cond, SI->getSuccessor(1), SI->getSuccessor(0)); |
| |
| // Delete the old switch. |
| SI->eraseFromParent(); |
| return true; |
| } |
| return false; |
| } |
| |
| if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) { |
| // indirectbr blockaddress(@F, @BB) -> br label @BB |
| if (BlockAddress *BA = |
| dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { |
| BasicBlock *TheOnlyDest = BA->getBasicBlock(); |
| // Insert the new branch. |
| Builder.CreateBr(TheOnlyDest); |
| |
| for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { |
| if (IBI->getDestination(i) == TheOnlyDest) |
| TheOnlyDest = 0; |
| else |
| IBI->getDestination(i)->removePredecessor(IBI->getParent()); |
| } |
| Value *Address = IBI->getAddress(); |
| IBI->eraseFromParent(); |
| if (DeleteDeadConditions) |
| RecursivelyDeleteTriviallyDeadInstructions(Address); |
| |
| // If we didn't find our destination in the IBI successor list, then we |
| // have undefined behavior. Replace the unconditional branch with an |
| // 'unreachable' instruction. |
| if (TheOnlyDest) { |
| BB->getTerminator()->eraseFromParent(); |
| new UnreachableInst(BB->getContext(), BB); |
| } |
| |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Local dead code elimination. |
| // |
| |
| /// isInstructionTriviallyDead - Return true if the result produced by the |
| /// instruction is not used, and the instruction has no side effects. |
| /// |
| bool llvm::isInstructionTriviallyDead(Instruction *I) { |
| if (!I->use_empty() || isa<TerminatorInst>(I)) return false; |
| |
| // We don't want the landingpad instruction removed by anything this general. |
| if (isa<LandingPadInst>(I)) |
| return false; |
| |
| // We don't want debug info removed by anything this general, unless |
| // debug info is empty. |
| if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { |
| if (DDI->getAddress()) |
| return false; |
| return true; |
| } |
| if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { |
| if (DVI->getValue()) |
| return false; |
| return true; |
| } |
| |
| if (!I->mayHaveSideEffects()) return true; |
| |
| // Special case intrinsics that "may have side effects" but can be deleted |
| // when dead. |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| // Safe to delete llvm.stacksave if dead. |
| if (II->getIntrinsicID() == Intrinsic::stacksave) |
| return true; |
| |
| // Lifetime intrinsics are dead when their right-hand is undef. |
| if (II->getIntrinsicID() == Intrinsic::lifetime_start || |
| II->getIntrinsicID() == Intrinsic::lifetime_end) |
| return isa<UndefValue>(II->getArgOperand(1)); |
| } |
| return false; |
| } |
| |
| /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a |
| /// trivially dead instruction, delete it. If that makes any of its operands |
| /// trivially dead, delete them too, recursively. Return true if any |
| /// instructions were deleted. |
| bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I || !I->use_empty() || !isInstructionTriviallyDead(I)) |
| return false; |
| |
| SmallVector<Instruction*, 16> DeadInsts; |
| DeadInsts.push_back(I); |
| |
| do { |
| I = DeadInsts.pop_back_val(); |
| |
| // Null out all of the instruction's operands to see if any operand becomes |
| // dead as we go. |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| Value *OpV = I->getOperand(i); |
| I->setOperand(i, 0); |
| |
| if (!OpV->use_empty()) continue; |
| |
| // If the operand is an instruction that became dead as we nulled out the |
| // operand, and if it is 'trivially' dead, delete it in a future loop |
| // iteration. |
| if (Instruction *OpI = dyn_cast<Instruction>(OpV)) |
| if (isInstructionTriviallyDead(OpI)) |
| DeadInsts.push_back(OpI); |
| } |
| |
| I->eraseFromParent(); |
| } while (!DeadInsts.empty()); |
| |
| return true; |
| } |
| |
| /// areAllUsesEqual - Check whether the uses of a value are all the same. |
| /// This is similar to Instruction::hasOneUse() except this will also return |
| /// true when there are no uses or multiple uses that all refer to the same |
| /// value. |
| static bool areAllUsesEqual(Instruction *I) { |
| Value::use_iterator UI = I->use_begin(); |
| Value::use_iterator UE = I->use_end(); |
| if (UI == UE) |
| return true; |
| |
| User *TheUse = *UI; |
| for (++UI; UI != UE; ++UI) { |
| if (*UI != TheUse) |
| return false; |
| } |
| return true; |
| } |
| |
| /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively |
