blob: 47f37da304dc3c0f1a669a549a286258afcb3825 [file] [log] [blame]
// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "VkDescriptorSetLayout.hpp"
#include "VkDescriptorSet.hpp"
#include "VkSampler.hpp"
#include "VkImageView.hpp"
#include "VkBufferView.hpp"
#include "System/Types.hpp"
#include <algorithm>
#include <cstring>
namespace
{
static bool UsesImmutableSamplers(const VkDescriptorSetLayoutBinding& binding)
{
return (((binding.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) ||
(binding.descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)) &&
(binding.pImmutableSamplers != nullptr));
}
}
namespace vk
{
DescriptorSetLayout::DescriptorSetLayout(const VkDescriptorSetLayoutCreateInfo* pCreateInfo, void* mem) :
flags(pCreateInfo->flags), bindingCount(pCreateInfo->bindingCount), bindings(reinterpret_cast<VkDescriptorSetLayoutBinding*>(mem))
{
uint8_t* hostMemory = static_cast<uint8_t*>(mem) + bindingCount * sizeof(VkDescriptorSetLayoutBinding);
bindingOffsets = reinterpret_cast<size_t*>(hostMemory);
hostMemory += bindingCount * sizeof(size_t);
size_t offset = 0;
for(uint32_t i = 0; i < bindingCount; i++)
{
bindings[i] = pCreateInfo->pBindings[i];
if(UsesImmutableSamplers(bindings[i]))
{
size_t immutableSamplersSize = bindings[i].descriptorCount * sizeof(VkSampler);
bindings[i].pImmutableSamplers = reinterpret_cast<const VkSampler*>(hostMemory);
hostMemory += immutableSamplersSize;
memcpy(const_cast<VkSampler*>(bindings[i].pImmutableSamplers),
pCreateInfo->pBindings[i].pImmutableSamplers,
immutableSamplersSize);
}
else
{
bindings[i].pImmutableSamplers = nullptr;
}
bindingOffsets[i] = offset;
offset += bindings[i].descriptorCount * GetDescriptorSize(bindings[i].descriptorType);
}
}
void DescriptorSetLayout::destroy(const VkAllocationCallbacks* pAllocator)
{
vk::deallocate(bindings, pAllocator); // This allocation also contains pImmutableSamplers
}
size_t DescriptorSetLayout::ComputeRequiredAllocationSize(const VkDescriptorSetLayoutCreateInfo* pCreateInfo)
{
size_t allocationSize = pCreateInfo->bindingCount * (sizeof(VkDescriptorSetLayoutBinding) + sizeof(size_t));
for(uint32_t i = 0; i < pCreateInfo->bindingCount; i++)
{
if(UsesImmutableSamplers(pCreateInfo->pBindings[i]))
{
allocationSize += pCreateInfo->pBindings[i].descriptorCount * sizeof(VkSampler);
}
}
return allocationSize;
}
size_t DescriptorSetLayout::GetDescriptorSize(VkDescriptorType type)
{
switch(type)
{
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
return sizeof(SampledImageDescriptor);
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
return sizeof(StorageImageDescriptor);
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
return sizeof(VkDescriptorImageInfo);
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
return sizeof(VkBufferView);
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
return sizeof(VkDescriptorBufferInfo);
default:
UNIMPLEMENTED("Unsupported Descriptor Type");
}
return 0;
}
size_t DescriptorSetLayout::getDescriptorSetAllocationSize() const
{
// vk::DescriptorSet has a layout member field.
