| //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the target-independent interfaces which should be |
| // implemented by each target which is using a TableGen based code generator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // Include all information about LLVM intrinsics. |
| include "llvm/Intrinsics.td" |
| |
| //===----------------------------------------------------------------------===// |
| // Register file description - These classes are used to fill in the target |
| // description classes. |
| |
| class RegisterClass; // Forward def |
| |
| // SubRegIndex - Use instances of SubRegIndex to identify subregisters. |
| class SubRegIndex { |
| string Namespace = ""; |
| } |
| |
| // RegAltNameIndex - The alternate name set to use for register operands of |
| // this register class when printing. |
| class RegAltNameIndex { |
| string Namespace = ""; |
| } |
| def NoRegAltName : RegAltNameIndex; |
| |
| // Register - You should define one instance of this class for each register |
| // in the target machine. String n will become the "name" of the register. |
| class Register<string n, list<string> altNames = []> { |
| string Namespace = ""; |
| string AsmName = n; |
| list<string> AltNames = altNames; |
| |
| // Aliases - A list of registers that this register overlaps with. A read or |
| // modification of this register can potentially read or modify the aliased |
| // registers. |
| list<Register> Aliases = []; |
| |
| // SubRegs - A list of registers that are parts of this register. Note these |
| // are "immediate" sub-registers and the registers within the list do not |
| // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX], |
| // not [AX, AH, AL]. |
| list<Register> SubRegs = []; |
| |
| // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used |
| // to address it. Sub-sub-register indices are automatically inherited from |
| // SubRegs. |
| list<SubRegIndex> SubRegIndices = []; |
| |
| // RegAltNameIndices - The alternate name indices which are valid for this |
| // register. |
| list<RegAltNameIndex> RegAltNameIndices = []; |
| |
| // CompositeIndices - Specify subreg indices that don't correspond directly to |
| // a register in SubRegs and are not inherited. The following formats are |
| // supported: |
| // |
| // (a) Identity - Reg:a == Reg |
| // (a b) Alias - Reg:a == Reg:b |
| // (a b,c) Composite - Reg:a == (Reg:b):c |
| // |
| // This can be used to disambiguate a sub-sub-register that exists in more |
| // than one subregister and other weird stuff. |
| list<dag> CompositeIndices = []; |
| |
| // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. |
| // These values can be determined by locating the <target>.h file in the |
| // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The |
| // order of these names correspond to the enumeration used by gcc. A value of |
| // -1 indicates that the gcc number is undefined and -2 that register number |
| // is invalid for this mode/flavour. |
| list<int> DwarfNumbers = []; |
| |
| // CostPerUse - Additional cost of instructions using this register compared |
| // to other registers in its class. The register allocator will try to |
| // minimize the number of instructions using a register with a CostPerUse. |
| // This is used by the x86-64 and ARM Thumb targets where some registers |
| // require larger instruction encodings. |
| int CostPerUse = 0; |
| } |
| |
| // RegisterWithSubRegs - This can be used to define instances of Register which |
| // need to specify sub-registers. |
| // List "subregs" specifies which registers are sub-registers to this one. This |
| // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc. |
| // This allows the code generator to be careful not to put two values with |
| // overlapping live ranges into registers which alias. |
| class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { |
| let SubRegs = subregs; |
| } |
| |
| // RegisterClass - Now that all of the registers are defined, and aliases |
| // between registers are defined, specify which registers belong to which |
| // register classes. This also defines the default allocation order of |
| // registers by register allocators. |
| // |
| class RegisterClass<string namespace, list<ValueType> regTypes, int alignment, |
| dag regList, RegAltNameIndex idx = NoRegAltName> { |
| string Namespace = namespace; |
| |
| // RegType - Specify the list ValueType of the registers in this register |
| // class. Note that all registers in a register class must have the same |
