| //===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes how to lower LLVM code to machine code. This has two |
| // main components: |
| // |
| // 1. Which ValueTypes are natively supported by the target. |
| // 2. Which operations are supported for supported ValueTypes. |
| // 3. Cost thresholds for alternative implementations of certain operations. |
| // |
| // In addition it has a few other components, like information about FP |
| // immediates. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TARGET_TARGETLOWERING_H |
| #define LLVM_TARGET_TARGETLOWERING_H |
| |
| #include "llvm/CallingConv.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Attributes.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/Support/DebugLoc.h" |
| #include "llvm/Target/TargetCallingConv.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <climits> |
| #include <map> |
| #include <vector> |
| |
| namespace llvm { |
| class AllocaInst; |
| class APFloat; |
| class CallInst; |
| class CCState; |
| class Function; |
| class FastISel; |
| class FunctionLoweringInfo; |
| class ImmutableCallSite; |
| class MachineBasicBlock; |
| class MachineFunction; |
| class MachineFrameInfo; |
| class MachineInstr; |
| class MachineJumpTableInfo; |
| class MCContext; |
| class MCExpr; |
| class SDNode; |
| class SDValue; |
| class SelectionDAG; |
| template<typename T> class SmallVectorImpl; |
| class TargetData; |
| class TargetMachine; |
| class TargetRegisterClass; |
| class TargetLoweringObjectFile; |
| class Value; |
| |
| // FIXME: should this be here? |
| namespace TLSModel { |
| enum Model { |
| GeneralDynamic, |
| LocalDynamic, |
| InitialExec, |
| LocalExec |
| }; |
| } |
| TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc); |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// TargetLowering - This class defines information used to lower LLVM code to |
| /// legal SelectionDAG operators that the target instruction selector can accept |
| /// natively. |
| /// |
| /// This class also defines callbacks that targets must implement to lower |
| /// target-specific constructs to SelectionDAG operators. |
| /// |
| class TargetLowering { |
| TargetLowering(const TargetLowering&); // DO NOT IMPLEMENT |
| void operator=(const TargetLowering&); // DO NOT IMPLEMENT |
| public: |
| /// LegalizeAction - This enum indicates whether operations are valid for a |
| /// target, and if not, what action should be used to make them valid. |
| enum LegalizeAction { |
| Legal, // The target natively supports this operation. |
| Promote, // This operation should be executed in a larger type. |
| Expand, // Try to expand this to other ops, otherwise use a libcall. |
| Custom // Use the LowerOperation hook to implement custom lowering. |
| }; |
| |
| /// LegalizeAction - This enum indicates whether a types are legal for a |
| /// target, and if not, what action should be used to make them valid. |
| enum LegalizeTypeAction { |
| TypeLegal, // The target natively supports this type. |
| TypePromoteInteger, // Replace this integer with a larger one. |
| TypeExpandInteger, // Split this integer into two of half the size. |
| TypeSoftenFloat, // Convert this float to a same size integer type. |
| TypeExpandFloat, // Split this float into two of half the size. |
| TypeScalarizeVector, // Replace this one-element vector with its element. |
| TypeSplitVector, // Split this vector into two of half the size. |
| TypeWidenVector // This vector should be widened into a larger vector. |
| }; |
| |
| enum BooleanContent { // How the target represents true/false values. |
| UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage. |
| ZeroOrOneBooleanContent, // All bits zero except for bit 0. |
| ZeroOrNegativeOneBooleanContent // All bits equal to bit 0. |
| }; |
| |
| static ISD::NodeType getExtendForContent(BooleanContent Content) { |
| switch (Content) { |
| default: |
| assert(false && "Unknown BooleanContent!"); |
| case UndefinedBooleanContent: |
| // Extend by adding rubbish bits. |
| return ISD::ANY_EXTEND; |
| case ZeroOrOneBooleanContent: |
| // Extend by adding zero bits. |
| return ISD::ZERO_EXTEND; |
| case ZeroOrNegativeOneBooleanContent: |
| // Extend by copying the sign bit. |
| return ISD::SIGN_EXTEND; |
| } |
| } |
| |
| /// NOTE: The constructor takes ownership of TLOF. |
| explicit TargetLowering(const TargetMachine &TM, |
| const TargetLoweringObjectFile *TLOF); |
| virtual ~TargetLowering(); |
| |
| const TargetMachine &getTargetMachine() const { return TM; } |
| const TargetData *getTargetData() const { return TD; } |
| const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; } |
| |
| bool isBigEndian() const { return !IsLittleEndian; } |
| bool isLittleEndian() const { return IsLittleEndian; } |
| MVT getPointerTy() const { return PointerTy; } |
| virtual MVT getShiftAmountTy(EVT LHSTy) const; |
| |
| /// isSelectExpensive - Return true if the select operation is expensive for |
| /// this target. |
| bool isSelectExpensive() const { return SelectIsExpensive; } |
| |
| /// isIntDivCheap() - Return true if integer divide is usually cheaper than |
| /// a sequence of several shifts, adds, and multiplies for this target. |
| bool isIntDivCheap() const { return IntDivIsCheap; } |
| |
| /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of |
| /// srl/add/sra. |
| bool isPow2DivCheap() const { return Pow2DivIsCheap; } |
| |
| /// isJumpExpensive() - Return true if Flow Control is an expensive operation |
| /// that should be avoided. |
| bool isJumpExpensive() const { return JumpIsExpensive; } |
| |
| /// getSetCCResultType - Return the ValueType of the result of SETCC |
| /// operations. Also used to obtain the target's preferred type for |
| /// the condition operand of SELECT and BRCOND nodes. In the case of |
| /// BRCOND the argument passed is MVT::Other since there are no other |
| /// operands to get a type hint from. |
| virtual EVT getSetCCResultType(EVT VT) const; |
| |
| /// getCmpLibcallReturnType - Return the ValueType for comparison |
| /// libcalls. Comparions libcalls include floating point comparion calls, |
| /// and Ordered/Unordered check calls on floating point numbers. |
| virtual |
| MVT::SimpleValueType getCmpLibcallReturnType() const; |
| |
| /// getBooleanContents - For targets without i1 registers, this gives the |
| /// nature of the high-bits of boolean values held in types wider than i1. |
| /// "Boolean values" are special true/false values produced by nodes like |
| /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND. |
| /// Not to be confused with general values promoted from i1. |
| /// Some cpus distinguish between vectors of boolean and scalars; the isVec |
| /// parameter selects between the two kinds. For example on X86 a scalar |
| /// boolean should be zero extended from i1, while the elements of a vector |
| /// of booleans should be sign extended from i1. |
| BooleanContent getBooleanContents(bool isVec) const { |
| return isVec ? BooleanVectorContents : BooleanContents; |
| } |
| |
| /// getSchedulingPreference - Return target scheduling preference. |
| Sched::Preference getSchedulingPreference() const { |
| return SchedPreferenceInfo; |
| } |
| |
| /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to |
| /// different scheduling heuristics for different nodes. This function returns |
| /// the preference (or none) for the given node. |
| virtual Sched::Preference getSchedulingPreference(SDNode *) const { |
| return Sched::None; |
| } |
| |
| /// getRegClassFor - Return the register class that should be used for the |
| /// specified value type. |
| virtual TargetRegisterClass *getRegClassFor(EVT VT) const { |
| assert(VT.isSimple() && "getRegClassFor called on illegal type!"); |
| TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy]; |
| assert(RC && "This value type is not natively supported!"); |
| return RC; |
| } |
| |
| /// getRepRegClassFor - Return the 'representative' register class for the |
| /// specified value type. The 'representative' register class is the largest |
| /// legal super-reg register class for the register class of the value type. |
| /// For example, on i386 the rep register class for i8, i16, and i32 are GR32; |
| /// while the rep register class is GR64 on x86_64. |
| virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const { |
| assert(VT.isSimple() && "getRepRegClassFor called on illegal type!"); |
| const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy]; |
| return RC; |
| } |
| |
| /// getRepRegClassCostFor - Return the cost of the 'representative' register |
| /// class for the specified value type. |
| virtual uint8_t getRepRegClassCostFor(EVT VT) const { |
| assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!"); |
| return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy]; |
| } |
| |
| /// isTypeLegal - Return true if the target has native support for the |
| /// specified value type. This means that it has a register that directly |
| /// holds it without promotions or expansions. |
| bool isTypeLegal(EVT VT) const { |
| assert(!VT.isSimple() || |
| (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT)); |
| return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0; |
| } |
| |
| class ValueTypeActionImpl { |
| /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum |
| /// that indicates how instruction selection should deal with the type. |
| uint8_t ValueTypeActions[MVT::LAST_VALUETYPE]; |
| |
| public: |
| ValueTypeActionImpl() { |
| std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0); |
| } |
| |
| LegalizeTypeAction getTypeAction(MVT VT) const { |
| return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy]; |
| } |
| |
| void setTypeAction(EVT VT, LegalizeTypeAction Action) { |
| unsigned I = VT.getSimpleVT().SimpleTy; |
| ValueTypeActions[I] = Action; |
| } |
| }; |
| |
| const ValueTypeActionImpl &getValueTypeActions() const { |
| return ValueTypeActions; |
| } |
| |
| /// getTypeAction - Return how we should legalize values of this type, either |
| /// it is already legal (return 'Legal') or we need to promote it to a larger |
| /// type (return 'Promote'), or we need to expand it into multiple registers |
| /// of smaller integer type (return 'Expand'). 'Custom' is not an option. |
| LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const { |
| return getTypeConversion(Context, VT).first; |
| } |
| LegalizeTypeAction getTypeAction(MVT VT) const { |
| return ValueTypeActions.getTypeAction(VT); |
| } |
| |
| /// getTypeToTransformTo - For types supported by the target, this is an |
| /// identity function. For types that must be promoted to larger types, this |
