| //===- TargetSchedule.td - Target Independent Scheduling ---*- tablegen -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the target-independent scheduling interfaces which should |
| // be implemented by each target which is using TableGen based scheduling. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Processor functional unit - These values represent the function units |
| // available across all chip sets for the target. Eg., IntUnit, FPUnit, ... |
| // These may be independent values for each chip set or may be shared across |
| // all chip sets of the target. Each functional unit is treated as a resource |
| // during scheduling and has an affect instruction order based on availability |
| // during a time interval. |
| // |
| class FuncUnit; |
| |
| //===----------------------------------------------------------------------===// |
| // Pipeline bypass / forwarding - These values specifies the symbolic names of |
| // pipeline bypasses which can be used to forward results of instructions |
| // that are forwarded to uses. |
| class Bypass; |
| def NoBypass : Bypass; |
| |
| class ReservationKind<bits<1> val> { |
| int Value = val; |
| } |
| |
| def Required : ReservationKind<0>; |
| def Reserved : ReservationKind<1>; |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction stage - These values represent a non-pipelined step in |
| // the execution of an instruction. Cycles represents the number of |
| // discrete time slots needed to complete the stage. Units represent |
| // the choice of functional units that can be used to complete the |
| // stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many |
| // cycles should elapse from the start of this stage to the start of |
| // the next stage in the itinerary. For example: |
| // |
| // A stage is specified in one of two ways: |
| // |
| // InstrStage<1, [FU_x, FU_y]> - TimeInc defaults to Cycles |
| // InstrStage<1, [FU_x, FU_y], 0> - TimeInc explicit |
| // |
| |
| class InstrStage<int cycles, list<FuncUnit> units, |
| int timeinc = -1, |
| ReservationKind kind = Required> { |
| int Cycles = cycles; // length of stage in machine cycles |
| list<FuncUnit> Units = units; // choice of functional units |
| int TimeInc = timeinc; // cycles till start of next stage |
| int Kind = kind.Value; // kind of FU reservation |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction itinerary - An itinerary represents a sequential series of steps |
| // required to complete an instruction. Itineraries are represented as lists of |
| // instruction stages. |
| // |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction itinerary classes - These values represent 'named' instruction |
| // itinerary. Using named itineraries simplifies managing groups of |
| // instructions across chip sets. An instruction uses the same itinerary class |
| // across all chip sets. Thus a new chip set can be added without modifying |
| // instruction information. |
| // |
| // NumMicroOps represents the number of micro-operations that each instruction |
| // in the class are decoded to. If the number is zero, then it means the |
| // instruction can decode into variable number of micro-ops and it must be |
| // determined dynamically. |
| // |
| class InstrItinClass<int ops = 1> { |
| int NumMicroOps = ops; |
| } |
| def NoItinerary : InstrItinClass; |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction itinerary data - These values provide a runtime map of an |
| // instruction itinerary class (name) to its itinerary data. |
| // |
| // OperandCycles are optional "cycle counts". They specify the cycle after |
| // instruction issue the values which correspond to specific operand indices |
| // are defined or read. Bypasses are optional "pipeline forwarding pathes", if |
| // a def by an instruction is available on a specific bypass and the use can |
| // read from the same bypass, then the operand use latency is reduced by one. |
| // |
| // InstrItinData<IIC_iLoad_i , [InstrStage<1, [A9_Pipe1]>, |
| // InstrStage<1, [A9_AGU]>], |
| // [3, 1], [A9_LdBypass]>, |
| // InstrItinData<IIC_iMVNr , [InstrStage<1, [A9_Pipe0, A9_Pipe1]>], |
| // [1, 1], [NoBypass, A9_LdBypass]>, |
| // |
| // In this example, the instruction of IIC_iLoadi reads its input on cycle 1 |
| // (after issue) and the result of the load is available on cycle 3. The result |
| // is available via forwarding path A9_LdBypass. If it's used by the first |
| // source operand of instructions of IIC_iMVNr class, then the operand latency |
| // is reduced by 1. |
| class InstrItinData<InstrItinClass Class, list<InstrStage> stages, |
| list<int> operandcycles = [], |
| list<Bypass> bypasses = []> { |
| InstrItinClass TheClass = Class; |
| list<InstrStage> Stages = stages; |
| list<int> OperandCycles = operandcycles; |
| list<Bypass> Bypasses = bypasses; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Processor itineraries - These values represent the set of all itinerary |
| // classes for a given chip set. |
| // |
| class ProcessorItineraries<list<FuncUnit> fu, list<Bypass> bp, |
| list<InstrItinData> iid> { |
| list<FuncUnit> FU = fu; |
| list<Bypass> BP = bp; |
| list<InstrItinData> IID = iid; |
| } |
| |
| // NoItineraries - A marker that can be used by processors without schedule |
| // info. |
| def NoItineraries : ProcessorItineraries<[], [], []>; |
| |