| // ValueTypes. This is a list because some targets permit storing different |
| // types in same register, for example vector values with 128-bit total size, |
| // but different count/size of items, like SSE on x86. |
| // |
| list<ValueType> RegTypes = regTypes; |
| |
| // Size - Specify the spill size in bits of the registers. A default value of |
| // zero lets tablgen pick an appropriate size. |
| int Size = 0; |
| |
| // Alignment - Specify the alignment required of the registers when they are |
| // stored or loaded to memory. |
| // |
| int Alignment = alignment; |
| |
| // CopyCost - This value is used to specify the cost of copying a value |
| // between two registers in this register class. The default value is one |
| // meaning it takes a single instruction to perform the copying. A negative |
| // value means copying is extremely expensive or impossible. |
| int CopyCost = 1; |
| |
| // MemberList - Specify which registers are in this class. If the |
| // allocation_order_* method are not specified, this also defines the order of |
| // allocation used by the register allocator. |
| // |
| dag MemberList = regList; |
| |
| // AltNameIndex - The alternate register name to use when printing operands |
| // of this register class. Every register in the register class must have |
| // a valid alternate name for the given index. |
| RegAltNameIndex altNameIndex = idx; |
| |
| // SubRegClasses - Specify the register class of subregisters as a list of |
| // dags: (RegClass SubRegIndex, SubRegindex, ...) |
| list<dag> SubRegClasses = []; |
| |
| // isAllocatable - Specify that the register class can be used for virtual |
| // registers and register allocation. Some register classes are only used to |
| // model instruction operand constraints, and should have isAllocatable = 0. |
| bit isAllocatable = 1; |
| |
| // AltOrders - List of alternative allocation orders. The default order is |
| // MemberList itself, and that is good enough for most targets since the |
| // register allocators automatically remove reserved registers and move |
| // callee-saved registers to the end. |
| list<dag> AltOrders = []; |
| |
| // AltOrderSelect - The body of a function that selects the allocation order |
| // to use in a given machine function. The code will be inserted in a |
| // function like this: |
| // |
| // static inline unsigned f(const MachineFunction &MF) { ... } |
| // |
| // The function should return 0 to select the default order defined by |
| // MemberList, 1 to select the first AltOrders entry and so on. |
| code AltOrderSelect = [{}]; |
| } |
| |
| // The memberList in a RegisterClass is a dag of set operations. TableGen |
| // evaluates these set operations and expand them into register lists. These |
| // are the most common operation, see test/TableGen/SetTheory.td for more |
| // examples of what is possible: |
| // |
| // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a |
| // register class, or a sub-expression. This is also the way to simply list |
| // registers. |
| // |
| // (sub GPR, SP) - Set difference. Subtract the last arguments from the first. |
| // |
| // (and GPR, CSR) - Set intersection. All registers from the first set that are |
| // also in the second set. |
| // |
| // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of |
| // numbered registers. |
| // |
| // (shl GPR, 4) - Remove the first N elements. |
| // |
| // (trunc GPR, 4) - Truncate after the first N elements. |
| // |
| // (rotl GPR, 1) - Rotate N places to the left. |
| // |
| // (rotr GPR, 1) - Rotate N places to the right. |
| // |
| // (decimate GPR, 2) - Pick every N'th element, starting with the first. |
| // |
| // All of these operators work on ordered sets, not lists. That means |
| // duplicates are removed from sub-expressions. |
| |
| // Set operators. The rest is defined in TargetSelectionDAG.td. |
| def sequence; |
| def decimate; |
| |
| // RegisterTuples - Automatically generate super-registers by forming tuples of |
| // sub-registers. This is useful for modeling register sequence constraints |
| // with pseudo-registers that are larger than the architectural registers. |
| // |
| // The sub-register lists are zipped together: |
| // |
| // def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>; |
| // |
| // Generates the same registers as: |
| // |
| // let SubRegIndices = [sube, subo] in { |
| // def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>; |