| /// returns the larger type to promote to. For integer types that are larger |
| /// than the largest integer register, this contains one step in the expansion |
| /// to get to the smaller register. For illegal floating point types, this |
| /// returns the integer type to transform to. |
| EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const { |
| return getTypeConversion(Context, VT).second; |
| } |
| |
| /// getTypeToExpandTo - For types supported by the target, this is an |
| /// identity function. For types that must be expanded (i.e. integer types |
| /// that are larger than the largest integer register or illegal floating |
| /// point types), this returns the largest legal type it will be expanded to. |
| EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const { |
| assert(!VT.isVector()); |
| while (true) { |
| switch (getTypeAction(Context, VT)) { |
| case TypeLegal: |
| return VT; |
| case TypeExpandInteger: |
| VT = getTypeToTransformTo(Context, VT); |
| break; |
| default: |
| assert(false && "Type is not legal nor is it to be expanded!"); |
| return VT; |
| } |
| } |
| return VT; |
| } |
| |
| /// getVectorTypeBreakdown - Vector types are broken down into some number of |
| /// legal first class types. For example, EVT::v8f32 maps to 2 EVT::v4f32 |
| /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack. |
| /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86. |
| /// |
| /// This method returns the number of registers needed, and the VT for each |
| /// register. It also returns the VT and quantity of the intermediate values |
| /// before they are promoted/expanded. |
| /// |
| unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, |
| EVT &IntermediateVT, |
| unsigned &NumIntermediates, |
| EVT &RegisterVT) const; |
| |
| /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the |
| /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If |
| /// this is the case, it returns true and store the intrinsic |
| /// information into the IntrinsicInfo that was passed to the function. |
| struct IntrinsicInfo { |
| unsigned opc; // target opcode |
| EVT memVT; // memory VT |
| const Value* ptrVal; // value representing memory location |
| int offset; // offset off of ptrVal |
| unsigned align; // alignment |
| bool vol; // is volatile? |
| bool readMem; // reads memory? |
| bool writeMem; // writes memory? |
| }; |
| |
| virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, |
| unsigned /*Intrinsic*/) const { |
| return false; |
| } |
| |
| /// isFPImmLegal - Returns true if the target can instruction select the |
| /// specified FP immediate natively. If false, the legalizer will materialize |
| /// the FP immediate as a load from a constant pool. |
| virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const { |
| return false; |
| } |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| /// are assumed to be legal. |
| virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/, |
| EVT /*VT*/) const { |
| return true; |
| } |
| |
| /// canOpTrap - Returns true if the operation can trap for the value type. |
| /// VT must be a legal type. By default, we optimistically assume most |
| /// operations don't trap except for divide and remainder. |
| virtual bool canOpTrap(unsigned Op, EVT VT) const; |
| |
| /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is |
| /// used by Targets can use this to indicate if there is a suitable |
| /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant |
| /// pool entry. |
| virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/, |
| EVT /*VT*/) const { |
| return false; |
| } |
| |
| /// getOperationAction - Return how this operation should be treated: either |
| /// it is legal, needs to be promoted to a larger size, needs to be |
| /// expanded to some other code sequence, or the target has a custom expander |
| /// for it. |
| LegalizeAction getOperationAction(unsigned Op, EVT VT) const { |
| if (VT.isExtended()) return Expand; |
| assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!"); |
| unsigned I = (unsigned) VT.getSimpleVT().SimpleTy; |
| return (LegalizeAction)OpActions[I][Op]; |
| } |
| |
| /// isOperationLegalOrCustom - Return true if the specified operation is |
| /// legal on this target or can be made legal with custom lowering. This |
| /// is used to help guide high-level lowering decisions. |
| bool isOperationLegalOrCustom(unsigned Op, EVT VT) const { |
| return (VT == MVT::Other || isTypeLegal(VT)) && |
| (getOperationAction(Op, VT) == Legal || |
| getOperationAction(Op, VT) == Custom); |
| } |
| |
| /// isOperationLegal - Return true if the specified operation is legal on this |
| /// target. |
| bool isOperationLegal(unsigned Op, EVT VT) const { |
| return (VT == MVT::Other || isTypeLegal(VT)) && |
| getOperationAction(Op, VT) == Legal; |
| } |
| |
| /// getLoadExtAction - Return how this load with extension should be treated: |
| /// either it is legal, needs to be promoted to a larger size, needs to be |
| /// expanded to some other code sequence, or the target has a custom expander |
| /// for it. |
| LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const { |
| assert(ExtType < ISD::LAST_LOADEXT_TYPE && |
| VT.getSimpleVT() < MVT::LAST_VALUETYPE && |
| "Table isn't big enough!"); |
| return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType]; |
| } |
| |
| /// isLoadExtLegal - Return true if the specified load with extension is legal |
| /// on this target. |
| bool isLoadExtLegal(unsigned ExtType, EVT VT) const { |
| return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal; |
| } |
| |
| /// getTruncStoreAction - Return how this store with truncation should be |
| /// treated: either it is legal, needs to be promoted to a larger size, needs |
| /// to be expanded to some other code sequence, or the target has a custom |
| /// expander for it. |
| LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const { |
| assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE && |
| MemVT.getSimpleVT() < MVT::LAST_VALUETYPE && |
| "Table isn't big enough!"); |
| return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy] |
| [MemVT.getSimpleVT().SimpleTy]; |
| } |
| |
| /// isTruncStoreLegal - Return true if the specified store with truncation is |
| /// legal on this target. |
| bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const { |
| return isTypeLegal(ValVT) && MemVT.isSimple() && |
| getTruncStoreAction(ValVT, MemVT) == Legal; |
| } |
| |
| /// getIndexedLoadAction - Return how the indexed load should be treated: |
| /// either it is legal, needs to be promoted to a larger size, needs to be |
| /// expanded to some other code sequence, or the target has a custom expander |
| /// for it. |
| LegalizeAction |
| getIndexedLoadAction(unsigned IdxMode, EVT VT) const { |
| assert(IdxMode < ISD::LAST_INDEXED_MODE && |
| VT.getSimpleVT() < MVT::LAST_VALUETYPE && |
| "Table isn't big enough!"); |
| unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy; |
| return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4); |
| } |
| |
| /// isIndexedLoadLegal - Return true if the specified indexed load is legal |
| /// on this target. |
| bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const { |
| return VT.isSimple() && |
| (getIndexedLoadAction(IdxMode, VT) == Legal || |
| getIndexedLoadAction(IdxMode, VT) == Custom); |
| } |
| |
| /// getIndexedStoreAction - Return how the indexed store should be treated: |
| /// either it is legal, needs to be promoted to a larger size, needs to be |
| /// expanded to some other code sequence, or the target has a custom expander |
| /// for it. |
| LegalizeAction |
| getIndexedStoreAction(unsigned IdxMode, EVT VT) const { |
| assert(IdxMode < ISD::LAST_INDEXED_MODE && |
| VT.getSimpleVT() < MVT::LAST_VALUETYPE && |
| "Table isn't big enough!"); |
| unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy; |
| return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f); |
| } |
| |
| /// isIndexedStoreLegal - Return true if the specified indexed load is legal |
| /// on this target. |
| bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const { |
| return VT.isSimple() && |
| (getIndexedStoreAction(IdxMode, VT) == Legal || |
| getIndexedStoreAction(IdxMode, VT) == Custom); |
| } |
| |
| /// getCondCodeAction - Return how the condition code should be treated: |
| /// either it is legal, needs to be expanded to some other code sequence, |
| /// or the target has a custom expander for it. |
| LegalizeAction |
| getCondCodeAction(ISD::CondCode CC, EVT VT) const { |
| assert((unsigned)CC < array_lengthof(CondCodeActions) && |
| (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 && |
| "Table isn't big enough!"); |
| LegalizeAction Action = (LegalizeAction) |
| ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3); |
| assert(Action != Promote && "Can't promote condition code!"); |
| return Action; |
| } |
| |
| /// isCondCodeLegal - Return true if the specified condition code is legal |
| /// on this target. |
| bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const { |
| return getCondCodeAction(CC, VT) == Legal || |
| getCondCodeAction(CC, VT) == Custom; |
| } |
| |
| |
| /// getTypeToPromoteTo - If the action for this operation is to promote, this |
| /// method returns the ValueType to promote to. |
| EVT getTypeToPromoteTo(unsigned Op, EVT VT) const { |
| assert(getOperationAction(Op, VT) == Promote && |
| "This operation isn't promoted!"); |
| |
| // See if this has an explicit type specified. |
| std::map<std::pair<unsigned, MVT::SimpleValueType>, |
| MVT::SimpleValueType>::const_iterator PTTI = |
| PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy)); |
| if (PTTI != PromoteToType.end()) return PTTI->second; |
| |
| assert((VT.isInteger() || VT.isFloatingPoint()) && |
| "Cannot autopromote this type, add it with AddPromotedToType."); |
| |
| EVT NVT = VT; |
| do { |
| NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1); |
| assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid && |
| "Didn't find type to promote to!"); |
| } while (!isTypeLegal(NVT) || |
| getOperationAction(Op, NVT) == Promote); |
| return NVT; |
| } |
| |
| /// getValueType - Return the EVT corresponding to this LLVM type. |
| /// This is fixed by the LLVM operations except for the pointer size. If |
| /// AllowUnknown is true, this will return MVT::Other for types with no EVT |
| /// counterpart (e.g. structs), otherwise it will assert. |
| EVT getValueType(Type *Ty, bool AllowUnknown = false) const { |
| EVT VT = EVT::getEVT(Ty, AllowUnknown); |
| return VT == MVT::iPTR ? PointerTy : VT; |
| } |
| |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate |
| /// function arguments in the caller parameter area. This is the actual |
| /// alignment, not its logarithm. |
| virtual unsigned getByValTypeAlignment(Type *Ty) const; |
| |
| /// getRegisterType - Return the type of registers that this ValueType will |
| /// eventually require. |
| EVT getRegisterType(MVT VT) const { |
| assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT)); |
| return RegisterTypeForVT[VT.SimpleTy]; |
| } |
| |
| /// getRegisterType - Return the type of registers that this ValueType will |
| /// eventually require. |
| EVT getRegisterType(LLVMContext &Context, EVT VT) const { |
| if (VT.isSimple()) { |
| assert((unsigned)VT.getSimpleVT().SimpleTy < |
| array_lengthof(RegisterTypeForVT)); |
| return RegisterTypeForVT[VT.getSimpleVT().SimpleTy]; |
| } |
| if (VT.isVector()) { |
| EVT VT1, RegisterVT; |
| unsigned NumIntermediates; |
| (void)getVectorTypeBreakdown(Context, VT, VT1, |
| NumIntermediates, RegisterVT); |
| return RegisterVT; |
| } |
| if (VT.isInteger()) { |
| return getRegisterType(Context, getTypeToTransformTo(Context, VT)); |
| } |
| assert(0 && "Unsupported extended type!"); |
| return EVT(MVT::Other); // Not reached |
| } |
| |
| /// getNumRegisters - Return the number of registers that this ValueType will |
| /// eventually require. This is one for any types promoted to live in larger |
| /// registers, but may be more than one for types (like i64) that are split |
| /// into pieces. For types like i140, which are first promoted then expanded, |
| /// it is the number of registers needed to hold all the bits of the original |
| /// type. For an i140 on a 32 bit machine this means 5 registers. |
| unsigned getNumRegisters(LLVMContext &Context, EVT VT) const { |
| if (VT.isSimple()) { |
| assert((unsigned)VT.getSimpleVT().SimpleTy < |
| array_lengthof(NumRegistersForVT)); |
| return NumRegistersForVT[VT.getSimpleVT().SimpleTy]; |
| } |
| if (VT.isVector()) { |
| EVT VT1, VT2; |
| unsigned NumIntermediates; |
| return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2); |
| } |
| if (VT.isInteger()) { |
| unsigned BitWidth = VT.getSizeInBits(); |
| unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits(); |
| return (BitWidth + RegWidth - 1) / RegWidth; |
| } |
| assert(0 && "Unsupported extended type!"); |
| return 0; // Not reached |
| } |
| |
| /// ShouldShrinkFPConstant - If true, then instruction selection should |
| /// seek to shrink the FP constant of the specified type to a smaller type |
| /// in order to save space and / or reduce runtime. |
| virtual bool ShouldShrinkFPConstant(EVT) const { return true; } |
| |
| /// hasTargetDAGCombine - If true, the target has custom DAG combine |
| /// transformations that it can perform for the specified node. |
| bool hasTargetDAGCombine(ISD::NodeType NT) const { |
| assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); |
| return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7)); |
| } |
| |
| /// This function returns the maximum number of store operations permitted |
| /// to replace a call to llvm.memset. The value is set by the target at the |
| /// performance threshold for such a replacement. If OptSize is true, |
| /// return the limit for functions that have OptSize attribute. |
| /// @brief Get maximum # of store operations permitted for llvm.memset |
| unsigned getMaxStoresPerMemset(bool OptSize) const { |
| return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset; |
| } |
| |
| /// This function returns the maximum number of store operations permitted |
| /// to replace a call to llvm.memcpy. The value is set by the target at the |
| /// performance threshold for such a replacement. If OptSize is true, |
| /// return the limit for functions that have OptSize attribute. |
| /// @brief Get maximum # of store operations permitted for llvm.memcpy |
| unsigned getMaxStoresPerMemcpy(bool OptSize) const { |
| return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy; |
| } |
| |
| /// This function returns the maximum number of store operations permitted |
| /// to replace a call to llvm.memmove. The value is set by the target at the |
| /// performance threshold for such a replacement. If OptSize is true, |
| /// return the limit for functions that have OptSize attribute. |
| /// @brief Get maximum # of store operations permitted for llvm.memmove |
| unsigned getMaxStoresPerMemmove(bool OptSize) const { |
| return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove; |
| } |
| |
| /// This function returns true if the target allows unaligned memory accesses. |
| /// of the specified type. This is used, for example, in situations where an |
| /// array copy/move/set is converted to a sequence of store operations. It's |
| /// use helps to ensure that such replacements don't generate code that causes |
| /// an alignment error (trap) on the target machine. |
| /// @brief Determine if the target supports unaligned memory accesses. |
| virtual bool allowsUnalignedMemoryAccesses(EVT) const { |
| return false; |
| } |
| |
| /// This function returns true if the target would benefit from code placement |
| /// optimization. |
| /// @brief Determine if the target should perform code placement optimization. |
| bool shouldOptimizeCodePlacement() const { |
| return benefitFromCodePlacementOpt; |
| } |
| |
| /// getOptimalMemOpType - Returns the target specific optimal type for load |
| /// and store operations as a result of memset, memcpy, and memmove |
| /// lowering. If DstAlign is zero that means it's safe to destination |
| /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it |
| /// means there isn't a need to check it against alignment requirement, |
| /// probably because the source does not need to be loaded. If |
| /// 'NonScalarIntSafe' is true, that means it's safe to return a |
| /// non-scalar-integer type, e.g. empty string source, constant, or loaded |
| /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is |
| /// constant so it does not need to be loaded. |
| /// It returns EVT::Other if the type should be determined using generic |
| /// target-independent logic. |
| virtual EVT getOptimalMemOpType(uint64_t /*Size*/, |
| unsigned /*DstAlign*/, unsigned /*SrcAlign*/, |
| bool /*NonScalarIntSafe*/, |
| bool /*MemcpyStrSrc*/, |
| MachineFunction &/*MF*/) const { |
| return MVT::Other; |
| } |
| |
| /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp |
| /// to implement llvm.setjmp. |
| bool usesUnderscoreSetJmp() const { |
| return UseUnderscoreSetJmp; |
| } |
| |
| /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp |
| /// to implement llvm.longjmp. |
| bool usesUnderscoreLongJmp() const { |
| return UseUnderscoreLongJmp; |
| } |
| |
| /// getStackPointerRegisterToSaveRestore - If a physical register, this |
| /// specifies the register that llvm.savestack/llvm.restorestack should save |
| /// and restore. |
| unsigned getStackPointerRegisterToSaveRestore() const { |
| return StackPointerRegisterToSaveRestore; |
| } |
| |
| /// getExceptionAddressRegister - If a physical register, this returns |
| /// the register that receives the exception address on entry to a landing |
| /// pad. |
| unsigned getExceptionAddressRegister() const { |
| return ExceptionPointerRegister; |
| } |
| |
| /// getExceptionSelectorRegister - If a physical register, this returns |
| /// the register that receives the exception typeid on entry to a landing |
| /// pad. |
| unsigned getExceptionSelectorRegister() const { |
| return ExceptionSelectorRegister; |
| } |
| |
| /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never |
| /// set, the default is 200) |
| unsigned getJumpBufSize() const { |
| return JumpBufSize; |
| } |
| |
| /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes |
| /// (if never set, the default is 0) |
| unsigned getJumpBufAlignment() const { |
| return JumpBufAlignment; |
| } |
| |
| /// getMinStackArgumentAlignment - return the minimum stack alignment of an |
| /// argument. |
| unsigned getMinStackArgumentAlignment() const { |
| return MinStackArgumentAlignment; |
| } |
| |
| /// getMinFunctionAlignment - return the minimum function alignment. |
| /// |
| unsigned getMinFunctionAlignment() const { |
| return MinFunctionAlignment; |
| } |
| |
| /// getPrefFunctionAlignment - return the preferred function alignment. |
| /// |
| unsigned getPrefFunctionAlignment() const { |
| return PrefFunctionAlignment; |
| } |
| |
| /// getPrefLoopAlignment - return the preferred loop alignment. |
| /// |
| unsigned getPrefLoopAlignment() const { |
| return PrefLoopAlignment; |
| } |
| |
| /// getShouldFoldAtomicFences - return whether the combiner should fold |
| /// fence MEMBARRIER instructions into the atomic intrinsic instructions. |
| /// |
| bool getShouldFoldAtomicFences() const { |
| return ShouldFoldAtomicFences; |
| } |
| |
| /// getInsertFencesFor - return whether the DAG builder should automatically |
| /// insert fences and reduce ordering for atomics. |
| /// |
| bool getInsertFencesForAtomic() const { |
| return InsertFencesForAtomic; |
| } |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/, |
| SDValue &/*Offset*/, |
| ISD::MemIndexedMode &/*AM*/, |
| SelectionDAG &/*DAG*/) const { |
| return false; |
| } |
| |
| /// getPostIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if this node can be |
| /// combined with a load / store to form a post-indexed load / store. |
| virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/, |
| SDValue &/*Base*/, SDValue &/*Offset*/, |
| ISD::MemIndexedMode &/*AM*/, |
| SelectionDAG &/*DAG*/) const { |
| return false; |
| } |
| |
| /// getJumpTableEncoding - Return the entry encoding for a jump table in the |
| /// current function. The returned value is a member of the |
| /// MachineJumpTableInfo::JTEntryKind enum. |
| virtual unsigned getJumpTableEncoding() const; |
| |
| virtual const MCExpr * |
| LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/, |
| const MachineBasicBlock * /*MBB*/, unsigned /*uid*/, |
| MCContext &/*Ctx*/) const { |
| assert(0 && "Need to implement this hook if target has custom JTIs"); |
| return 0; |
| } |
| |
| /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC |
| /// jumptable. |
| virtual SDValue getPICJumpTableRelocBase(SDValue Table, |
| SelectionDAG &DAG) const; |
| |
| /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the |
| /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an |
| /// MCExpr. |
| virtual const MCExpr * |
| getPICJumpTableRelocBaseExpr(const MachineFunction *MF, |
| unsigned JTI, MCContext &Ctx) const; |
| |
| /// isOffsetFoldingLegal - Return true if folding a constant offset |
| /// with the given GlobalAddress is legal. It is frequently not legal in |
