| //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements some loop unrolling utilities. It does not define any |
| // actual pass or policy, but provides a single function to perform loop |
| // unrolling. |
| // |
| // The process of unrolling can produce extraneous basic blocks linked with |
| // unconditional branches. This will be corrected in the future. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "loop-unroll" |
| #include "llvm/Transforms/Utils/UnrollLoop.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h" |
| using namespace llvm; |
| |
| // TODO: Should these be here or in LoopUnroll? |
| STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); |
| STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); |
| |
| /// RemapInstruction - Convert the instruction operands from referencing the |
| /// current values into those specified by VMap. |
| static inline void RemapInstruction(Instruction *I, |
| ValueToValueMapTy &VMap) { |
| for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { |
| Value *Op = I->getOperand(op); |
| ValueToValueMapTy::iterator It = VMap.find(Op); |
| if (It != VMap.end()) |
| I->setOperand(op, It->second); |
| } |
| |
| if (PHINode *PN = dyn_cast<PHINode>(I)) { |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); |
| if (It != VMap.end()) |
| PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); |
| } |
| } |
| } |
| |
| /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it |
| /// only has one predecessor, and that predecessor only has one successor. |
| /// The LoopInfo Analysis that is passed will be kept consistent. |
| /// Returns the new combined block. |
| static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, |
| LPPassManager *LPM) { |
| // Merge basic blocks into their predecessor if there is only one distinct |
| // pred, and if there is only one distinct successor of the predecessor, and |
| // if there are no PHI nodes. |
| BasicBlock *OnlyPred = BB->getSinglePredecessor(); |
| if (!OnlyPred) return 0; |
| |
| if (OnlyPred->getTerminator()->getNumSuccessors() != 1) |
| return 0; |
| |
| DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); |
| |
| // Resolve any PHI nodes at the start of the block. They are all |
| // guaranteed to have exactly one entry if they exist, unless there are |
| // multiple duplicate (but guaranteed to be equal) entries for the |
| // incoming edges. This occurs when there are multiple edges from |
| // OnlyPred to OnlySucc. |
| FoldSingleEntryPHINodes(BB); |
| |
| // Delete the unconditional branch from the predecessor... |
| OnlyPred->getInstList().pop_back(); |
| |
| // Make all PHI nodes that referred to BB now refer to Pred as their |
| // source... |
| BB->replaceAllUsesWith(OnlyPred); |
| |
| // Move all definitions in the successor to the predecessor... |
| OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); |
| |
| std::string OldName = BB->getName(); |
| |
| // Erase basic block from the function... |
| |
| // ScalarEvolution holds references to loop exit blocks. |
| if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) { |
| if (Loop *L = LI->getLoopFor(BB)) |
| SE->forgetLoop(L); |
| } |
| LI->removeBlock(BB); |
| BB->eraseFromParent(); |
| |
| // Inherit predecessor's name if it exists... |
| if (!OldName.empty() && !OnlyPred->hasName()) |
| OnlyPred->setName(OldName); |
| |
| return OnlyPred; |
| } |
| |
| /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true |
| /// if unrolling was successful, or false if the loop was unmodified. Unrolling |
| /// can only fail when the loop's latch block is not terminated by a conditional |
| /// branch instruction. However, if the trip count (and multiple) are not known, |
| /// loop unrolling will mostly produce more code that is no faster. |
| /// |
| /// TripCount is generally defined as the number of times the loop header |
| /// executes. UnrollLoop relaxes the definition to permit early exits: here |
| /// TripCount is the iteration on which control exits LatchBlock if no early |
| /// exits were taken. Note that UnrollLoop assumes that the loop counter test |
| /// terminates LatchBlock in order to remove unnecesssary instances of the |
| /// test. In other words, control may exit the loop prior to TripCount |
| /// iterations via an early branch, but control may not exit the loop from the |
| /// LatchBlock's terminator prior to TripCount iterations. |
| /// |
| /// Similarly, TripMultiple divides the number of times that the LatchBlock may |
| /// execute without exiting the loop. |
| /// |
| /// The LoopInfo Analysis that is passed will be kept consistent. |
| /// |
| /// If a LoopPassManager is passed in, and the loop is fully removed, it will be |
| /// removed from the LoopPassManager as well. LPM can also be NULL. |
| /// |
| /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are |
| /// available it must also preserve those analyses. |
| bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, |
| unsigned TripMultiple, LoopInfo *LI, LPPassManager *LPM) { |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| if (!Preheader) { |
| DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); |
| return false; |
| } |
| |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| if (!LatchBlock) { |
| DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); |
| return false; |
| } |
| |
| BasicBlock *Header = L->getHeader(); |
| BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); |
| |
| if (!BI || BI->isUnconditional()) { |
| // The loop-rotate pass can be helpful to avoid this in many cases. |
| DEBUG(dbgs() << |
| " Can't unroll; loop not terminated by a conditional branch.\n"); |
| return false; |
| } |
| |
| if (Header->hasAddressTaken()) { |
| // The loop-rotate pass can be helpful to avoid this in many cases. |
| DEBUG(dbgs() << |
| " Won't unroll loop: address of header block is taken.\n"); |
| return false; |
| } |
| |
| // Notify ScalarEvolution that the loop will be substantially changed, |
| // if not outright eliminated. |
| ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>(); |
| if (SE) |
| SE->forgetLoop(L); |
| |
| if (TripCount != 0) |
| DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); |
| if (TripMultiple != 1) |
| DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); |
| |
| // Effectively "DCE" unrolled iterations that are beyond the tripcount |
| // and will never be executed. |
| if (TripCount != 0 && Count > TripCount) |
| Count = TripCount; |
| |
| assert(Count > 0); |
| assert(TripMultiple > 0); |
| assert(TripCount == 0 || TripCount % TripMultiple == 0); |
| |
| // Are we eliminating the loop control altogether? |
| bool CompletelyUnroll = Count == TripCount; |
| |
| // If we know the trip count, we know the multiple... |
| unsigned BreakoutTrip = 0; |
| if (TripCount != 0) { |
| BreakoutTrip = TripCount % Count; |
| TripMultiple = 0; |
| } else { |
| // Figure out what multiple to use. |
| BreakoutTrip = TripMultiple = |
| (unsigned)GreatestCommonDivisor64(Count, TripMultiple); |
| } |
| |
| if (CompletelyUnroll) { |
| DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() |
| << " with trip count " << TripCount << "!\n"); |
| } else { |
| DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() |
| << " by " << Count); |
| if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { |
| DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); |
| } else if (TripMultiple != 1) { |
| DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); |
| } |
| DEBUG(dbgs() << "!\n"); |
| } |
| |
| std::vector<BasicBlock*> LoopBlocks = L->getBlocks(); |
| |
| bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); |
| BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); |
| |
| // For the first iteration of the loop, we should use the precloned values for |
| // PHI nodes. Insert associations now. |
| ValueToValueMapTy LastValueMap; |
| std::vector<PHINode*> OrigPHINode; |
| for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| OrigPHINode.push_back(cast<PHINode>(I)); |
| } |
| |
| std::vector<BasicBlock*> Headers; |
| std::vector<BasicBlock*> Latches; |
| Headers.push_back(Header); |
| Latches.push_back(LatchBlock); |
| |
| // The current on-the-fly SSA update requires blocks to be processed in |
| // reverse postorder so that LastValueMap contains the correct value at each |
| // exit. |
| LoopBlocksDFS DFS(L); |
| DFS.perform(LI); |
| |
| // Stash the DFS iterators before adding blocks to the loop. |
| LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); |
| LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); |
| |
| for (unsigned It = 1; It != Count; ++It) { |
| std::vector<BasicBlock*> NewBlocks; |
| |
| for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
| ValueToValueMapTy VMap; |
| BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); |
| Header->getParent()->getBasicBlockList().push_back(New); |
| |
| // Loop over all of the PHI nodes in the block, changing them to use the |
| // incoming values from the previous block. |
| if (*BB == Header) |
| for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { |
| PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); |
| Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); |
| if (Instruction *InValI = dyn_cast<Instruction>(InVal)) |
| if (It > 1 && L->contains(InValI)) |
| InVal = LastValueMap[InValI]; |
| VMap[OrigPHINode[i]] = InVal; |
| New->getInstList().erase(NewPHI); |
| } |
| |
| // Update our running map of newest clones |
| LastValueMap[*BB] = New; |
| for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); |
| VI != VE; ++VI) |
| LastValueMap[VI->first] = VI->second; |
| |
| L->addBasicBlockToLoop(New, LI->getBase()); |
| |
| // Add phi entries for newly created values to all exit blocks. |
| for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); |
| SI != SE; ++SI) { |
| if (L->contains(*SI)) |
| continue; |
| for (BasicBlock::iterator BBI = (*SI)->begin(); |
| PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { |
| Value *Incoming = phi->getIncomingValueForBlock(*BB); |
| ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); |
| if (It != LastValueMap.end()) |