| // def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>; |
| // } |
| // |
| // The generated pseudo-registers inherit super-classes and fields from their |
| // first sub-register. Most fields from the Register class are inferred, and |
| // the AsmName and Dwarf numbers are cleared. |
| // |
| // RegisterTuples instances can be used in other set operations to form |
| // register classes and so on. This is the only way of using the generated |
| // registers. |
| class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> { |
| // SubRegs - N lists of registers to be zipped up. Super-registers are |
| // synthesized from the first element of each SubRegs list, the second |
| // element and so on. |
| list<dag> SubRegs = Regs; |
| |
| // SubRegIndices - N SubRegIndex instances. This provides the names of the |
| // sub-registers in the synthesized super-registers. |
| list<SubRegIndex> SubRegIndices = Indices; |
| |
| // Compose sub-register indices like in a normal Register. |
| list<dag> CompositeIndices = []; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // DwarfRegNum - This class provides a mapping of the llvm register enumeration |
| // to the register numbering used by gcc and gdb. These values are used by a |
| // debug information writer to describe where values may be located during |
| // execution. |
| class DwarfRegNum<list<int> Numbers> { |
| // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. |
| // These values can be determined by locating the <target>.h file in the |
| // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The |
| // order of these names correspond to the enumeration used by gcc. A value of |
| // -1 indicates that the gcc number is undefined and -2 that register number |
| // is invalid for this mode/flavour. |
| list<int> DwarfNumbers = Numbers; |
| } |
| |
| // DwarfRegAlias - This class declares that a given register uses the same dwarf |
| // numbers as another one. This is useful for making it clear that the two |
| // registers do have the same number. It also lets us build a mapping |
| // from dwarf register number to llvm register. |
| class DwarfRegAlias<Register reg> { |
| Register DwarfAlias = reg; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pull in the common support for scheduling |
| // |
| include "llvm/Target/TargetSchedule.td" |
| |
| class Predicate; // Forward def |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction set description - These classes correspond to the C++ classes in |
| // the Target/TargetInstrInfo.h file. |
| // |
| class Instruction { |
| string Namespace = ""; |
| |
| dag OutOperandList; // An dag containing the MI def operand list. |
| dag InOperandList; // An dag containing the MI use operand list. |
| string AsmString = ""; // The .s format to print the instruction with. |
| |
| // Pattern - Set to the DAG pattern for this instruction, if we know of one, |
| // otherwise, uninitialized. |
| list<dag> Pattern; |
| |
| // The follow state will eventually be inferred automatically from the |
| // instruction pattern. |
| |
| list<Register> Uses = []; // Default to using no non-operand registers |
| list<Register> Defs = []; // Default to modifying no non-operand registers |
| |
| // Predicates - List of predicates which will be turned into isel matching |
| // code. |
| list<Predicate> Predicates = []; |
| |
| // Size - Size of encoded instruction, or zero if the size cannot be determined |
| // from the opcode. |
| int Size = 0; |
| |
| // DecoderNamespace - The "namespace" in which this instruction exists, on |
| // targets like ARM which multiple ISA namespaces exist. |
| string DecoderNamespace = ""; |
| |
| // Code size, for instruction selection. |
| // FIXME: What does this actually mean? |
| int CodeSize = 0; |
| |
| // Added complexity passed onto matching pattern. |
| int AddedComplexity = 0; |
| |
| // These bits capture information about the high-level semantics of the |
| // instruction. |
| bit isReturn = 0; // Is this instruction a return instruction? |
| bit isBranch = 0; // Is this instruction a branch instruction? |
| bit isIndirectBranch = 0; // Is this instruction an indirect branch? |
| bit isCompare = 0; // Is this instruction a comparison instruction? |
| bit isMoveImm = 0; // Is this instruction a move immediate instruction? |
| bit isBitcast = 0; // Is this instruction a bitcast instruction? |
| bit isBarrier = 0; // Can control flow fall through this instruction? |