return sizeof(vk::DescriptorSetLayout*) + getDescriptorSetDataSize();
}
size_t DescriptorSetLayout::getDescriptorSetDataSize() const
{
size_t size = 0;
for(uint32_t i = 0; i < bindingCount; i++)
{
size += bindings[i].descriptorCount * GetDescriptorSize(bindings[i].descriptorType);
}
return size;
}
uint32_t DescriptorSetLayout::getBindingIndex(uint32_t binding) const
{
for(uint32_t i = 0; i < bindingCount; i++)
{
if(binding == bindings[i].binding)
{
return i;
}
}
DABORT("Invalid DescriptorSetLayout binding: %d", int(binding));
return 0;
}
void DescriptorSetLayout::initialize(VkDescriptorSet vkDescriptorSet)
{
// Use a pointer to this descriptor set layout as the descriptor set's header
DescriptorSet* descriptorSet = vk::Cast(vkDescriptorSet);
descriptorSet->layout = this;
uint8_t* mem = descriptorSet->data;
for(uint32_t i = 0; i < bindingCount; i++)
{
size_t typeSize = GetDescriptorSize(bindings[i].descriptorType);
if(UsesImmutableSamplers(bindings[i]))
{
for(uint32_t j = 0; j < bindings[i].descriptorCount; j++)
{
SampledImageDescriptor* imageSamplerDescriptor = reinterpret_cast<SampledImageDescriptor*>(mem);
imageSamplerDescriptor->updateSampler(vk::Cast(bindings[i].pImmutableSamplers[j]));
mem += typeSize;
}
}
else
{
mem += bindings[i].descriptorCount * typeSize;
}
}
}
size_t DescriptorSetLayout::getBindingCount() const
{
return bindingCount;
}
size_t DescriptorSetLayout::getBindingStride(uint32_t binding) const
{
uint32_t index = getBindingIndex(binding);
return GetDescriptorSize(bindings[index].descriptorType);
}
size_t DescriptorSetLayout::getBindingOffset(uint32_t binding, size_t arrayElement) const
{
uint32_t index = getBindingIndex(binding);
auto typeSize = GetDescriptorSize(bindings[index].descriptorType);
return bindingOffsets[index] + OFFSET(DescriptorSet, data[0]) + (typeSize * arrayElement);
}
bool DescriptorSetLayout::isDynamic(VkDescriptorType type)
{
return type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC;
}
bool DescriptorSetLayout::isBindingDynamic(uint32_t binding) const
{
uint32_t index = getBindingIndex(binding);
return isDynamic(bindings[index].descriptorType);
}
uint32_t DescriptorSetLayout::getDynamicDescriptorCount() const
{
uint32_t count = 0;
for (size_t i = 0; i < bindingCount; i++)
{
if (isDynamic(bindings[i].descriptorType))
{
count += bindings[i].descriptorCount;
}
}
return count;
}
uint32_t DescriptorSetLayout::getDynamicDescriptorOffset(uint32_t binding) const
{
uint32_t n = getBindingIndex(binding);
ASSERT(isDynamic(bindings[n].descriptorType));
uint32_t index = 0;
for (uint32_t i = 0; i < n; i++)
{
if (isDynamic(bindings[i].descriptorType))
{
index += bindings[i].descriptorCount;
}
}
return index;
}
VkDescriptorSetLayoutBinding const & DescriptorSetLayout::getBindingLayout(uint32_t binding) const
{
uint32_t index = getBindingIndex(binding);
return bindings[index];
}
uint8_t* DescriptorSetLayout::getOffsetPointer(DescriptorSet *descriptorSet, uint32_t binding, uint32_t arrayElement, uint32_t count, size_t* typeSize) const
{
uint32_t index = getBindingIndex(binding);
*typeSize = GetDescriptorSize(bindings[index].descriptorType);
size_t byteOffset = bindingOffsets[index] + (*typeSize * arrayElement);
ASSERT(((*typeSize * count) + byteOffset) <= getDescriptorSetDataSize()); // Make sure the operation will not go out of bounds
return &descriptorSet->data[byteOffset];
}
void SampledImageDescriptor::updateSampler(const vk::Sampler *sampler)
{
this->sampler = sampler;
texture.minLod = sw::clamp(sampler->minLod, 0.0f, (float)(sw::MAX_TEXTURE_LOD));
texture.maxLod = sw::clamp(sampler->maxLod, 0.0f, (float)(sw::MAX_TEXTURE_LOD));
}
void DescriptorSetLayout::WriteDescriptorSet(DescriptorSet *dstSet, VkDescriptorUpdateTemplateEntry const &entry, char const *src)
{
DescriptorSetLayout* dstLayout = dstSet->layout;
auto &binding = dstLayout->bindings[dstLayout->getBindingIndex(entry.dstBinding)];
ASSERT(dstLayout);
ASSERT(binding.descriptorType == entry.descriptorType);
size_t typeSize = 0;
uint8_t* memToWrite = dstLayout->getOffsetPointer(dstSet, entry.dstBinding, entry.dstArrayElement, entry.descriptorCount, &typeSize);
if(entry.descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
{
SampledImageDescriptor *imageSampler = reinterpret_cast<SampledImageDescriptor*>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkDescriptorImageInfo const *>(src + entry.offset + entry.stride * i);
vk::ImageView *imageView = vk::Cast(update->imageView);
sw::Texture *texture = &imageSampler[i].texture;
// "All consecutive bindings updated via a single VkWriteDescriptorSet structure, except those with a
// descriptorCount of zero, must all either use immutable samplers or must all not use immutable samplers."