| /// dead PHI node, due to being a def-use chain of single-use nodes that |
| /// either forms a cycle or is terminated by a trivially dead instruction, |
| /// delete it. If that makes any of its operands trivially dead, delete them |
| /// too, recursively. Return true if a change was made. |
| bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) { |
| SmallPtrSet<Instruction*, 4> Visited; |
| for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); |
| I = cast<Instruction>(*I->use_begin())) { |
| if (I->use_empty()) |
| return RecursivelyDeleteTriviallyDeadInstructions(I); |
| |
| // If we find an instruction more than once, we're on a cycle that |
| // won't prove fruitful. |
| if (!Visited.insert(I)) { |
| // Break the cycle and delete the instruction and its operands. |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| (void)RecursivelyDeleteTriviallyDeadInstructions(I); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// SimplifyInstructionsInBlock - Scan the specified basic block and try to |
| /// simplify any instructions in it and recursively delete dead instructions. |
| /// |
| /// This returns true if it changed the code, note that it can delete |
| /// instructions in other blocks as well in this block. |
| bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) { |
| bool MadeChange = false; |
| for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { |
| Instruction *Inst = BI++; |
| |
| if (Value *V = SimplifyInstruction(Inst, TD)) { |
| WeakVH BIHandle(BI); |
| ReplaceAndSimplifyAllUses(Inst, V, TD); |
| MadeChange = true; |
| if (BIHandle != BI) |
| BI = BB->begin(); |
| continue; |
| } |
| |
| if (Inst->isTerminator()) |
| break; |
| |
| WeakVH BIHandle(BI); |
| MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst); |
| if (BIHandle != BI) |
| BI = BB->begin(); |
| } |
| return MadeChange; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Control Flow Graph Restructuring. |
| // |
| |
| |
| /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this |
| /// method is called when we're about to delete Pred as a predecessor of BB. If |
| /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. |
| /// |
| /// Unlike the removePredecessor method, this attempts to simplify uses of PHI |
| /// nodes that collapse into identity values. For example, if we have: |
| /// x = phi(1, 0, 0, 0) |
| /// y = and x, z |
| /// |
| /// .. and delete the predecessor corresponding to the '1', this will attempt to |
| /// recursively fold the and to 0. |
| void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, |
| TargetData *TD) { |
| // This only adjusts blocks with PHI nodes. |
| if (!isa<PHINode>(BB->begin())) |
| return; |
| |
| // Remove the entries for Pred from the PHI nodes in BB, but do not simplify |
| // them down. This will leave us with single entry phi nodes and other phis |
| // that can be removed. |
| BB->removePredecessor(Pred, true); |
| |
| WeakVH PhiIt = &BB->front(); |
| while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { |
| PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); |
| |
| Value *PNV = SimplifyInstruction(PN, TD); |
| if (PNV == 0) continue; |
| |
| // If we're able to simplify the phi to a single value, substitute the new |
| // value into all of its uses. |
| assert(PNV != PN && "SimplifyInstruction broken!"); |
| |
| Value *OldPhiIt = PhiIt; |
| ReplaceAndSimplifyAllUses(PN, PNV, TD); |
| |
| // If recursive simplification ended up deleting the next PHI node we would |
| // iterate to, then our iterator is invalid, restart scanning from the top |
| // of the block. |
| if (PhiIt != OldPhiIt) PhiIt = &BB->front(); |
| } |
| } |
| |
| |
| /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its |
| /// predecessor is known to have one successor (DestBB!). Eliminate the edge |
| /// between them, moving the instructions in the predecessor into DestBB and |
| /// deleting the predecessor block. |
| /// |
| void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) { |
| // If BB has single-entry PHI nodes, fold them. |
| while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { |
| Value *NewVal = PN->getIncomingValue(0); |
| // Replace self referencing PHI with undef, it must be dead. |
| if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); |
| PN->replaceAllUsesWith(NewVal); |
| PN->eraseFromParent(); |
| } |
| |
| BasicBlock *PredBB = DestBB->getSinglePredecessor(); |
