| //===-- llvm/Target/TargetData.h - Data size & alignment info ---*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines target properties related to datatype size/offset/alignment |
| // information. It uses lazy annotations to cache information about how |
| // structure types are laid out and used. |
| // |
| // This structure should be created once, filled in if the defaults are not |
| // correct and then passed around by const&. None of the members functions |
| // require modification to the object. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TARGET_TARGETDATA_H |
| #define LLVM_TARGET_TARGETDATA_H |
| |
| #include "llvm/Pass.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/DataTypes.h" |
| |
| namespace llvm { |
| |
| class Value; |
| class Type; |
| class IntegerType; |
| class StructType; |
| class StructLayout; |
| class GlobalVariable; |
| class LLVMContext; |
| template<typename T> |
| class ArrayRef; |
| |
| /// Enum used to categorize the alignment types stored by TargetAlignElem |
| enum AlignTypeEnum { |
| INTEGER_ALIGN = 'i', ///< Integer type alignment |
| VECTOR_ALIGN = 'v', ///< Vector type alignment |
| FLOAT_ALIGN = 'f', ///< Floating point type alignment |
| AGGREGATE_ALIGN = 'a', ///< Aggregate alignment |
| STACK_ALIGN = 's' ///< Stack objects alignment |
| }; |
| |
| /// Target alignment element. |
| /// |
| /// Stores the alignment data associated with a given alignment type (pointer, |
| /// integer, vector, float) and type bit width. |
| /// |
| /// @note The unusual order of elements in the structure attempts to reduce |
| /// padding and make the structure slightly more cache friendly. |
| struct TargetAlignElem { |
| AlignTypeEnum AlignType : 8; //< Alignment type (AlignTypeEnum) |
| unsigned ABIAlign; //< ABI alignment for this type/bitw |
| unsigned PrefAlign; //< Pref. alignment for this type/bitw |
| uint32_t TypeBitWidth; //< Type bit width |
| |
| /// Initializer |
| static TargetAlignElem get(AlignTypeEnum align_type, unsigned abi_align, |
| unsigned pref_align, uint32_t bit_width); |
| /// Equality predicate |
| bool operator==(const TargetAlignElem &rhs) const; |
| }; |
| |
| /// TargetData - This class holds a parsed version of the target data layout |
| /// string in a module and provides methods for querying it. The target data |
| /// layout string is specified *by the target* - a frontend generating LLVM IR |
| /// is required to generate the right target data for the target being codegen'd |
| /// to. If some measure of portability is desired, an empty string may be |
| /// specified in the module. |
| class TargetData : public ImmutablePass { |
| private: |
| bool LittleEndian; ///< Defaults to false |
| unsigned PointerMemSize; ///< Pointer size in bytes |
| unsigned PointerABIAlign; ///< Pointer ABI alignment |
| unsigned PointerPrefAlign; ///< Pointer preferred alignment |
| unsigned StackNaturalAlign; ///< Stack natural alignment |
| |
| SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers. |
| |
| /// Alignments- Where the primitive type alignment data is stored. |
| /// |
| /// @sa init(). |
| /// @note Could support multiple size pointer alignments, e.g., 32-bit |
| /// pointers vs. 64-bit pointers by extending TargetAlignment, but for now, |
| /// we don't. |
| SmallVector<TargetAlignElem, 16> Alignments; |
| |
| /// InvalidAlignmentElem - This member is a signal that a requested alignment |
| /// type and bit width were not found in the SmallVector. |
| static const TargetAlignElem InvalidAlignmentElem; |
| |
| // The StructType -> StructLayout map. |
| mutable void *LayoutMap; |
| |
| //! Set/initialize target alignments |
| void setAlignment(AlignTypeEnum align_type, unsigned abi_align, |
| unsigned pref_align, uint32_t bit_width); |
| unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width, |
| bool ABIAlign, Type *Ty) const; |
| //! Internal helper method that returns requested alignment for type. |
| unsigned getAlignment(Type *Ty, bool abi_or_pref) const; |
| |
| /// Valid alignment predicate. |
| /// |
| /// Predicate that tests a TargetAlignElem reference returned by get() against |
| /// InvalidAlignmentElem. |
| bool validAlignment(const TargetAlignElem &align) const { |
| return &align != &InvalidAlignmentElem; |
| } |
| |
| public: |
| /// Default ctor. |
| /// |
| /// @note This has to exist, because this is a pass, but it should never be |
| /// used. |
| TargetData(); |
| |
| /// Constructs a TargetData from a specification string. See init(). |