if(!binding.pImmutableSamplers)
{
imageSampler[i].updateSampler(vk::Cast(update->sampler));
}
imageSampler[i].imageView = imageView;
auto &subresourceRange = imageView->getSubresourceRange();
int baseLevel = subresourceRange.baseMipLevel;
for(int mipmapLevel = 0; mipmapLevel < sw::MIPMAP_LEVELS; mipmapLevel++)
{
int level = mipmapLevel - baseLevel; // Level within the image view
level = sw::clamp(level, 0, (int)subresourceRange.levelCount - 1);
VkOffset3D offset = {0, 0, 0};
VkImageAspectFlagBits aspect = VK_IMAGE_ASPECT_COLOR_BIT;
void *buffer = imageView->getOffsetPointer(offset, aspect, level);
sw::Mipmap &mipmap = texture->mipmap[mipmapLevel];
mipmap.buffer[0] = buffer;
VkExtent3D extent = imageView->getMipLevelExtent(level);
Format format = imageView->getFormat();
int width = extent.width;
int height = extent.height;
int depth = extent.depth;
int pitchP = imageView->rowPitchBytes(aspect, level) / format.bytes();
int sliceP = imageView->slicePitchBytes(aspect, level) / format.bytes();
float exp2LOD = 1.0f;
if(mipmapLevel == 0)
{
texture->widthHeightLOD[0] = width * exp2LOD;
texture->widthHeightLOD[1] = width * exp2LOD;
texture->widthHeightLOD[2] = height * exp2LOD;
texture->widthHeightLOD[3] = height * exp2LOD;
texture->widthLOD[0] = width * exp2LOD;
texture->widthLOD[1] = width * exp2LOD;
texture->widthLOD[2] = width * exp2LOD;
texture->widthLOD[3] = width * exp2LOD;
texture->heightLOD[0] = height * exp2LOD;
texture->heightLOD[1] = height * exp2LOD;
texture->heightLOD[2] = height * exp2LOD;
texture->heightLOD[3] = height * exp2LOD;
texture->depthLOD[0] = depth * exp2LOD;
texture->depthLOD[1] = depth * exp2LOD;
texture->depthLOD[2] = depth * exp2LOD;
texture->depthLOD[3] = depth * exp2LOD;
}
if(format.isFloatFormat())
{
mipmap.fWidth[0] = (float)width / 65536.0f;
mipmap.fWidth[1] = (float)width / 65536.0f;
mipmap.fWidth[2] = (float)width / 65536.0f;
mipmap.fWidth[3] = (float)width / 65536.0f;
mipmap.fHeight[0] = (float)height / 65536.0f;
mipmap.fHeight[1] = (float)height / 65536.0f;
mipmap.fHeight[2] = (float)height / 65536.0f;
mipmap.fHeight[3] = (float)height / 65536.0f;
mipmap.fDepth[0] = (float)depth / 65536.0f;
mipmap.fDepth[1] = (float)depth / 65536.0f;
mipmap.fDepth[2] = (float)depth / 65536.0f;
mipmap.fDepth[3] = (float)depth / 65536.0f;
}
short halfTexelU = 0x8000 / width;
short halfTexelV = 0x8000 / height;
short halfTexelW = 0x8000 / depth;
mipmap.uHalf[0] = halfTexelU;
mipmap.uHalf[1] = halfTexelU;
mipmap.uHalf[2] = halfTexelU;
mipmap.uHalf[3] = halfTexelU;
mipmap.vHalf[0] = halfTexelV;
mipmap.vHalf[1] = halfTexelV;
mipmap.vHalf[2] = halfTexelV;
mipmap.vHalf[3] = halfTexelV;
mipmap.wHalf[0] = halfTexelW;
mipmap.wHalf[1] = halfTexelW;
mipmap.wHalf[2] = halfTexelW;
mipmap.wHalf[3] = halfTexelW;
mipmap.width[0] = width;
mipmap.width[1] = width;
mipmap.width[2] = width;