| assert(PredBB && "Block doesn't have a single predecessor!"); |
| |
| // Zap anything that took the address of DestBB. Not doing this will give the |
| // address an invalid value. |
| if (DestBB->hasAddressTaken()) { |
| BlockAddress *BA = BlockAddress::get(DestBB); |
| Constant *Replacement = |
| ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1); |
| BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, |
| BA->getType())); |
| BA->destroyConstant(); |
| } |
| |
| // Anything that branched to PredBB now branches to DestBB. |
| PredBB->replaceAllUsesWith(DestBB); |
| |
| // Splice all the instructions from PredBB to DestBB. |
| PredBB->getTerminator()->eraseFromParent(); |
| DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); |
| |
| if (P) { |
| DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>(); |
| if (DT) { |
| BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock(); |
| DT->changeImmediateDominator(DestBB, PredBBIDom); |
| DT->eraseNode(PredBB); |
| } |
| ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>(); |
| if (PI) { |
| PI->replaceAllUses(PredBB, DestBB); |
| PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB)); |
| } |
| } |
| // Nuke BB. |
| PredBB->eraseFromParent(); |
| } |
| |
| /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an |
| /// almost-empty BB ending in an unconditional branch to Succ, into succ. |
| /// |
| /// Assumption: Succ is the single successor for BB. |
| /// |
| static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { |
| assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); |
| |
| DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " |
| << Succ->getName() << "\n"); |
| // Shortcut, if there is only a single predecessor it must be BB and merging |
| // is always safe |
| if (Succ->getSinglePredecessor()) return true; |
| |
| // Make a list of the predecessors of BB |
| typedef SmallPtrSet<BasicBlock*, 16> BlockSet; |
| BlockSet BBPreds(pred_begin(BB), pred_end(BB)); |
| |
| // Use that list to make another list of common predecessors of BB and Succ |
| BlockSet CommonPreds; |
| for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); |
| PI != PE; ++PI) { |
| BasicBlock *P = *PI; |
| if (BBPreds.count(P)) |
| CommonPreds.insert(P); |
| } |
| |
| // Shortcut, if there are no common predecessors, merging is always safe |
| if (CommonPreds.empty()) |
| return true; |
| |
| // Look at all the phi nodes in Succ, to see if they present a conflict when |
| // merging these blocks |
| for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| |
| // If the incoming value from BB is again a PHINode in |
| // BB which has the same incoming value for *PI as PN does, we can |
| // merge the phi nodes and then the blocks can still be merged |
| PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); |
| if (BBPN && BBPN->getParent() == BB) { |
| for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); |
| PI != PE; PI++) { |
| if (BBPN->getIncomingValueForBlock(*PI) |
| != PN->getIncomingValueForBlock(*PI)) { |
| DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " |
| << Succ->getName() << " is conflicting with " |
| << BBPN->getName() << " with regard to common predecessor " |
| << (*PI)->getName() << "\n"); |
| return false; |
| } |
| } |
| } else { |
| Value* Val = PN->getIncomingValueForBlock(BB); |
| for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end(); |
| PI != PE; PI++) { |
| // See if the incoming value for the common predecessor is equal to the |
| // one for BB, in which case this phi node will not prevent the merging |
| // of the block. |
| if (Val != PN->getIncomingValueForBlock(*PI)) { |
| DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in " |
| << Succ->getName() << " is conflicting with regard to common " |
| << "predecessor " << (*PI)->getName() << "\n"); |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an |
| /// unconditional branch, and contains no instructions other than PHI nodes, |
| /// potential side-effect free intrinsics and the branch. If possible, |
| /// eliminate BB by rewriting all the predecessors to branch to the successor |
| /// block and return true. If we can't transform, return false. |
| bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) { |
| assert(BB != &BB->getParent()->getEntryBlock() && |
| "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); |
| |
| // We can't eliminate infinite loops. |
| BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); |