| explicit TargetData(StringRef TargetDescription) |
| : ImmutablePass(ID) { |
| init(TargetDescription); |
| } |
| |
| /// Initialize target data from properties stored in the module. |
| explicit TargetData(const Module *M); |
| |
| TargetData(const TargetData &TD) : |
| ImmutablePass(ID), |
| LittleEndian(TD.isLittleEndian()), |
| PointerMemSize(TD.PointerMemSize), |
| PointerABIAlign(TD.PointerABIAlign), |
| PointerPrefAlign(TD.PointerPrefAlign), |
| LegalIntWidths(TD.LegalIntWidths), |
| Alignments(TD.Alignments), |
| LayoutMap(0) |
| { } |
| |
| ~TargetData(); // Not virtual, do not subclass this class |
| |
| //! Parse a target data layout string and initialize TargetData alignments. |
| void init(StringRef TargetDescription); |
| |
| /// Target endianness... |
| bool isLittleEndian() const { return LittleEndian; } |
| bool isBigEndian() const { return !LittleEndian; } |
| |
| /// getStringRepresentation - Return the string representation of the |
| /// TargetData. This representation is in the same format accepted by the |
| /// string constructor above. |
| std::string getStringRepresentation() const; |
| |
| /// isLegalInteger - This function returns true if the specified type is |
| /// known to be a native integer type supported by the CPU. For example, |
| /// i64 is not native on most 32-bit CPUs and i37 is not native on any known |
| /// one. This returns false if the integer width is not legal. |
| /// |
| /// The width is specified in bits. |
| /// |
| bool isLegalInteger(unsigned Width) const { |
| for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i) |
| if (LegalIntWidths[i] == Width) |
| return true; |
| return false; |
| } |
| |
| bool isIllegalInteger(unsigned Width) const { |
| return !isLegalInteger(Width); |
| } |
| |
| /// Returns true if the given alignment exceeds the natural stack alignment. |
| bool exceedsNaturalStackAlignment(unsigned Align) const { |
| return (StackNaturalAlign != 0) && (Align > StackNaturalAlign); |
| } |
| |
| /// fitsInLegalInteger - This function returns true if the specified type fits |
| /// in a native integer type supported by the CPU. For example, if the CPU |
| /// only supports i32 as a native integer type, then i27 fits in a legal |
| // integer type but i45 does not. |
| bool fitsInLegalInteger(unsigned Width) const { |
| for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i) |
| if (Width <= LegalIntWidths[i]) |
| return true; |
| return false; |
| } |
| |
| /// Target pointer alignment |
| unsigned getPointerABIAlignment() const { return PointerABIAlign; } |
| /// Return target's alignment for stack-based pointers |
| unsigned getPointerPrefAlignment() const { return PointerPrefAlign; } |
| /// Target pointer size |
| unsigned getPointerSize() const { return PointerMemSize; } |
| /// Target pointer size, in bits |
| unsigned getPointerSizeInBits() const { return 8*PointerMemSize; } |
| |
| /// Size examples: |
| /// |
| /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*] |
| /// ---- ---------- --------------- --------------- |
| /// i1 1 8 8 |
| /// i8 8 8 8 |
| /// i19 19 24 32 |
| /// i32 32 32 32 |
| /// i100 100 104 128 |
| /// i128 128 128 128 |
| /// Float 32 32 32 |
| /// Double 64 64 64 |
| /// X86_FP80 80 80 96 |
| /// |
| /// [*] The alloc size depends on the alignment, and thus on the target. |
| /// These values are for x86-32 linux. |
| |
| /// getTypeSizeInBits - Return the number of bits necessary to hold the |
| /// specified type. For example, returns 36 for i36 and 80 for x86_fp80. |
| uint64_t getTypeSizeInBits(Type* Ty) const; |
| |
| /// getTypeStoreSize - Return the maximum number of bytes that may be |
| /// overwritten by storing the specified type. For example, returns 5 |
| /// for i36 and 10 for x86_fp80. |
| uint64_t getTypeStoreSize(Type *Ty) const { |
| return (getTypeSizeInBits(Ty)+7)/8; |
| } |
| |
| /// getTypeStoreSizeInBits - Return the maximum number of bits that may be |
| /// overwritten by storing the specified type; always a multiple of 8. For |
| /// example, returns 40 for i36 and 80 for x86_fp80. |
| uint64_t getTypeStoreSizeInBits(Type *Ty) const { |
| return 8*getTypeStoreSize(Ty); |
| } |
| |
| /// getTypeAllocSize - Return the offset in bytes between successive objects |
| /// of the specified type, including alignment padding. This is the amount |
| /// that alloca reserves for this type. For example, returns 12 or 16 for |
| /// x86_fp80, depending on alignment. |
| uint64_t getTypeAllocSize(Type* Ty) const { |