mipmap.width[3] = width;
mipmap.height[0] = height;
mipmap.height[1] = height;
mipmap.height[2] = height;
mipmap.height[3] = height;
mipmap.depth[0] = depth;
mipmap.depth[1] = depth;
mipmap.depth[2] = depth;
mipmap.depth[3] = depth;
mipmap.onePitchP[0] = 1;
mipmap.onePitchP[1] = pitchP;
mipmap.onePitchP[2] = 1;
mipmap.onePitchP[3] = pitchP;
mipmap.pitchP[0] = pitchP;
mipmap.pitchP[1] = pitchP;
mipmap.pitchP[2] = pitchP;
mipmap.pitchP[3] = pitchP;
mipmap.sliceP[0] = sliceP;
mipmap.sliceP[1] = sliceP;
mipmap.sliceP[2] = sliceP;
mipmap.sliceP[3] = sliceP;
// TODO(b/129523279)
if(false/*format == FORMAT_YV12_BT601 ||
format == FORMAT_YV12_BT709 ||
format == FORMAT_YV12_JFIF*/)
{
unsigned int YStride = pitchP;
unsigned int YSize = YStride * height;
unsigned int CStride = sw::align<16>(YStride / 2);
unsigned int CSize = CStride * height / 2;
mipmap.buffer[1] = (sw::byte*)mipmap.buffer[0] + YSize;
mipmap.buffer[2] = (sw::byte*)mipmap.buffer[1] + CSize;
texture->mipmap[1].width[0] = width / 2;
texture->mipmap[1].width[1] = width / 2;
texture->mipmap[1].width[2] = width / 2;
texture->mipmap[1].width[3] = width / 2;
texture->mipmap[1].height[0] = height / 2;
texture->mipmap[1].height[1] = height / 2;
texture->mipmap[1].height[2] = height / 2;
texture->mipmap[1].height[3] = height / 2;
texture->mipmap[1].onePitchP[0] = 1;
texture->mipmap[1].onePitchP[1] = CStride;
texture->mipmap[1].onePitchP[2] = 1;
texture->mipmap[1].onePitchP[3] = CStride;
}
}
}
}
else if (entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE ||
entry.descriptorType == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT)
{
auto descriptor = reinterpret_cast<StorageImageDescriptor *>(memToWrite);
for(uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkDescriptorImageInfo const *>(src + entry.offset + entry.stride * i);
auto imageView = Cast(update->imageView);
descriptor[i].ptr = imageView->getOffsetPointer({0, 0, 0}, VK_IMAGE_ASPECT_COLOR_BIT, 0);
descriptor[i].extent = imageView->getMipLevelExtent(0);
descriptor[i].rowPitchBytes = imageView->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
descriptor[i].slicePitchBytes = imageView->getSubresourceRange().layerCount > 1
? imageView->layerPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT)
: imageView->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
descriptor[i].arrayLayers = imageView->getSubresourceRange().layerCount;
descriptor[i].sizeInBytes = imageView->getImageSizeInBytes();
}
}
else if (entry.descriptorType == VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER)
{
auto descriptor = reinterpret_cast<StorageImageDescriptor *>(memToWrite);
for (uint32_t i = 0; i < entry.descriptorCount; i++)
{
auto update = reinterpret_cast<VkBufferView const *>(src + entry.offset + entry.stride * i);
auto bufferView = Cast(*update);