| bit isCall = 0; // Is this instruction a call instruction? |
| bit canFoldAsLoad = 0; // Can this be folded as a simple memory operand? |
| bit mayLoad = 0; // Is it possible for this inst to read memory? |
| bit mayStore = 0; // Is it possible for this inst to write memory? |
| bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote? |
| bit isCommutable = 0; // Is this 3 operand instruction commutable? |
| bit isTerminator = 0; // Is this part of the terminator for a basic block? |
| bit isReMaterializable = 0; // Is this instruction re-materializable? |
| bit isPredicable = 0; // Is this instruction predicable? |
| bit hasDelaySlot = 0; // Does this instruction have an delay slot? |
| bit usesCustomInserter = 0; // Pseudo instr needing special help. |
| bit hasPostISelHook = 0; // To be *adjusted* after isel by target hook. |
| bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains? |
| bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction? |
| bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction. |
| bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement? |
| bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement? |
| bit isPseudo = 0; // Is this instruction a pseudo-instruction? |
| // If so, won't have encoding information for |
| // the [MC]CodeEmitter stuff. |
| |
| // Side effect flags - When set, the flags have these meanings: |
| // |
| // hasSideEffects - The instruction has side effects that are not |
| // captured by any operands of the instruction or other flags. |
| // |
| // neverHasSideEffects - Set on an instruction with no pattern if it has no |
| // side effects. |
| bit hasSideEffects = 0; |
| bit neverHasSideEffects = 0; |
| |
| // Is this instruction a "real" instruction (with a distinct machine |
| // encoding), or is it a pseudo instruction used for codegen modeling |
| // purposes. |
| // FIXME: For now this is distinct from isPseudo, above, as code-gen-only |
| // instructions can (and often do) still have encoding information |
| // associated with them. Once we've migrated all of them over to true |
| // pseudo-instructions that are lowered to real instructions prior to |
| // the printer/emitter, we can remove this attribute and just use isPseudo. |
| bit isCodeGenOnly = 0; |
| |
| // Is this instruction a pseudo instruction for use by the assembler parser. |
| bit isAsmParserOnly = 0; |
| |
| InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling. |
| |
| string Constraints = ""; // OperandConstraint, e.g. $src = $dst. |
| |
| /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not |
| /// be encoded into the output machineinstr. |
| string DisableEncoding = ""; |
| |
| string PostEncoderMethod = ""; |
| string DecoderMethod = ""; |
| |
| /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc. |
| bits<64> TSFlags = 0; |
| |
| ///@name Assembler Parser Support |
| ///@{ |
| |
| string AsmMatchConverter = ""; |
| |
| ///@} |
| } |
| |
| /// PseudoInstExpansion - Expansion information for a pseudo-instruction. |
| /// Which instruction it expands to and how the operands map from the |
| /// pseudo. |
| class PseudoInstExpansion<dag Result> { |
| dag ResultInst = Result; // The instruction to generate. |
| bit isPseudo = 1; |
| } |
| |
| /// Predicates - These are extra conditionals which are turned into instruction |
| /// selector matching code. Currently each predicate is just a string. |
| class Predicate<string cond> { |
| string CondString = cond; |
| |
| /// AssemblerMatcherPredicate - If this feature can be used by the assembler |
| /// matcher, this is true. Targets should set this by inheriting their |
| /// feature from the AssemblerPredicate class in addition to Predicate. |
| bit AssemblerMatcherPredicate = 0; |
| |
| /// AssemblerCondString - Name of the subtarget feature being tested used |
| /// as alternative condition string used for assembler matcher. |
| /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0". |
| /// "!ModeThumb" is translated to "(Bits & ModeThumb) == 0". |
| /// It can also list multiple features separated by ",". |
| /// e.g. "ModeThumb,FeatureThumb2" is translated to |
| /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0". |
| string AssemblerCondString = ""; |
| } |
| |
| /// NoHonorSignDependentRounding - This predicate is true if support for |
| /// sign-dependent-rounding is not enabled. |
| def NoHonorSignDependentRounding |
| : Predicate<"!HonorSignDependentRoundingFPMath()">; |
| |
| class Requires<list<Predicate> preds> { |