| /// PIC relocation models. |
| virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; |
| |
| /// getStackCookieLocation - Return true if the target stores stack |
| /// protector cookies at a fixed offset in some non-standard address |
| /// space, and populates the address space and offset as |
| /// appropriate. |
| virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/, |
| unsigned &/*Offset*/) const { |
| return false; |
| } |
| |
| /// getMaximalGlobalOffset - Returns the maximal possible offset which can be |
| /// used for loads / stores from the global. |
| virtual unsigned getMaximalGlobalOffset() const { |
| return 0; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // TargetLowering Optimization Methods |
| // |
| |
| /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two |
| /// SDValues for returning information from TargetLowering to its clients |
| /// that want to combine |
| struct TargetLoweringOpt { |
| SelectionDAG &DAG; |
| bool LegalTys; |
| bool LegalOps; |
| SDValue Old; |
| SDValue New; |
| |
| explicit TargetLoweringOpt(SelectionDAG &InDAG, |
| bool LT, bool LO) : |
| DAG(InDAG), LegalTys(LT), LegalOps(LO) {} |
| |
| bool LegalTypes() const { return LegalTys; } |
| bool LegalOperations() const { return LegalOps; } |
| |
| bool CombineTo(SDValue O, SDValue N) { |
| Old = O; |
| New = N; |
| return true; |
| } |
| |
| /// ShrinkDemandedConstant - Check to see if the specified operand of the |
| /// specified instruction is a constant integer. If so, check to see if |
| /// there are any bits set in the constant that are not demanded. If so, |
| /// shrink the constant and return true. |
| bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded); |
| |
| /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the |
| /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening |
| /// cast, but it could be generalized for targets with other types of |
| /// implicit widening casts. |
| bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded, |
| DebugLoc dl); |
| }; |
| |
| /// SimplifyDemandedBits - Look at Op. At this point, we know that only the |
| /// DemandedMask bits of the result of Op are ever used downstream. If we can |
| /// use this information to simplify Op, create a new simplified DAG node and |
| /// return true, returning the original and new nodes in Old and New. |
| /// Otherwise, analyze the expression and return a mask of KnownOne and |
| /// KnownZero bits for the expression (used to simplify the caller). |
| /// The KnownZero/One bits may only be accurate for those bits in the |
| /// DemandedMask. |
| bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, |
| APInt &KnownZero, APInt &KnownOne, |
| TargetLoweringOpt &TLO, unsigned Depth = 0) const; |
| |
| /// computeMaskedBitsForTargetNode - Determine which of the bits specified in |
| /// Mask are known to be either zero or one and return them in the |
| /// KnownZero/KnownOne bitsets. |
| virtual void computeMaskedBitsForTargetNode(const SDValue Op, |
| const APInt &Mask, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth = 0) const; |
| |
| /// ComputeNumSignBitsForTargetNode - This method can be implemented by |
| /// targets that want to expose additional information about sign bits to the |
| /// DAG Combiner. |
| virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, |
| unsigned Depth = 0) const; |
| |
| struct DAGCombinerInfo { |
| void *DC; // The DAG Combiner object. |
| bool BeforeLegalize; |
| bool BeforeLegalizeOps; |
| bool CalledByLegalizer; |
| public: |
| SelectionDAG &DAG; |
| |
| DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc) |
| : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo), |
| CalledByLegalizer(cl), DAG(dag) {} |
| |
| bool isBeforeLegalize() const { return BeforeLegalize; } |
| bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; } |
| bool isCalledByLegalizer() const { return CalledByLegalizer; } |
| |
| void AddToWorklist(SDNode *N); |
| void RemoveFromWorklist(SDNode *N); |
| SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To, |
| bool AddTo = true); |
| SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true); |
| SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true); |
| |
| void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO); |
| }; |
| |
| /// SimplifySetCC - Try to simplify a setcc built with the specified operands |
| /// and cc. If it is unable to simplify it, return a null SDValue. |
| SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, |
| ISD::CondCode Cond, bool foldBooleans, |
| DAGCombinerInfo &DCI, DebugLoc dl) const; |
| |
| /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the |
| /// node is a GlobalAddress + offset. |
| virtual bool |
| isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const; |
| |
| /// PerformDAGCombine - This method will be invoked for all target nodes and |
| /// for any target-independent nodes that the target has registered with |
| /// invoke it for. |
| /// |
| /// The semantics are as follows: |
| /// Return Value: |
| /// SDValue.Val == 0 - No change was made |
| /// SDValue.Val == N - N was replaced, is dead, and is already handled. |
| /// otherwise - N should be replaced by the returned Operand. |
| /// |
| /// In addition, methods provided by DAGCombinerInfo may be used to perform |
| /// more complex transformations. |
| /// |
| virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; |
| |
| /// isTypeDesirableForOp - Return true if the target has native support for |
| /// the specified value type and it is 'desirable' to use the type for the |
| /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 |
| /// instruction encodings are longer and some i16 instructions are slow. |
| virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const { |
| // By default, assume all legal types are desirable. |
| return isTypeLegal(VT); |
| } |
| |
| /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner |
| /// to transform a floating point op of specified opcode to a equivalent op of |
| /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM. |
| virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/, |
| EVT /*VT*/) const { |
| return false; |
| } |
| |
| /// IsDesirableToPromoteOp - This method query the target whether it is |
| /// beneficial for dag combiner to promote the specified node. If true, it |
| /// should return the desired promotion type by reference. |
| virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const { |
| return false; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // TargetLowering Configuration Methods - These methods should be invoked by |
| // the derived class constructor to configure this object for the target. |
| // |
| |
| protected: |
| /// setBooleanContents - Specify how the target extends the result of a |
| /// boolean value from i1 to a wider type. See getBooleanContents. |
| void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; } |
| /// setBooleanVectorContents - Specify how the target extends the result |
| /// of a vector boolean value from a vector of i1 to a wider type. See |
| /// getBooleanContents. |
| void setBooleanVectorContents(BooleanContent Ty) { |
| BooleanVectorContents = Ty; |
| } |
| |
| /// setSchedulingPreference - Specify the target scheduling preference. |
| void setSchedulingPreference(Sched::Preference Pref) { |
| SchedPreferenceInfo = Pref; |
| } |
| |
| /// setUseUnderscoreSetJmp - Indicate whether this target prefers to |
| /// use _setjmp to implement llvm.setjmp or the non _ version. |
| /// Defaults to false. |
| void setUseUnderscoreSetJmp(bool Val) { |
| UseUnderscoreSetJmp = Val; |
| } |
| |
| /// setUseUnderscoreLongJmp - Indicate whether this target prefers to |
| /// use _longjmp to implement llvm.longjmp or the non _ version. |
| /// Defaults to false. |
| void setUseUnderscoreLongJmp(bool Val) { |
| UseUnderscoreLongJmp = Val; |
| } |
| |
| /// setStackPointerRegisterToSaveRestore - If set to a physical register, this |
| /// specifies the register that llvm.savestack/llvm.restorestack should save |
| /// and restore. |
| void setStackPointerRegisterToSaveRestore(unsigned R) { |
| StackPointerRegisterToSaveRestore = R; |
| } |
| |
| /// setExceptionPointerRegister - If set to a physical register, this sets |
| /// the register that receives the exception address on entry to a landing |
| /// pad. |
| void setExceptionPointerRegister(unsigned R) { |
| ExceptionPointerRegister = R; |
| } |
| |
| /// setExceptionSelectorRegister - If set to a physical register, this sets |
| /// the register that receives the exception typeid on entry to a landing |
| /// pad. |
| void setExceptionSelectorRegister(unsigned R) { |
| ExceptionSelectorRegister = R; |
| } |
| |
| /// SelectIsExpensive - Tells the code generator not to expand operations |
| /// into sequences that use the select operations if possible. |
| void setSelectIsExpensive(bool isExpensive = true) { |
| SelectIsExpensive = isExpensive; |
| } |
| |
| /// JumpIsExpensive - Tells the code generator not to expand sequence of |
| /// operations into a separate sequences that increases the amount of |
| /// flow control. |
| void setJumpIsExpensive(bool isExpensive = true) { |
| JumpIsExpensive = isExpensive; |
| } |
| |
| /// setIntDivIsCheap - Tells the code generator that integer divide is |
| /// expensive, and if possible, should be replaced by an alternate sequence |
| /// of instructions not containing an integer divide. |
| void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; } |
| |
| /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate |
| /// srl/add/sra for a signed divide by power of two, and let the target handle |
| /// it. |
| void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; } |
| |
| /// addRegisterClass - Add the specified register class as an available |
| /// regclass for the specified value type. This indicates the selector can |
| /// handle values of that class natively. |
| void addRegisterClass(EVT VT, TargetRegisterClass *RC) { |
| assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT)); |
| AvailableRegClasses.push_back(std::make_pair(VT, RC)); |
| RegClassForVT[VT.getSimpleVT().SimpleTy] = RC; |
| } |
| |
| /// findRepresentativeClass - Return the largest legal super-reg register class |
| /// of the register class for the specified type and its associated "cost". |
| virtual std::pair<const TargetRegisterClass*, uint8_t> |
| findRepresentativeClass(EVT VT) const; |
| |
| /// computeRegisterProperties - Once all of the register classes are added, |
| /// this allows us to compute derived properties we expose. |
| void computeRegisterProperties(); |
| |