| // Round up to the next alignment boundary. |
| return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty)); |
| } |
| |
| /// getTypeAllocSizeInBits - Return the offset in bits between successive |
| /// objects of the specified type, including alignment padding; always a |
| /// multiple of 8. This is the amount that alloca reserves for this type. |
| /// For example, returns 96 or 128 for x86_fp80, depending on alignment. |
| uint64_t getTypeAllocSizeInBits(Type* Ty) const { |
| return 8*getTypeAllocSize(Ty); |
| } |
| |
| /// getABITypeAlignment - Return the minimum ABI-required alignment for the |
| /// specified type. |
| unsigned getABITypeAlignment(Type *Ty) const; |
| |
| /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for |
| /// an integer type of the specified bitwidth. |
| unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const; |
| |
| |
| /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment |
| /// for the specified type when it is part of a call frame. |
| unsigned getCallFrameTypeAlignment(Type *Ty) const; |
| |
| |
| /// getPrefTypeAlignment - Return the preferred stack/global alignment for |
| /// the specified type. This is always at least as good as the ABI alignment. |
| unsigned getPrefTypeAlignment(Type *Ty) const; |
| |
| /// getPreferredTypeAlignmentShift - Return the preferred alignment for the |
| /// specified type, returned as log2 of the value (a shift amount). |
| /// |
| unsigned getPreferredTypeAlignmentShift(Type *Ty) const; |
| |
| /// getIntPtrType - Return an unsigned integer type that is the same size or |
| /// greater to the host pointer size. |
| /// |
| IntegerType *getIntPtrType(LLVMContext &C) const; |
| |
| /// getIndexedOffset - return the offset from the beginning of the type for |
| /// the specified indices. This is used to implement getelementptr. |
| /// |
| uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const; |
| |
| /// getStructLayout - Return a StructLayout object, indicating the alignment |
| /// of the struct, its size, and the offsets of its fields. Note that this |
| /// information is lazily cached. |
| const StructLayout *getStructLayout(StructType *Ty) const; |
| |
| /// getPreferredAlignment - Return the preferred alignment of the specified |
| /// global. This includes an explicitly requested alignment (if the global |
| /// has one). |
| unsigned getPreferredAlignment(const GlobalVariable *GV) const; |
| |
| /// getPreferredAlignmentLog - Return the preferred alignment of the |
| /// specified global, returned in log form. This includes an explicitly |
| /// requested alignment (if the global has one). |
| unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const; |
| |
| /// RoundUpAlignment - Round the specified value up to the next alignment |
| /// boundary specified by Alignment. For example, 7 rounded up to an |
| /// alignment boundary of 4 is 8. 8 rounded up to the alignment boundary of 4 |
| /// is 8 because it is already aligned. |
| template <typename UIntTy> |
| static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) { |
| assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!"); |
| return (Val + (Alignment-1)) & ~UIntTy(Alignment-1); |
| } |
| |
| static char ID; // Pass identification, replacement for typeid |
| }; |
| |
| /// StructLayout - used to lazily calculate structure layout information for a |
| /// target machine, based on the TargetData structure. |
| /// |
| class StructLayout { |
| uint64_t StructSize; |
| unsigned StructAlignment; |
| unsigned NumElements; |
| uint64_t MemberOffsets[1]; // variable sized array! |
| public: |
| |
| uint64_t getSizeInBytes() const { |
| return StructSize; |
| } |
| |
| uint64_t getSizeInBits() const { |
| return 8*StructSize; |
| } |
| |
| unsigned getAlignment() const { |
| return StructAlignment; |
| } |
| |
| /// getElementContainingOffset - Given a valid byte offset into the structure, |
| /// return the structure index that contains it. |
| /// |
| unsigned getElementContainingOffset(uint64_t Offset) const; |
| |
| uint64_t getElementOffset(unsigned Idx) const { |
| assert(Idx < NumElements && "Invalid element idx!"); |
| return MemberOffsets[Idx]; |
| } |
| |
| uint64_t getElementOffsetInBits(unsigned Idx) const { |
| return getElementOffset(Idx)*8; |
| } |
| |
| private: |
| friend class TargetData; // Only TargetData can create this class |
| StructLayout(StructType *ST, const TargetData &TD); |
| }; |
| |
| } // End llvm namespace |
| |
| #endif |