| Incoming = It->second; |
| phi->addIncoming(Incoming, New); |
| } |
| } |
| // Keep track of new headers and latches as we create them, so that |
| // we can insert the proper branches later. |
| if (*BB == Header) |
| Headers.push_back(New); |
| if (*BB == LatchBlock) |
| Latches.push_back(New); |
| |
| NewBlocks.push_back(New); |
| } |
| |
| // Remap all instructions in the most recent iteration |
| for (unsigned i = 0; i < NewBlocks.size(); ++i) |
| for (BasicBlock::iterator I = NewBlocks[i]->begin(), |
| E = NewBlocks[i]->end(); I != E; ++I) |
| ::RemapInstruction(I, LastValueMap); |
| } |
| |
| // Loop over the PHI nodes in the original block, setting incoming values. |
| for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { |
| PHINode *PN = OrigPHINode[i]; |
| if (CompletelyUnroll) { |
| PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); |
| Header->getInstList().erase(PN); |
| } |
| else if (Count > 1) { |
| Value *InVal = PN->removeIncomingValue(LatchBlock, false); |
| // If this value was defined in the loop, take the value defined by the |
| // last iteration of the loop. |
| if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { |
| if (L->contains(InValI)) |
| InVal = LastValueMap[InVal]; |
| } |
| assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); |
| PN->addIncoming(InVal, Latches.back()); |
| } |
| } |
| |
| // Now that all the basic blocks for the unrolled iterations are in place, |
| // set up the branches to connect them. |
| for (unsigned i = 0, e = Latches.size(); i != e; ++i) { |
| // The original branch was replicated in each unrolled iteration. |
| BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); |
| |
| // The branch destination. |
| unsigned j = (i + 1) % e; |
| BasicBlock *Dest = Headers[j]; |
| bool NeedConditional = true; |
| |
| // For a complete unroll, make the last iteration end with a branch |
| // to the exit block. |
| if (CompletelyUnroll && j == 0) { |
| Dest = LoopExit; |
| NeedConditional = false; |
| } |
| |
| // If we know the trip count or a multiple of it, we can safely use an |
| // unconditional branch for some iterations. |
| if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { |
| NeedConditional = false; |
| } |
| |
| if (NeedConditional) { |
| // Update the conditional branch's successor for the following |
| // iteration. |
| Term->setSuccessor(!ContinueOnTrue, Dest); |
| } else { |
| // Remove phi operands at this loop exit |
| if (Dest != LoopExit) { |
| BasicBlock *BB = Latches[i]; |
| for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); |
| SI != SE; ++SI) { |
| if (*SI == Headers[i]) |
| continue; |
| for (BasicBlock::iterator BBI = (*SI)->begin(); |
| PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { |
| Phi->removeIncomingValue(BB, false); |
| } |
| } |
| } |
| // Replace the conditional branch with an unconditional one. |
| BranchInst::Create(Dest, Term); |
| Term->eraseFromParent(); |
| } |
| } |
| |
| // Merge adjacent basic blocks, if possible. |
| for (unsigned i = 0, e = Latches.size(); i != e; ++i) { |
| BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); |
| if (Term->isUnconditional()) { |
| BasicBlock *Dest = Term->getSuccessor(0); |
| if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM)) |
| std::replace(Latches.begin(), Latches.end(), Dest, Fold); |
| } |
| } |
| |
| // FIXME: Reconstruct dom info, because it is not preserved properly. |
| // Incrementally updating domtree after loop unrolling would be easy. |
| if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>()) |
| DT->runOnFunction(*L->getHeader()->getParent()); |
| |
| // Simplify any new induction variables in the partially unrolled loop. |
| if (SE && !CompletelyUnroll) { |
| SmallVector<WeakVH, 16> DeadInsts; |
| simplifyLoopIVs(L, SE, LPM, DeadInsts); |
| |
| // Aggressively clean up dead instructions that simplifyLoopIVs already |
| // identified. Any remaining should be cleaned up below. |
| while (!DeadInsts.empty()) |
| if (Instruction *Inst = |
| dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) |
| RecursivelyDeleteTriviallyDeadInstructions(Inst); |
| } |
| |
| // At this point, the code is well formed. We now do a quick sweep over the |
| // inserted code, doing constant propagation and dead code elimination as we |
| // go. |
| const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); |
| for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), |
| BBE = NewLoopBlocks.end(); BB != BBE; ++BB) |
| for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { |
| Instruction *Inst = I++; |
| |
| if (isInstructionTriviallyDead(Inst)) |
| (*BB)->getInstList().erase(Inst); |
| else if (Value *V = SimplifyInstruction(Inst)) |
| if (LI->replacementPreservesLCSSAForm(Inst, V)) { |
| Inst->replaceAllUsesWith(V); |
| (*BB)->getInstList().erase(Inst); |
| } |
| } |
| |
| NumCompletelyUnrolled += CompletelyUnroll; |
| ++NumUnrolled; |
| // Remove the loop from the LoopPassManager if it's completely removed. |
| if (CompletelyUnroll && LPM != NULL) |
| LPM->deleteLoopFromQueue(L); |
| |
| return true; |
| } |