| /// setOperationAction - Indicate that the specified operation does not work |
| /// with the specified type and indicate what to do about it. |
| void setOperationAction(unsigned Op, MVT VT, |
| LegalizeAction Action) { |
| assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!"); |
| OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action; |
| } |
| |
| /// setLoadExtAction - Indicate that the specified load with extension does |
| /// not work with the specified type and indicate what to do about it. |
| void setLoadExtAction(unsigned ExtType, MVT VT, |
| LegalizeAction Action) { |
| assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE && |
| "Table isn't big enough!"); |
| LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action; |
| } |
| |
| /// setTruncStoreAction - Indicate that the specified truncating store does |
| /// not work with the specified type and indicate what to do about it. |
| void setTruncStoreAction(MVT ValVT, MVT MemVT, |
| LegalizeAction Action) { |
| assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE && |
| "Table isn't big enough!"); |
| TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action; |
| } |
| |
| /// setIndexedLoadAction - Indicate that the specified indexed load does or |
| /// does not work with the specified type and indicate what to do abort |
| /// it. NOTE: All indexed mode loads are initialized to Expand in |
| /// TargetLowering.cpp |
| void setIndexedLoadAction(unsigned IdxMode, MVT VT, |
| LegalizeAction Action) { |
| assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE && |
| (unsigned)Action < 0xf && "Table isn't big enough!"); |
| // Load action are kept in the upper half. |
| IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0; |
| IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4; |
| } |
| |
| /// setIndexedStoreAction - Indicate that the specified indexed store does or |
| /// does not work with the specified type and indicate what to do about |
| /// it. NOTE: All indexed mode stores are initialized to Expand in |
| /// TargetLowering.cpp |
| void setIndexedStoreAction(unsigned IdxMode, MVT VT, |
| LegalizeAction Action) { |
| assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE && |
| (unsigned)Action < 0xf && "Table isn't big enough!"); |
| // Store action are kept in the lower half. |
| IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f; |
| IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action); |
| } |
| |
| /// setCondCodeAction - Indicate that the specified condition code is or isn't |
| /// supported on the target and indicate what to do about it. |
| void setCondCodeAction(ISD::CondCode CC, MVT VT, |
| LegalizeAction Action) { |
| assert(VT < MVT::LAST_VALUETYPE && |
| (unsigned)CC < array_lengthof(CondCodeActions) && |
| "Table isn't big enough!"); |
| CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL) << VT.SimpleTy*2); |
| CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2; |
| } |
| |
| /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the |
| /// promotion code defaults to trying a larger integer/fp until it can find |
| /// one that works. If that default is insufficient, this method can be used |
| /// by the target to override the default. |
| void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { |
| PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy; |
| } |
| |
| /// setTargetDAGCombine - Targets should invoke this method for each target |
| /// independent node that they want to provide a custom DAG combiner for by |
| /// implementing the PerformDAGCombine virtual method. |
| void setTargetDAGCombine(ISD::NodeType NT) { |
| assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); |
| TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7); |
| } |
| |
| /// setJumpBufSize - Set the target's required jmp_buf buffer size (in |
| /// bytes); default is 200 |
| void setJumpBufSize(unsigned Size) { |
| JumpBufSize = Size; |
| } |
| |
| /// setJumpBufAlignment - Set the target's required jmp_buf buffer |
| /// alignment (in bytes); default is 0 |
| void setJumpBufAlignment(unsigned Align) { |
| JumpBufAlignment = Align; |
| } |
| |
| /// setMinFunctionAlignment - Set the target's minimum function alignment. |
| void setMinFunctionAlignment(unsigned Align) { |
| MinFunctionAlignment = Align; |
| } |
| |
| /// setPrefFunctionAlignment - Set the target's preferred function alignment. |
| /// This should be set if there is a performance benefit to |
| /// higher-than-minimum alignment |
| void setPrefFunctionAlignment(unsigned Align) { |
| PrefFunctionAlignment = Align; |
| } |
| |
| /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default |
| /// alignment is zero, it means the target does not care about loop alignment. |
| void setPrefLoopAlignment(unsigned Align) { |
| PrefLoopAlignment = Align; |
| } |
| |
| /// setMinStackArgumentAlignment - Set the minimum stack alignment of an |
| /// argument. |
| void setMinStackArgumentAlignment(unsigned Align) { |
| MinStackArgumentAlignment = Align; |
| } |
| |
| /// setShouldFoldAtomicFences - Set if the target's implementation of the |
| /// atomic operation intrinsics includes locking. Default is false. |
| void setShouldFoldAtomicFences(bool fold) { |
| ShouldFoldAtomicFences = fold; |
| } |
| |
| /// setInsertFencesForAtomic - Set if the the DAG builder should |
| /// automatically insert fences and reduce the order of atomic memory |
| /// operations to Monotonic. |
| void setInsertFencesForAtomic(bool fence) { |
| InsertFencesForAtomic = fence; |
| } |
| |
| public: |
| //===--------------------------------------------------------------------===// |
| // Lowering methods - These methods must be implemented by targets so that |
| // the SelectionDAGLowering code knows how to lower these. |
| // |
| |
| /// LowerFormalArguments - This hook must be implemented to lower the |
| /// incoming (formal) arguments, described by the Ins array, into the |
| /// specified DAG. The implementation should fill in the InVals array |
| /// with legal-type argument values, and return the resulting token |
| /// chain value. |
| /// |
| virtual SDValue |
| LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, |
| bool /*isVarArg*/, |
| const SmallVectorImpl<ISD::InputArg> &/*Ins*/, |
| DebugLoc /*dl*/, SelectionDAG &/*DAG*/, |
| SmallVectorImpl<SDValue> &/*InVals*/) const { |
| assert(0 && "Not Implemented"); |
| return SDValue(); // this is here to silence compiler errors |
| } |
| |
| /// LowerCallTo - This function lowers an abstract call to a function into an |
| /// actual call. This returns a pair of operands. The first element is the |
| /// return value for the function (if RetTy is not VoidTy). The second |
| /// element is the outgoing token chain. It calls LowerCall to do the actual |
| /// lowering. |
| struct ArgListEntry { |
| SDValue Node; |
| Type* Ty; |
| bool isSExt : 1; |
| bool isZExt : 1; |
| bool isInReg : 1; |
| bool isSRet : 1; |
| bool isNest : 1; |
| bool isByVal : 1; |
| uint16_t Alignment; |
| |
| ArgListEntry() : isSExt(false), isZExt(false), isInReg(false), |
| isSRet(false), isNest(false), isByVal(false), Alignment(0) { } |
| }; |
| typedef std::vector<ArgListEntry> ArgListTy; |
| std::pair<SDValue, SDValue> |
| LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt, |
| bool isVarArg, bool isInreg, unsigned NumFixedArgs, |
| CallingConv::ID CallConv, bool isTailCall, |
| bool isReturnValueUsed, SDValue Callee, ArgListTy &Args, |
| SelectionDAG &DAG, DebugLoc dl) const; |
| |
| /// LowerCall - This hook must be implemented to lower calls into the |
| /// the specified DAG. The outgoing arguments to the call are described |
| /// by the Outs array, and the values to be returned by the call are |
| /// described by the Ins array. The implementation should fill in the |
| /// InVals array with legal-type return values from the call, and return |
| /// the resulting token chain value. |
| virtual SDValue |
| LowerCall(SDValue /*Chain*/, SDValue /*Callee*/, |
| CallingConv::ID /*CallConv*/, bool /*isVarArg*/, |
| bool &/*isTailCall*/, |
| const SmallVectorImpl<ISD::OutputArg> &/*Outs*/, |
| const SmallVectorImpl<SDValue> &/*OutVals*/, |
| const SmallVectorImpl<ISD::InputArg> &/*Ins*/, |
| DebugLoc /*dl*/, SelectionDAG &/*DAG*/, |
| SmallVectorImpl<SDValue> &/*InVals*/) const { |
| assert(0 && "Not Implemented"); |
| return SDValue(); // this is here to silence compiler errors |
| } |
| |
| /// HandleByVal - Target-specific cleanup for formal ByVal parameters. |
| virtual void HandleByVal(CCState *, unsigned &) const {} |
| |
| /// CanLowerReturn - This hook should be implemented to check whether the |
| /// return values described by the Outs array can fit into the return |
| /// registers. If false is returned, an sret-demotion is performed. |
| /// |
| virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/, |
| MachineFunction &/*MF*/, bool /*isVarArg*/, |
| const SmallVectorImpl<ISD::OutputArg> &/*Outs*/, |
| LLVMContext &/*Context*/) const |
| { |
| // Return true by default to get preexisting behavior. |
| return true; |
| } |
| |
| /// LowerReturn - This hook must be implemented to lower outgoing |
| /// return values, described by the Outs array, into the specified |
| /// DAG. The implementation should return the resulting token chain |
| /// value. |
| /// |
| virtual SDValue |
| LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, |
| bool /*isVarArg*/, |
| const SmallVectorImpl<ISD::OutputArg> &/*Outs*/, |
| const SmallVectorImpl<SDValue> &/*OutVals*/, |
| DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const { |
| assert(0 && "Not Implemented"); |
| return SDValue(); // this is here to silence compiler errors |
| } |
| |
| /// isUsedByReturnOnly - Return true if result of the specified node is used |
| /// by a return node only. This is used to determine whether it is possible |
| /// to codegen a libcall as tail call at legalization time. |
| virtual bool isUsedByReturnOnly(SDNode *) const { |
| return false; |
| } |
| |
| /// mayBeEmittedAsTailCall - Return true if the target may be able emit the |
| /// call instruction as a tail call. This is used by optimization passes to |
| /// determine if it's profitable to duplicate return instructions to enable |
| /// tailcall optimization. |
| virtual bool mayBeEmittedAsTailCall(CallInst *) const { |
| return false; |
| } |
| |
| /// getTypeForExtArgOrReturn - Return the type that should be used to zero or |
| /// sign extend a zeroext/signext integer argument or return value. |
| /// FIXME: Most C calling convention requires the return type to be promoted, |
| /// but this is not true all the time, e.g. i1 on x86-64. It is also not |