| if (BB == Succ) return false; |
| |
| // Check to see if merging these blocks would cause conflicts for any of the |
| // phi nodes in BB or Succ. If not, we can safely merge. |
| if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; |
| |
| // Check for cases where Succ has multiple predecessors and a PHI node in BB |
| // has uses which will not disappear when the PHI nodes are merged. It is |
| // possible to handle such cases, but difficult: it requires checking whether |
| // BB dominates Succ, which is non-trivial to calculate in the case where |
| // Succ has multiple predecessors. Also, it requires checking whether |
| // constructing the necessary self-referential PHI node doesn't intoduce any |
| // conflicts; this isn't too difficult, but the previous code for doing this |
| // was incorrect. |
| // |
| // Note that if this check finds a live use, BB dominates Succ, so BB is |
| // something like a loop pre-header (or rarely, a part of an irreducible CFG); |
| // folding the branch isn't profitable in that case anyway. |
| if (!Succ->getSinglePredecessor()) { |
| BasicBlock::iterator BBI = BB->begin(); |
| while (isa<PHINode>(*BBI)) { |
| for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end(); |
| UI != E; ++UI) { |
| if (PHINode* PN = dyn_cast<PHINode>(*UI)) { |
| if (PN->getIncomingBlock(UI) != BB) |
| return false; |
| } else { |
| return false; |
| } |
| } |
| ++BBI; |
| } |
| } |
| |
| DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); |
| |
| if (isa<PHINode>(Succ->begin())) { |
| // If there is more than one pred of succ, and there are PHI nodes in |
| // the successor, then we need to add incoming edges for the PHI nodes |
| // |
| const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); |
| |
| // Loop over all of the PHI nodes in the successor of BB. |
| for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| Value *OldVal = PN->removeIncomingValue(BB, false); |
| assert(OldVal && "No entry in PHI for Pred BB!"); |
| |
| // If this incoming value is one of the PHI nodes in BB, the new entries |
| // in the PHI node are the entries from the old PHI. |
| if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { |
| PHINode *OldValPN = cast<PHINode>(OldVal); |
| for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) |
| // Note that, since we are merging phi nodes and BB and Succ might |
| // have common predecessors, we could end up with a phi node with |
| // identical incoming branches. This will be cleaned up later (and |
| // will trigger asserts if we try to clean it up now, without also |
| // simplifying the corresponding conditional branch). |
| PN->addIncoming(OldValPN->getIncomingValue(i), |
| OldValPN->getIncomingBlock(i)); |
| } else { |
| // Add an incoming value for each of the new incoming values. |
| for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) |
| PN->addIncoming(OldVal, BBPreds[i]); |
| } |
| } |
| } |
| |
| if (Succ->getSinglePredecessor()) { |
| // BB is the only predecessor of Succ, so Succ will end up with exactly |
| // the same predecessors BB had. |
| |
| // Copy over any phi, debug or lifetime instruction. |
| BB->getTerminator()->eraseFromParent(); |
| Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList()); |
| } else { |
| while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { |
| // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. |
| assert(PN->use_empty() && "There shouldn't be any uses here!"); |
| PN->eraseFromParent(); |
| } |
| } |
| |
| // Everything that jumped to BB now goes to Succ. |
| BB->replaceAllUsesWith(Succ); |
| if (!Succ->hasName()) Succ->takeName(BB); |
| BB->eraseFromParent(); // Delete the old basic block. |
| return true; |
| } |
| |
| /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI |
| /// nodes in this block. This doesn't try to be clever about PHI nodes |
| /// which differ only in the order of the incoming values, but instcombine |
| /// orders them so it usually won't matter. |
| /// |
| bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { |
| bool Changed = false; |
| |
| // This implementation doesn't currently consider undef operands |
| // specially. Theoretically, two phis which are identical except for |
| // one having an undef where the other doesn't could be collapsed. |
| |
| // Map from PHI hash values to PHI nodes. If multiple PHIs have |
| // the same hash value, the element is the first PHI in the |