| list<Predicate> Predicates = preds; |
| } |
| |
| /// ops definition - This is just a simple marker used to identify the operand |
| /// list for an instruction. outs and ins are identical both syntactically and |
| /// semanticallyr; they are used to define def operands and use operands to |
| /// improve readibility. This should be used like this: |
| /// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar. |
| def ops; |
| def outs; |
| def ins; |
| |
| /// variable_ops definition - Mark this instruction as taking a variable number |
| /// of operands. |
| def variable_ops; |
| |
| |
| /// PointerLikeRegClass - Values that are designed to have pointer width are |
| /// derived from this. TableGen treats the register class as having a symbolic |
| /// type that it doesn't know, and resolves the actual regclass to use by using |
| /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time. |
| class PointerLikeRegClass<int Kind> { |
| int RegClassKind = Kind; |
| } |
| |
| |
| /// ptr_rc definition - Mark this operand as being a pointer value whose |
| /// register class is resolved dynamically via a callback to TargetInstrInfo. |
| /// FIXME: We should probably change this to a class which contain a list of |
| /// flags. But currently we have but one flag. |
| def ptr_rc : PointerLikeRegClass<0>; |
| |
| /// unknown definition - Mark this operand as being of unknown type, causing |
| /// it to be resolved by inference in the context it is used. |
| def unknown; |
| |
| /// AsmOperandClass - Representation for the kinds of operands which the target |
| /// specific parser can create and the assembly matcher may need to distinguish. |
| /// |
| /// Operand classes are used to define the order in which instructions are |
| /// matched, to ensure that the instruction which gets matched for any |
| /// particular list of operands is deterministic. |
| /// |
| /// The target specific parser must be able to classify a parsed operand into a |
| /// unique class which does not partially overlap with any other classes. It can |
| /// match a subset of some other class, in which case the super class field |
| /// should be defined. |
| class AsmOperandClass { |
| /// The name to use for this class, which should be usable as an enum value. |
| string Name = ?; |
| |
| /// The super classes of this operand. |
| list<AsmOperandClass> SuperClasses = []; |
| |
| /// The name of the method on the target specific operand to call to test |
| /// whether the operand is an instance of this class. If not set, this will |
| /// default to "isFoo", where Foo is the AsmOperandClass name. The method |
| /// signature should be: |
| /// bool isFoo() const; |
| string PredicateMethod = ?; |
| |
| /// The name of the method on the target specific operand to call to add the |
| /// target specific operand to an MCInst. If not set, this will default to |
| /// "addFooOperands", where Foo is the AsmOperandClass name. The method |
| /// signature should be: |
| /// void addFooOperands(MCInst &Inst, unsigned N) const; |
| string RenderMethod = ?; |
| |
| /// The name of the method on the target specific operand to call to custom |
| /// handle the operand parsing. This is useful when the operands do not relate |
| /// to immediates or registers and are very instruction specific (as flags to |
| /// set in a processor register, coprocessor number, ...). |
| string ParserMethod = ?; |
| } |
| |
| def ImmAsmOperand : AsmOperandClass { |
| let Name = "Imm"; |
| } |
| |
| /// Operand Types - These provide the built-in operand types that may be used |
| /// by a target. Targets can optionally provide their own operand types as |
| /// needed, though this should not be needed for RISC targets. |
| class Operand<ValueType ty> { |
| ValueType Type = ty; |
| string PrintMethod = "printOperand"; |
| string EncoderMethod = ""; |
| string DecoderMethod = ""; |
| string AsmOperandLowerMethod = ?; |
| string OperandType = "OPERAND_UNKNOWN"; |
| dag MIOperandInfo = (ops); |
| |
| // ParserMatchClass - The "match class" that operands of this type fit |
| // in. Match classes are used to define the order in which instructions are |
| // match, to ensure that which instructions gets matched is deterministic. |
| // |
| // The target specific parser must be able to classify an parsed operand into |
| // a unique class, which does not partially overlap with any other classes. It |
| // can match a subset of some other class, in which case the AsmOperandClass |