| /// necessary for non-C calling conventions. The frontend should handle this |
| /// and include all of the necessary information. |
| virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, |
| ISD::NodeType /*ExtendKind*/) const { |
| EVT MinVT = getRegisterType(Context, MVT::i32); |
| return VT.bitsLT(MinVT) ? MinVT : VT; |
| } |
| |
| /// LowerOperationWrapper - This callback is invoked by the type legalizer |
| /// to legalize nodes with an illegal operand type but legal result types. |
| /// It replaces the LowerOperation callback in the type Legalizer. |
| /// The reason we can not do away with LowerOperation entirely is that |
| /// LegalizeDAG isn't yet ready to use this callback. |
| /// TODO: Consider merging with ReplaceNodeResults. |
| |
| /// The target places new result values for the node in Results (their number |
| /// and types must exactly match those of the original return values of |
| /// the node), or leaves Results empty, which indicates that the node is not |
| /// to be custom lowered after all. |
| /// The default implementation calls LowerOperation. |
| virtual void LowerOperationWrapper(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const; |
| |
| /// LowerOperation - This callback is invoked for operations that are |
| /// unsupported by the target, which are registered to use 'custom' lowering, |
| /// and whose defined values are all legal. |
| /// If the target has no operations that require custom lowering, it need not |
| /// implement this. The default implementation of this aborts. |
| virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; |
| |
| /// ReplaceNodeResults - This callback is invoked when a node result type is |
| /// illegal for the target, and the operation was registered to use 'custom' |
| /// lowering for that result type. The target places new result values for |
| /// the node in Results (their number and types must exactly match those of |
| /// the original return values of the node), or leaves Results empty, which |
| /// indicates that the node is not to be custom lowered after all. |
| /// |
| /// If the target has no operations that require custom lowering, it need not |
| /// implement this. The default implementation aborts. |
| virtual void ReplaceNodeResults(SDNode * /*N*/, |
| SmallVectorImpl<SDValue> &/*Results*/, |
| SelectionDAG &/*DAG*/) const { |
| assert(0 && "ReplaceNodeResults not implemented for this target!"); |
| } |
| |
| /// getTargetNodeName() - This method returns the name of a target specific |
| /// DAG node. |
| virtual const char *getTargetNodeName(unsigned Opcode) const; |
| |
| /// createFastISel - This method returns a target specific FastISel object, |
| /// or null if the target does not support "fast" ISel. |
| virtual FastISel *createFastISel(FunctionLoweringInfo &) const { |
| return 0; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Inline Asm Support hooks |
| // |
| |
| /// ExpandInlineAsm - This hook allows the target to expand an inline asm |
| /// call to be explicit llvm code if it wants to. This is useful for |
| /// turning simple inline asms into LLVM intrinsics, which gives the |
| /// compiler more information about the behavior of the code. |
| virtual bool ExpandInlineAsm(CallInst *) const { |
| return false; |
| } |
| |
| enum ConstraintType { |
| C_Register, // Constraint represents specific register(s). |
| C_RegisterClass, // Constraint represents any of register(s) in class. |
| C_Memory, // Memory constraint. |
| C_Other, // Something else. |
| C_Unknown // Unsupported constraint. |
| }; |
| |
| enum ConstraintWeight { |
| // Generic weights. |
| CW_Invalid = -1, // No match. |
| CW_Okay = 0, // Acceptable. |
| CW_Good = 1, // Good weight. |
| CW_Better = 2, // Better weight. |
| CW_Best = 3, // Best weight. |
| |
| // Well-known weights. |
| CW_SpecificReg = CW_Okay, // Specific register operands. |
| CW_Register = CW_Good, // Register operands. |
| CW_Memory = CW_Better, // Memory operands. |
| CW_Constant = CW_Best, // Constant operand. |
| CW_Default = CW_Okay // Default or don't know type. |
| }; |
| |
| /// AsmOperandInfo - This contains information for each constraint that we are |
| /// lowering. |
| struct AsmOperandInfo : public InlineAsm::ConstraintInfo { |
| /// ConstraintCode - This contains the actual string for the code, like "m". |
| /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that |
| /// most closely matches the operand. |
| std::string ConstraintCode; |
| |
| /// ConstraintType - Information about the constraint code, e.g. Register, |
| /// RegisterClass, Memory, Other, Unknown. |
| TargetLowering::ConstraintType ConstraintType; |
| |
| /// CallOperandval - If this is the result output operand or a |
| /// clobber, this is null, otherwise it is the incoming operand to the |
| /// CallInst. This gets modified as the asm is processed. |
| Value *CallOperandVal; |
| |
| /// ConstraintVT - The ValueType for the operand value. |
| EVT ConstraintVT; |
| |
| /// isMatchingInputConstraint - Return true of this is an input operand that |
| /// is a matching constraint like "4". |
| bool isMatchingInputConstraint() const; |
| |
| /// getMatchedOperand - If this is an input matching constraint, this method |
| /// returns the output operand it matches. |
| unsigned getMatchedOperand() const; |
| |
| /// Copy constructor for copying from an AsmOperandInfo. |
| AsmOperandInfo(const AsmOperandInfo &info) |
| : InlineAsm::ConstraintInfo(info), |
| ConstraintCode(info.ConstraintCode), |
| ConstraintType(info.ConstraintType), |
| CallOperandVal(info.CallOperandVal), |
| ConstraintVT(info.ConstraintVT) { |
| } |
| |
| /// Copy constructor for copying from a ConstraintInfo. |
| AsmOperandInfo(const InlineAsm::ConstraintInfo &info) |
| : InlineAsm::ConstraintInfo(info), |
| ConstraintType(TargetLowering::C_Unknown), |
| CallOperandVal(0), ConstraintVT(MVT::Other) { |
| } |
| }; |
| |
| typedef std::vector<AsmOperandInfo> AsmOperandInfoVector; |
| |
| /// ParseConstraints - Split up the constraint string from the inline |
| /// assembly value into the specific constraints and their prefixes, |
| /// and also tie in the associated operand values. |
| /// If this returns an empty vector, and if the constraint string itself |
| /// isn't empty, there was an error parsing. |
| virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const; |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// The operand object must already have been set up with the operand type. |
| virtual ConstraintWeight getMultipleConstraintMatchWeight( |
| AsmOperandInfo &info, int maIndex) const; |
| |
| /// Examine constraint string and operand type and determine a weight value. |
| /// The operand object must already have been set up with the operand type. |
| virtual ConstraintWeight getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const; |
| |
| /// ComputeConstraintToUse - Determines the constraint code and constraint |
| /// type to use for the specific AsmOperandInfo, setting |
| /// OpInfo.ConstraintCode and OpInfo.ConstraintType. If the actual operand |
| /// being passed in is available, it can be passed in as Op, otherwise an |
| /// empty SDValue can be passed. |
| virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, |
| SDValue Op, |
| SelectionDAG *DAG = 0) const; |
| |
| /// getConstraintType - Given a constraint, return the type of constraint it |
| /// is for this target. |
| virtual ConstraintType getConstraintType(const std::string &Constraint) const; |
| |
| /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g. |
| /// {edx}), return the register number and the register class for the |
| /// register. |
| /// |
| /// Given a register class constraint, like 'r', if this corresponds directly |
| /// to an LLVM register class, return a register of 0 and the register class |
| /// pointer. |
| /// |
| /// This should only be used for C_Register constraints. On error, |
| /// this returns a register number of 0 and a null register class pointer.. |
| virtual std::pair<unsigned, const TargetRegisterClass*> |
| getRegForInlineAsmConstraint(const std::string &Constraint, |
| EVT VT) const; |
| |
| /// LowerXConstraint - try to replace an X constraint, which matches anything, |
| /// with another that has more specific requirements based on the type of the |
| /// corresponding operand. This returns null if there is no replacement to |
| /// make. |
| virtual const char *LowerXConstraint(EVT ConstraintVT) const; |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, |
| std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const; |
| |
| //===--------------------------------------------------------------------===// |
| // Instruction Emitting Hooks |
| // |
| |
| // EmitInstrWithCustomInserter - This method should be implemented by targets |
| // that mark instructions with the 'usesCustomInserter' flag. These |
| // instructions are special in various ways, which require special support to |
| // insert. The specified MachineInstr is created but not inserted into any |
| // basic blocks, and this method is called to expand it into a sequence of |
| // instructions, potentially also creating new basic blocks and control flow. |
| virtual MachineBasicBlock * |
| EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const; |
| |
| /// AdjustInstrPostInstrSelection - This method should be implemented by |
| /// targets that mark instructions with the 'hasPostISelHook' flag. These |
| /// instructions must be adjusted after instruction selection by target hooks. |
| /// e.g. To fill in optional defs for ARM 's' setting instructions. |
| virtual void |
| AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const; |
| |
| //===--------------------------------------------------------------------===// |
| // Addressing mode description hooks (used by LSR etc). |
| // |
| |
| /// AddrMode - This represents an addressing mode of: |
| /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg |
| /// If BaseGV is null, there is no BaseGV. |
| /// If BaseOffs is zero, there is no base offset. |
| /// If HasBaseReg is false, there is no base register. |
| /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with |
| /// no scale. |
| /// |
| struct AddrMode { |
| GlobalValue *BaseGV; |
| int64_t BaseOffs; |
| bool HasBaseReg; |
| int64_t Scale; |
| AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {} |
| }; |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented by |
| /// AM is legal for this target, for a load/store of the specified type. |
| /// The type may be VoidTy, in which case only return true if the addressing |
| /// mode is legal for a load/store of any legal type. |