| // linked list in CollisionMap. |
| DenseMap<uintptr_t, PHINode *> HashMap; |
| |
| // Maintain linked lists of PHI nodes with common hash values. |
| DenseMap<PHINode *, PHINode *> CollisionMap; |
| |
| // Examine each PHI. |
| for (BasicBlock::iterator I = BB->begin(); |
| PHINode *PN = dyn_cast<PHINode>(I++); ) { |
| // Compute a hash value on the operands. Instcombine will likely have sorted |
| // them, which helps expose duplicates, but we have to check all the |
| // operands to be safe in case instcombine hasn't run. |
| uintptr_t Hash = 0; |
| // This hash algorithm is quite weak as hash functions go, but it seems |
| // to do a good enough job for this particular purpose, and is very quick. |
| for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) { |
| Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I)); |
| Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); |
| } |
| for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end(); |
| I != E; ++I) { |
| Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I)); |
| Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7)); |
| } |
| // Avoid colliding with the DenseMap sentinels ~0 and ~0-1. |
| Hash >>= 1; |
| // If we've never seen this hash value before, it's a unique PHI. |
| std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair = |
| HashMap.insert(std::make_pair(Hash, PN)); |
| if (Pair.second) continue; |
| // Otherwise it's either a duplicate or a hash collision. |
| for (PHINode *OtherPN = Pair.first->second; ; ) { |
| if (OtherPN->isIdenticalTo(PN)) { |
| // A duplicate. Replace this PHI with its duplicate. |
| PN->replaceAllUsesWith(OtherPN); |
| PN->eraseFromParent(); |
| Changed = true; |
| break; |
| } |
| // A non-duplicate hash collision. |
| DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN); |
| if (I == CollisionMap.end()) { |
| // Set this PHI to be the head of the linked list of colliding PHIs. |
| PHINode *Old = Pair.first->second; |
| Pair.first->second = PN; |
| CollisionMap[PN] = Old; |
| break; |
| } |
| // Procede to the next PHI in the list. |
| OtherPN = I->second; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// enforceKnownAlignment - If the specified pointer points to an object that |
| /// we control, modify the object's alignment to PrefAlign. This isn't |
| /// often possible though. If alignment is important, a more reliable approach |
| /// is to simply align all global variables and allocation instructions to |
| /// their preferred alignment from the beginning. |
| /// |
| static unsigned enforceKnownAlignment(Value *V, unsigned Align, |
| unsigned PrefAlign, const TargetData *TD) { |
| V = V->stripPointerCasts(); |
| |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| // If the preferred alignment is greater than the natural stack alignment |
| // then don't round up. This avoids dynamic stack realignment. |
| if (TD && TD->exceedsNaturalStackAlignment(PrefAlign)) |
| return Align; |
| // If there is a requested alignment and if this is an alloca, round up. |
| if (AI->getAlignment() >= PrefAlign) |
| return AI->getAlignment(); |
| AI->setAlignment(PrefAlign); |
| return PrefAlign; |
| } |
| |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // If there is a large requested alignment and we can, bump up the alignment |
| // of the global. |
| if (GV->isDeclaration()) return Align; |
| |
| if (GV->getAlignment() >= PrefAlign) |
| return GV->getAlignment(); |
| // We can only increase the alignment of the global if it has no alignment |
| // specified or if it is not assigned a section. If it is assigned a |
| // section, the global could be densely packed with other objects in the |
| // section, increasing the alignment could cause padding issues. |
| if (!GV->hasSection() || GV->getAlignment() == 0) |
| GV->setAlignment(PrefAlign); |
| return GV->getAlignment(); |
| } |
| |
| return Align; |
| } |
| |
| /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that |
| /// we can determine, return it, otherwise return 0. If PrefAlign is specified, |
| /// and it is more than the alignment of the ultimate object, see if we can |
| /// increase the alignment of the ultimate object, making this check succeed. |
| unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, |
| const TargetData *TD) { |
| assert(V->getType()->isPointerTy() && |
| "getOrEnforceKnownAlignment expects a pointer!"); |
| unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64; |
| APInt Mask = APInt::getAllOnesValue(BitWidth); |
| APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); |
| ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD); |
| unsigned TrailZ = KnownZero.countTrailingOnes(); |
| |
| // Avoid trouble with rediculously large TrailZ values, such as |
| // those computed from a null pointer. |
| TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); |
| |
| unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); |
| |
| // LLVM doesn't support alignments larger than this currently. |
| Align = std::min(Align, +Value::MaximumAlignment); |
| |
| if (PrefAlign > Align) |
| Align = enforceKnownAlignment(V, Align, PrefAlign, TD); |
| |
| // We don't need to make any adjustment. |
| return Align; |
| } |
| |
| ///===---------------------------------------------------------------------===// |
| /// Dbg Intrinsic utilities |
| /// |
| |
| /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value |
| /// that has an associated llvm.dbg.decl intrinsic. |
| bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, |
| StoreInst *SI, DIBuilder &Builder) { |
| DIVariable DIVar(DDI->getVariable()); |
| if (!DIVar.Verify()) |
| return false; |
| |
| Instruction *DbgVal = NULL; |
| // If an argument is zero extended then use argument directly. The ZExt |
| // may be zapped by an optimization pass in future. |
| Argument *ExtendedArg = NULL; |
| if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) |
| ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); |
| if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) |
| ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); |
| if (ExtendedArg) |
| DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI); |
| else |
| DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI); |
| |
| // Propagate any debug metadata from the store onto the dbg.value. |
| DebugLoc SIDL = SI->getDebugLoc(); |
| if (!SIDL.isUnknown()) |
| DbgVal->setDebugLoc(SIDL); |
| // Otherwise propagate debug metadata from dbg.declare. |
| else |
| DbgVal->setDebugLoc(DDI->getDebugLoc()); |
| return true; |
| } |
| |
| /// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value |
| /// that has an associated llvm.dbg.decl intrinsic. |
| bool llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, |
| LoadInst *LI, DIBuilder &Builder) { |
| DIVariable DIVar(DDI->getVariable()); |
| if (!DIVar.Verify()) |
| return false; |
| |
| Instruction *DbgVal = |
| Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0, |
| DIVar, LI); |
| |
| // Propagate any debug metadata from the store onto the dbg.value. |
| DebugLoc LIDL = LI->getDebugLoc(); |
| if (!LIDL.isUnknown()) |
| DbgVal->setDebugLoc(LIDL); |
| // Otherwise propagate debug metadata from dbg.declare. |
| else |
| DbgVal->setDebugLoc(DDI->getDebugLoc()); |
| return true; |
| } |
| |
| /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set |
| /// of llvm.dbg.value intrinsics. |
| bool llvm::LowerDbgDeclare(Function &F) { |
| DIBuilder DIB(*F.getParent()); |
| SmallVector<DbgDeclareInst *, 4> Dbgs; |
| for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) |
| for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) { |
| if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) |
| Dbgs.push_back(DDI); |
| } |
| if (Dbgs.empty()) |
| return false; |
| |
| for (SmallVector<DbgDeclareInst *, 4>::iterator I = Dbgs.begin(), |
| E = Dbgs.end(); I != E; ++I) { |
| DbgDeclareInst *DDI = *I; |
| if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress())) { |
| bool RemoveDDI = true; |
| for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); |
| UI != E; ++UI) |
| if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) |
| ConvertDebugDeclareToDebugValue(DDI, SI, DIB); |
| else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) |
| ConvertDebugDeclareToDebugValue(DDI, LI, DIB); |
| else |
| RemoveDDI = false; |
| if (RemoveDDI) |
| DDI->eraseFromParent(); |
| } |
| } |
| return true; |
| } |
| |
| /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the |
| /// alloca 'V', if any. |
| DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) { |
| if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V)) |
| for (Value::use_iterator UI = DebugNode->use_begin(), |
| E = DebugNode->use_end(); UI != E; ++UI) |
| if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) |
| return DDI; |
| |
| return 0; |
| } |