| // should declare the other operand as one of its super classes. |
| AsmOperandClass ParserMatchClass = ImmAsmOperand; |
| } |
| |
| class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> { |
| // RegClass - The register class of the operand. |
| RegisterClass RegClass = regclass; |
| // PrintMethod - The target method to call to print register operands of |
| // this type. The method normally will just use an alt-name index to look |
| // up the name to print. Default to the generic printOperand(). |
| string PrintMethod = pm; |
| // ParserMatchClass - The "match class" that operands of this type fit |
| // in. Match classes are used to define the order in which instructions are |
| // match, to ensure that which instructions gets matched is deterministic. |
| // |
| // The target specific parser must be able to classify an parsed operand into |
| // a unique class, which does not partially overlap with any other classes. It |
| // can match a subset of some other class, in which case the AsmOperandClass |
| // should declare the other operand as one of its super classes. |
| AsmOperandClass ParserMatchClass; |
| } |
| |
| let OperandType = "OPERAND_IMMEDIATE" in { |
| def i1imm : Operand<i1>; |
| def i8imm : Operand<i8>; |
| def i16imm : Operand<i16>; |
| def i32imm : Operand<i32>; |
| def i64imm : Operand<i64>; |
| |
| def f32imm : Operand<f32>; |
| def f64imm : Operand<f64>; |
| } |
| |
| /// zero_reg definition - Special node to stand for the zero register. |
| /// |
| def zero_reg; |
| |
| /// PredicateOperand - This can be used to define a predicate operand for an |
| /// instruction. OpTypes specifies the MIOperandInfo for the operand, and |
| /// AlwaysVal specifies the value of this predicate when set to "always |
| /// execute". |
| class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal> |
| : Operand<ty> { |
| let MIOperandInfo = OpTypes; |
| dag DefaultOps = AlwaysVal; |
| } |
| |
| /// OptionalDefOperand - This is used to define a optional definition operand |
| /// for an instruction. DefaultOps is the register the operand represents if |
| /// none is supplied, e.g. zero_reg. |
| class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops> |
| : Operand<ty> { |
| let MIOperandInfo = OpTypes; |
| dag DefaultOps = defaultops; |
| } |
| |
| |
| // InstrInfo - This class should only be instantiated once to provide parameters |
| // which are global to the target machine. |
| // |
| class InstrInfo { |
| // Target can specify its instructions in either big or little-endian formats. |
| // For instance, while both Sparc and PowerPC are big-endian platforms, the |
| // Sparc manual specifies its instructions in the format [31..0] (big), while |
| // PowerPC specifies them using the format [0..31] (little). |
| bit isLittleEndianEncoding = 0; |
| } |
| |
| // Standard Pseudo Instructions. |
| // This list must match TargetOpcodes.h and CodeGenTarget.cpp. |
| // Only these instructions are allowed in the TargetOpcode namespace. |
| let isCodeGenOnly = 1, isPseudo = 1, Namespace = "TargetOpcode" in { |
| def PHI : Instruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins variable_ops); |
| let AsmString = "PHINODE"; |
| } |
| def INLINEASM : Instruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins variable_ops); |
| let AsmString = ""; |
| let neverHasSideEffects = 1; // Note side effect is encoded in an operand. |
| } |
| def PROLOG_LABEL : Instruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins i32imm:$id); |
| let AsmString = ""; |
| let hasCtrlDep = 1; |
| let isNotDuplicable = 1; |
| } |
| def EH_LABEL : Instruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins i32imm:$id); |
| let AsmString = ""; |
| let hasCtrlDep = 1; |
| let isNotDuplicable = 1; |
| } |
| def GC_LABEL : Instruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins i32imm:$id); |
| let AsmString = ""; |
| let hasCtrlDep = 1; |
| let isNotDuplicable = 1; |
| } |
| def KILL : Instruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins variable_ops); |
| let AsmString = ""; |
| let neverHasSideEffects = 1; |
| } |
| def EXTRACT_SUBREG : Instruction { |
| let OutOperandList = (outs unknown:$dst); |
| let InOperandList = (ins unknown:$supersrc, i32imm:$subidx); |
| let AsmString = ""; |
| let neverHasSideEffects = 1; |
| } |
| def INSERT_SUBREG : Instruction { |
| let OutOperandList = (outs unknown:$dst); |
| let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx); |
| let AsmString = ""; |