| /// TODO: Handle pre/postinc as well. |
| virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const; |
| |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal |
| /// icmp immediate, that is the target has icmp instructions which can compare |
| /// a register against the immediate without having to materialize the |
| /// immediate into a register. |
| virtual bool isLegalICmpImmediate(int64_t) const { |
| return true; |
| } |
| |
| /// isLegalAddImmediate - Return true if the specified immediate is legal |
| /// add immediate, that is the target has add instructions which can add |
| /// a register with the immediate without having to materialize the |
| /// immediate into a register. |
| virtual bool isLegalAddImmediate(int64_t) const { |
| return true; |
| } |
| |
| /// isTruncateFree - Return true if it's free to truncate a value of |
| /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in |
| /// register EAX to i16 by referencing its sub-register AX. |
| virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const { |
| return false; |
| } |
| |
| virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const { |
| return false; |
| } |
| |
| /// isZExtFree - Return true if any actual instruction that defines a |
| /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result |
| /// register. This does not necessarily include registers defined in |
| /// unknown ways, such as incoming arguments, or copies from unknown |
| /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this |
| /// does not necessarily apply to truncate instructions. e.g. on x86-64, |
| /// all instructions that define 32-bit values implicit zero-extend the |
| /// result out to 64 bits. |
| virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const { |
| return false; |
| } |
| |
| virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const { |
| return false; |
| } |
| |
| /// isNarrowingProfitable - Return true if it's profitable to narrow |
| /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow |
| /// from i32 to i8 but not from i32 to i16. |
| virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const { |
| return false; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Div utility functions |
| // |
| SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl, |
| SelectionDAG &DAG) const; |
| SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, |
| std::vector<SDNode*>* Created) const; |
| SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, |
| std::vector<SDNode*>* Created) const; |
| |
| |
| //===--------------------------------------------------------------------===// |
| // Runtime Library hooks |
| // |
| |
| /// setLibcallName - Rename the default libcall routine name for the specified |
| /// libcall. |
| void setLibcallName(RTLIB::Libcall Call, const char *Name) { |
| LibcallRoutineNames[Call] = Name; |
| } |
| |
| /// getLibcallName - Get the libcall routine name for the specified libcall. |
| /// |
| const char *getLibcallName(RTLIB::Libcall Call) const { |
| return LibcallRoutineNames[Call]; |
| } |
| |
| /// setCmpLibcallCC - Override the default CondCode to be used to test the |
| /// result of the comparison libcall against zero. |
| void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) { |
| CmpLibcallCCs[Call] = CC; |
| } |
| |
| /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of |
| /// the comparison libcall against zero. |
| ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const { |
| return CmpLibcallCCs[Call]; |
| } |
| |
| /// setLibcallCallingConv - Set the CallingConv that should be used for the |
| /// specified libcall. |
| void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) { |
| LibcallCallingConvs[Call] = CC; |
| } |
| |
| /// getLibcallCallingConv - Get the CallingConv that should be used for the |
| /// specified libcall. |
| CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const { |
| return LibcallCallingConvs[Call]; |
| } |
| |
| private: |
| const TargetMachine &TM; |
| const TargetData *TD; |
| const TargetLoweringObjectFile &TLOF; |
| |
| /// We are in the process of implementing a new TypeLegalization action |
| /// which is the promotion of vector elements. This feature is under |
| /// development. Until this feature is complete, it is only enabled using a |
| /// flag. We pass this flag using a member because of circular dep issues. |
| /// This member will be removed with the flag once we complete the transition. |
| bool mayPromoteElements; |
| |
| /// PointerTy - The type to use for pointers, usually i32 or i64. |
| /// |
| MVT PointerTy; |
| |
| /// IsLittleEndian - True if this is a little endian target. |
| /// |
| bool IsLittleEndian; |
| |
| /// SelectIsExpensive - Tells the code generator not to expand operations |
| /// into sequences that use the select operations if possible. |
| bool SelectIsExpensive; |
| |
| /// IntDivIsCheap - Tells the code generator not to expand integer divides by |
| /// constants into a sequence of muls, adds, and shifts. This is a hack until |
| /// a real cost model is in place. If we ever optimize for size, this will be |
| /// set to true unconditionally. |
| bool IntDivIsCheap; |
| |
| /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate |
| /// srl/add/sra for a signed divide by power of two, and let the target handle |
| /// it. |
| bool Pow2DivIsCheap; |
| |
| /// JumpIsExpensive - Tells the code generator that it shouldn't generate |
| /// extra flow control instructions and should attempt to combine flow |
| /// control instructions via predication. |
| bool JumpIsExpensive; |
| |
| /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement |
| /// llvm.setjmp. Defaults to false. |
| bool UseUnderscoreSetJmp; |
| |
| /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement |
| /// llvm.longjmp. Defaults to false. |
| bool UseUnderscoreLongJmp; |
| |
| /// BooleanContents - Information about the contents of the high-bits in |
| /// boolean values held in a type wider than i1. See getBooleanContents. |
| BooleanContent BooleanContents; |
| /// BooleanVectorContents - Information about the contents of the high-bits |
| /// in boolean vector values when the element type is wider than i1. See |
| /// getBooleanContents. |
| BooleanContent BooleanVectorContents; |
| |
| /// SchedPreferenceInfo - The target scheduling preference: shortest possible |
| /// total cycles or lowest register usage. |
| Sched::Preference SchedPreferenceInfo; |
| |
| /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers |
| unsigned JumpBufSize; |
| |
| /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf |
| /// buffers |
| unsigned JumpBufAlignment; |
| |
| /// MinStackArgumentAlignment - The minimum alignment that any argument |
| /// on the stack needs to have. |
| /// |
| unsigned MinStackArgumentAlignment; |
| |
| /// MinFunctionAlignment - The minimum function alignment (used when |
| /// optimizing for size, and to prevent explicitly provided alignment |
| /// from leading to incorrect code). |
| /// |
| unsigned MinFunctionAlignment; |
| |
| /// PrefFunctionAlignment - The preferred function alignment (used when |
| /// alignment unspecified and optimizing for speed). |
| /// |
| unsigned PrefFunctionAlignment; |
| |
| /// PrefLoopAlignment - The preferred loop alignment. |
| /// |
| unsigned PrefLoopAlignment; |
| |
| /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should |
| /// be folded into the enclosed atomic intrinsic instruction by the |
| /// combiner. |
| bool ShouldFoldAtomicFences; |
| |
| /// InsertFencesForAtomic - Whether the DAG builder should automatically |
| /// insert fences and reduce ordering for atomics. (This will be set for |
| /// for most architectures with weak memory ordering.) |
| bool InsertFencesForAtomic; |
| |
| /// StackPointerRegisterToSaveRestore - If set to a physical register, this |
| /// specifies the register that llvm.savestack/llvm.restorestack should save |
| /// and restore. |
| unsigned StackPointerRegisterToSaveRestore; |
| |
| /// ExceptionPointerRegister - If set to a physical register, this specifies |
| /// the register that receives the exception address on entry to a landing |
| /// pad. |
| unsigned ExceptionPointerRegister; |
| |
| /// ExceptionSelectorRegister - If set to a physical register, this specifies |
| /// the register that receives the exception typeid on entry to a landing |
| /// pad. |
| unsigned ExceptionSelectorRegister; |
| |
| /// RegClassForVT - This indicates the default register class to use for |
| /// each ValueType the target supports natively. |
| TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; |
| unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE]; |
| EVT RegisterTypeForVT[MVT::LAST_VALUETYPE]; |
| |
| /// RepRegClassForVT - This indicates the "representative" register class to |
| /// use for each ValueType the target supports natively. This information is |
| /// used by the scheduler to track register pressure. By default, the |
| /// representative register class is the largest legal super-reg register |
| /// class of the register class of the specified type. e.g. On x86, i8, i16, |
| /// and i32's representative class would be GR32. |
| const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE]; |
| |
| /// RepRegClassCostForVT - This indicates the "cost" of the "representative" |
| /// register class for each ValueType. The cost is used by the scheduler to |
| /// approximate register pressure. |
| uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE]; |
| |
| /// TransformToType - For any value types we are promoting or expanding, this |
| /// contains the value type that we are changing to. For Expanded types, this |
| /// contains one step of the expand (e.g. i64 -> i32), even if there are |
| /// multiple steps required (e.g. i64 -> i16). For types natively supported |
| /// by the system, this holds the same type (e.g. i32 -> i32). |
| EVT TransformToType[MVT::LAST_VALUETYPE]; |
| |
| /// OpActions - For each operation and each value type, keep a LegalizeAction |
| /// that indicates how instruction selection should deal with the operation. |
| /// Most operations are Legal (aka, supported natively by the target), but |
| /// operations that are not should be described. Note that operations on |
| /// non-legal value types are not described here. |
| uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END]; |
| |
| /// LoadExtActions - For each load extension type and each value type, |
| /// keep a LegalizeAction that indicates how instruction selection should deal |
| /// with a load of a specific value type and extension type. |
| uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE]; |