descriptor[i].ptr = bufferView->getPointer();
descriptor[i].extent = {bufferView->getElementCount(), 1, 1};
descriptor[i].rowPitchBytes = 0;
descriptor[i].slicePitchBytes = 0;
descriptor[i].arrayLayers = 1;
descriptor[i].sizeInBytes = bufferView->getRangeInBytes();
}
}
else
{
// If the dstBinding has fewer than descriptorCount array elements remaining
// starting from dstArrayElement, then the remainder will be used to update
// the subsequent binding - dstBinding+1 starting at array element zero. If
// a binding has a descriptorCount of zero, it is skipped. This behavior
// applies recursively, with the update affecting consecutive bindings as
// needed to update all descriptorCount descriptors.
for (auto i = 0u; i < entry.descriptorCount; i++)
memcpy(memToWrite + typeSize * i, src + entry.offset + entry.stride * i, typeSize);
}
}
void DescriptorSetLayout::WriteDescriptorSet(const VkWriteDescriptorSet& writeDescriptorSet)
{
DescriptorSet* dstSet = vk::Cast(writeDescriptorSet.dstSet);
VkDescriptorUpdateTemplateEntry e;
e.descriptorType = writeDescriptorSet.descriptorType;
e.dstBinding = writeDescriptorSet.dstBinding;
e.dstArrayElement = writeDescriptorSet.dstArrayElement;
e.descriptorCount = writeDescriptorSet.descriptorCount;
e.offset = 0;
void const *ptr = nullptr;
switch (writeDescriptorSet.descriptorType)
{
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
ptr = writeDescriptorSet.pTexelBufferView;
e.stride = sizeof(*VkWriteDescriptorSet::pTexelBufferView);
break;
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
ptr = writeDescriptorSet.pImageInfo;
e.stride = sizeof(VkDescriptorImageInfo);
break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
ptr = writeDescriptorSet.pBufferInfo;
e.stride = sizeof(VkDescriptorBufferInfo);
break;
default:
UNIMPLEMENTED("descriptor type %u", writeDescriptorSet.descriptorType);
}
WriteDescriptorSet(dstSet, e, reinterpret_cast<char const *>(ptr));
}
void DescriptorSetLayout::CopyDescriptorSet(const VkCopyDescriptorSet& descriptorCopies)
{
DescriptorSet* srcSet = vk::Cast(descriptorCopies.srcSet);
DescriptorSetLayout* srcLayout = srcSet->layout;
ASSERT(srcLayout);
DescriptorSet* dstSet = vk::Cast(descriptorCopies.dstSet);
DescriptorSetLayout* dstLayout = dstSet->layout;
ASSERT(dstLayout);
size_t srcTypeSize = 0;
uint8_t* memToRead = srcLayout->getOffsetPointer(srcSet, descriptorCopies.srcBinding, descriptorCopies.srcArrayElement, descriptorCopies.descriptorCount, &srcTypeSize);
size_t dstTypeSize = 0;
uint8_t* memToWrite = dstLayout->getOffsetPointer(dstSet, descriptorCopies.dstBinding, descriptorCopies.dstArrayElement, descriptorCopies.descriptorCount, &dstTypeSize);
ASSERT(srcTypeSize == dstTypeSize);
size_t writeSize = dstTypeSize * descriptorCopies.descriptorCount;
memcpy(memToWrite, memToRead, writeSize);
}
} // namespace vk