| let neverHasSideEffects = 1; |
| let Constraints = "$supersrc = $dst"; |
| } |
| def IMPLICIT_DEF : Instruction { |
| let OutOperandList = (outs unknown:$dst); |
| let InOperandList = (ins); |
| let AsmString = ""; |
| let neverHasSideEffects = 1; |
| let isReMaterializable = 1; |
| let isAsCheapAsAMove = 1; |
| } |
| def SUBREG_TO_REG : Instruction { |
| let OutOperandList = (outs unknown:$dst); |
| let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx); |
| let AsmString = ""; |
| let neverHasSideEffects = 1; |
| } |
| def COPY_TO_REGCLASS : Instruction { |
| let OutOperandList = (outs unknown:$dst); |
| let InOperandList = (ins unknown:$src, i32imm:$regclass); |
| let AsmString = ""; |
| let neverHasSideEffects = 1; |
| let isAsCheapAsAMove = 1; |
| } |
| def DBG_VALUE : Instruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins variable_ops); |
| let AsmString = "DBG_VALUE"; |
| let neverHasSideEffects = 1; |
| } |
| def REG_SEQUENCE : Instruction { |
| let OutOperandList = (outs unknown:$dst); |
| let InOperandList = (ins variable_ops); |
| let AsmString = ""; |
| let neverHasSideEffects = 1; |
| let isAsCheapAsAMove = 1; |
| } |
| def COPY : Instruction { |
| let OutOperandList = (outs unknown:$dst); |
| let InOperandList = (ins unknown:$src); |
| let AsmString = ""; |
| let neverHasSideEffects = 1; |
| let isAsCheapAsAMove = 1; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AsmParser - This class can be implemented by targets that wish to implement |
| // .s file parsing. |
| // |
| // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel |
| // syntax on X86 for example). |
| // |
| class AsmParser { |
| // AsmParserClassName - This specifies the suffix to use for the asmparser |
| // class. Generated AsmParser classes are always prefixed with the target |
| // name. |
| string AsmParserClassName = "AsmParser"; |
| |
| // AsmParserInstCleanup - If non-empty, this is the name of a custom member |
| // function of the AsmParser class to call on every matched instruction. |
| // This can be used to perform target specific instruction post-processing. |
| string AsmParserInstCleanup = ""; |
| |
| // Variant - AsmParsers can be of multiple different variants. Variants are |
| // used to support targets that need to parser multiple formats for the |
| // assembly language. |
| int Variant = 0; |
| |
| // CommentDelimiter - If given, the delimiter string used to recognize |
| // comments which are hard coded in the .td assembler strings for individual |
| // instructions. |
| string CommentDelimiter = ""; |
| |
| // RegisterPrefix - If given, the token prefix which indicates a register |
| // token. This is used by the matcher to automatically recognize hard coded |
| // register tokens as constrained registers, instead of tokens, for the |
| // purposes of matching. |
| string RegisterPrefix = ""; |
| } |
| def DefaultAsmParser : AsmParser; |
| |
| /// AssemblerPredicate - This is a Predicate that can be used when the assembler |
| /// matches instructions and aliases. |
| class AssemblerPredicate<string cond> { |
| bit AssemblerMatcherPredicate = 1; |
| string AssemblerCondString = cond; |
| } |
| |
| |
| |
| /// MnemonicAlias - This class allows targets to define assembler mnemonic |
| /// aliases. This should be used when all forms of one mnemonic are accepted |
| /// with a different mnemonic. For example, X86 allows: |
| /// sal %al, 1 -> shl %al, 1 |
| /// sal %ax, %cl -> shl %ax, %cl |
| /// sal %eax, %cl -> shl %eax, %cl |
| /// etc. Though "sal" is accepted with many forms, all of them are directly |
| /// translated to a shl, so it can be handled with (in the case of X86, it |
| /// actually has one for each suffix as well): |
| /// def : MnemonicAlias<"sal", "shl">; |
| /// |
| /// Mnemonic aliases are mapped before any other translation in the match phase, |
| /// and do allow Requires predicates, e.g.: |
| /// |
| /// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>; |
| /// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>; |
| /// |
| class MnemonicAlias<string From, string To> { |
| string FromMnemonic = From; |
| string ToMnemonic = To; |
| |
| // Predicates - Predicates that must be true for this remapping to happen. |
| list<Predicate> Predicates = []; |
| } |
| |
| /// InstAlias - This defines an alternate assembly syntax that is allowed to |
| /// match an instruction that has a different (more canonical) assembly |
| /// representation. |
| class InstAlias<string Asm, dag Result, bit Emit = 0b1> { |