| |
| /// TruncStoreActions - For each value type pair keep a LegalizeAction that |
| /// indicates whether a truncating store of a specific value type and |
| /// truncating type is legal. |
| uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]; |
| |
| /// IndexedModeActions - For each indexed mode and each value type, |
| /// keep a pair of LegalizeAction that indicates how instruction |
| /// selection should deal with the load / store. The first dimension is the |
| /// value_type for the reference. The second dimension represents the various |
| /// modes for load store. |
| uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE]; |
| |
| /// CondCodeActions - For each condition code (ISD::CondCode) keep a |
| /// LegalizeAction that indicates how instruction selection should |
| /// deal with the condition code. |
| uint64_t CondCodeActions[ISD::SETCC_INVALID]; |
| |
| ValueTypeActionImpl ValueTypeActions; |
| |
| typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind; |
| |
| LegalizeKind |
| getTypeConversion(LLVMContext &Context, EVT VT) const { |
| // If this is a simple type, use the ComputeRegisterProp mechanism. |
| if (VT.isSimple()) { |
| assert((unsigned)VT.getSimpleVT().SimpleTy < |
| array_lengthof(TransformToType)); |
| EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy]; |
| LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT()); |
| |
| assert( |
| (!(NVT.isSimple() && LA != TypeLegal) || |
| ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger) |
| && "Promote may not follow Expand or Promote"); |
| |
| return LegalizeKind(LA, NVT); |
| } |
| |
| // Handle Extended Scalar Types. |
| if (!VT.isVector()) { |
| assert(VT.isInteger() && "Float types must be simple"); |
| unsigned BitSize = VT.getSizeInBits(); |
| // First promote to a power-of-two size, then expand if necessary. |
| if (BitSize < 8 || !isPowerOf2_32(BitSize)) { |
| EVT NVT = VT.getRoundIntegerType(Context); |
| assert(NVT != VT && "Unable to round integer VT"); |
| LegalizeKind NextStep = getTypeConversion(Context, NVT); |
| // Avoid multi-step promotion. |
| if (NextStep.first == TypePromoteInteger) return NextStep; |
| // Return rounded integer type. |
| return LegalizeKind(TypePromoteInteger, NVT); |
| } |
| |
| return LegalizeKind(TypeExpandInteger, |
| EVT::getIntegerVT(Context, VT.getSizeInBits()/2)); |
| } |
| |
| // Handle vector types. |
| unsigned NumElts = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| |
| // Vectors with only one element are always scalarized. |
| if (NumElts == 1) |
| return LegalizeKind(TypeScalarizeVector, EltVT); |
| |
| // If we allow the promotion of vector elements using a flag, |
| // then try to widen vector elements until a legal type is found. |
| if (mayPromoteElements && EltVT.isInteger()) { |
| // Vectors with a number of elements that is not a power of two are always |
| // widened, for example <3 x float> -> <4 x float>. |
| if (!VT.isPow2VectorType()) { |
| NumElts = (unsigned)NextPowerOf2(NumElts); |
| EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); |
| return LegalizeKind(TypeWidenVector, NVT); |
| } |
| |
| // Examine the element type. |
| LegalizeKind LK = getTypeConversion(Context, EltVT); |
| |
| // If type is to be expanded, split the vector. |
| // <4 x i140> -> <2 x i140> |
| if (LK.first == TypeExpandInteger) |
| return LegalizeKind(TypeSplitVector, |
| EVT::getVectorVT(Context, EltVT, NumElts / 2)); |
| |
| // Promote the integer element types until a legal vector type is found |
| // or until the element integer type is too big. If a legal type was not |
| // found, fallback to the usual mechanism of widening/splitting the |
| // vector. |
| while (1) { |
| // Increase the bitwidth of the element to the next pow-of-two |
| // (which is greater than 8 bits). |
| EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits() |
| ).getRoundIntegerType(Context); |
| |
| // Stop trying when getting a non-simple element type. |
| // Note that vector elements may be greater than legal vector element |
| // types. Example: X86 XMM registers hold 64bit element on 32bit systems. |
| if (!EltVT.isSimple()) break; |
| |
| // Build a new vector type and check if it is legal. |
| MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); |
| // Found a legal promoted vector type. |
| if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) |
| return LegalizeKind(TypePromoteInteger, |
| EVT::getVectorVT(Context, EltVT, NumElts)); |
| } |
| } |
| |
| // Try to widen the vector until a legal type is found. |
| // If there is no wider legal type, split the vector. |
| while (1) { |
| // Round up to the next power of 2. |
| NumElts = (unsigned)NextPowerOf2(NumElts); |
| |
| // If there is no simple vector type with this many elements then there |
| // cannot be a larger legal vector type. Note that this assumes that |
| // there are no skipped intermediate vector types in the simple types. |
| if (!EltVT.isSimple()) break; |
| MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); |
| if (LargerVector == MVT()) break; |
| |
| // If this type is legal then widen the vector. |
| if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) |
| return LegalizeKind(TypeWidenVector, LargerVector); |
| } |
| |
| // Widen odd vectors to next power of two. |
| if (!VT.isPow2VectorType()) { |
| EVT NVT = VT.getPow2VectorType(Context); |
| return LegalizeKind(TypeWidenVector, NVT); |
| } |
| |
| // Vectors with illegal element types are expanded. |
| EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); |
| return LegalizeKind(TypeSplitVector, NVT); |
| |
| assert(false && "Unable to handle this kind of vector type"); |
| return LegalizeKind(TypeLegal, VT); |
| } |
| |
| std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses; |
| |
| /// TargetDAGCombineArray - Targets can specify ISD nodes that they would |
| /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(), |
| /// which sets a bit in this array. |
| unsigned char |
| TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT]; |
| |
| /// PromoteToType - For operations that must be promoted to a specific type, |
| /// this holds the destination type. This map should be sparse, so don't hold |
| /// it as an array. |
| /// |
| /// Targets add entries to this map with AddPromotedToType(..), clients access |
| /// this with getTypeToPromoteTo(..). |
| std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType> |
| PromoteToType; |
| |
| /// LibcallRoutineNames - Stores the name each libcall. |
| /// |
| const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL]; |
| |
| /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result |
| /// of each of the comparison libcall against zero. |
| ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL]; |
| |
| /// LibcallCallingConvs - Stores the CallingConv that should be used for each |
| /// libcall. |
| CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL]; |
| |
| protected: |
| /// When lowering \@llvm.memset this field specifies the maximum number of |
| /// store operations that may be substituted for the call to memset. Targets |
| /// must set this value based on the cost threshold for that target. Targets |
| /// should assume that the memset will be done using as many of the largest |
| /// store operations first, followed by smaller ones, if necessary, per |
| /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine |
| /// with 16-bit alignment would result in four 2-byte stores and one 1-byte |
| /// store. This only applies to setting a constant array of a constant size. |
| /// @brief Specify maximum number of store instructions per memset call. |
| unsigned maxStoresPerMemset; |
| |
| /// Maximum number of stores operations that may be substituted for the call |
| /// to memset, used for functions with OptSize attribute. |
| unsigned maxStoresPerMemsetOptSize; |
| |
| /// When lowering \@llvm.memcpy this field specifies the maximum number of |
| /// store operations that may be substituted for a call to memcpy. Targets |
| /// must set this value based on the cost threshold for that target. Targets |
| /// should assume that the memcpy will be done using as many of the largest |
| /// store operations first, followed by smaller ones, if necessary, per |
| /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine |
| /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store |
| /// and one 1-byte store. This only applies to copying a constant array of |
| /// constant size. |
| /// @brief Specify maximum bytes of store instructions per memcpy call. |
| unsigned maxStoresPerMemcpy; |
| |
| /// Maximum number of store operations that may be substituted for a call |
| /// to memcpy, used for functions with OptSize attribute. |
| unsigned maxStoresPerMemcpyOptSize; |
| |
| /// When lowering \@llvm.memmove this field specifies the maximum number of |
| /// store instructions that may be substituted for a call to memmove. Targets |
| /// must set this value based on the cost threshold for that target. Targets |
| /// should assume that the memmove will be done using as many of the largest |
| /// store operations first, followed by smaller ones, if necessary, per |
| /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine |
| /// with 8-bit alignment would result in nine 1-byte stores. This only |
| /// applies to copying a constant array of constant size. |
| /// @brief Specify maximum bytes of store instructions per memmove call. |
| unsigned maxStoresPerMemmove; |
| |
| /// Maximum number of store instructions that may be substituted for a call |
| /// to memmove, used for functions with OpSize attribute. |
| unsigned maxStoresPerMemmoveOptSize; |
| |
| /// This field specifies whether the target can benefit from code placement |
| /// optimization. |
| bool benefitFromCodePlacementOpt; |
| |
| private: |
| /// isLegalRC - Return true if the value types that can be represented by the |
| /// specified register class are all legal. |
| bool isLegalRC(const TargetRegisterClass *RC) const; |
| |
| /// hasLegalSuperRegRegClasses - Return true if the specified register class |
| /// has one or more super-reg register classes that are legal. |
| bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const; |
| }; |
| |
| /// GetReturnInfo - Given an LLVM IR type and return type attributes, |
| /// compute the return value EVTs and flags, and optionally also |
| /// the offsets, if the return value is being lowered to memory. |
| void GetReturnInfo(Type* ReturnType, Attributes attr, |
| SmallVectorImpl<ISD::OutputArg> &Outs, |
| const TargetLowering &TLI, |
| SmallVectorImpl<uint64_t> *Offsets = 0); |
| |
| } // end llvm namespace |
| |
| #endif |