| string AsmString = Asm; // The .s format to match the instruction with. |
| dag ResultInst = Result; // The MCInst to generate. |
| bit EmitAlias = Emit; // Emit the alias instead of what's aliased. |
| |
| // Predicates - Predicates that must be true for this to match. |
| list<Predicate> Predicates = []; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AsmWriter - This class can be implemented by targets that need to customize |
| // the format of the .s file writer. |
| // |
| // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax |
| // on X86 for example). |
| // |
| class AsmWriter { |
| // AsmWriterClassName - This specifies the suffix to use for the asmwriter |
| // class. Generated AsmWriter classes are always prefixed with the target |
| // name. |
| string AsmWriterClassName = "AsmPrinter"; |
| |
| // Variant - AsmWriters can be of multiple different variants. Variants are |
| // used to support targets that need to emit assembly code in ways that are |
| // mostly the same for different targets, but have minor differences in |
| // syntax. If the asmstring contains {|} characters in them, this integer |
| // will specify which alternative to use. For example "{x|y|z}" with Variant |
| // == 1, will expand to "y". |
| int Variant = 0; |
| |
| |
| // FirstOperandColumn/OperandSpacing - If the assembler syntax uses a columnar |
| // layout, the asmwriter can actually generate output in this columns (in |
| // verbose-asm mode). These two values indicate the width of the first column |
| // (the "opcode" area) and the width to reserve for subsequent operands. When |
| // verbose asm mode is enabled, operands will be indented to respect this. |
| int FirstOperandColumn = -1; |
| |
| // OperandSpacing - Space between operand columns. |
| int OperandSpacing = -1; |
| |
| // isMCAsmWriter - Is this assembly writer for an MC emitter? This controls |
| // generation of the printInstruction() method. For MC printers, it takes |
| // an MCInstr* operand, otherwise it takes a MachineInstr*. |
| bit isMCAsmWriter = 0; |
| } |
| def DefaultAsmWriter : AsmWriter; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Target - This class contains the "global" target information |
| // |
| class Target { |
| // InstructionSet - Instruction set description for this target. |
| InstrInfo InstructionSet; |
| |
| // AssemblyParsers - The AsmParser instances available for this target. |
| list<AsmParser> AssemblyParsers = [DefaultAsmParser]; |
| |
| // AssemblyWriters - The AsmWriter instances available for this target. |
| list<AsmWriter> AssemblyWriters = [DefaultAsmWriter]; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SubtargetFeature - A characteristic of the chip set. |
| // |
| class SubtargetFeature<string n, string a, string v, string d, |
| list<SubtargetFeature> i = []> { |
| // Name - Feature name. Used by command line (-mattr=) to determine the |
| // appropriate target chip. |
| // |
| string Name = n; |
| |
| // Attribute - Attribute to be set by feature. |
| // |
| string Attribute = a; |
| |
| // Value - Value the attribute to be set to by feature. |
| // |
| string Value = v; |
| |
| // Desc - Feature description. Used by command line (-mattr=) to display help |
| // information. |
| // |
| string Desc = d; |
| |
| // Implies - Features that this feature implies are present. If one of those |
| // features isn't set, then this one shouldn't be set either. |
| // |
| list<SubtargetFeature> Implies = i; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Processor chip sets - These values represent each of the chip sets supported |
| // by the scheduler. Each Processor definition requires corresponding |
| // instruction itineraries. |
| // |
| class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> { |
| // Name - Chip set name. Used by command line (-mcpu=) to determine the |
| // appropriate target chip. |
| // |
| string Name = n; |
| |
| // ProcItin - The scheduling information for the target processor. |
| // |
| ProcessorItineraries ProcItin = pi; |
| |
| // Features - list of |
| list<SubtargetFeature> Features = f; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pull in the common support for calling conventions. |
| // |
| include "llvm/Target/TargetCallingConv.td" |
| |
| //===----------------------------------------------------------------------===// |
| // Pull in the common support for DAG isel generation. |
| // |
| include "llvm/Target/TargetSelectionDAG.td" |