| //===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This header contains common, non-processor-specific data structures and | 
 | // constants for the ELF file format. | 
 | // | 
 | // The details of the ELF32 bits in this file are largely based on the Tool | 
 | // Interface Standard (TIS) Executable and Linking Format (ELF) Specification | 
 | // Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format | 
 | // Version 1.5, Draft 2, May 1998 as well as OpenBSD header files. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef LLVM_SUPPORT_ELF_H | 
 | #define LLVM_SUPPORT_ELF_H | 
 |  | 
 | #include "llvm/Support/DataTypes.h" | 
 | #include <cstring> | 
 |  | 
 | namespace llvm { | 
 |  | 
 | namespace ELF { | 
 |  | 
 | typedef uint32_t Elf32_Addr; // Program address | 
 | typedef uint32_t Elf32_Off;  // File offset | 
 | typedef uint16_t Elf32_Half; | 
 | typedef uint32_t Elf32_Word; | 
 | typedef int32_t  Elf32_Sword; | 
 |  | 
 | typedef uint64_t Elf64_Addr; | 
 | typedef uint64_t Elf64_Off; | 
 | typedef uint16_t Elf64_Half; | 
 | typedef uint32_t Elf64_Word; | 
 | typedef int32_t  Elf64_Sword; | 
 | typedef uint64_t Elf64_Xword; | 
 | typedef int64_t  Elf64_Sxword; | 
 |  | 
 | // Object file magic string. | 
 | static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' }; | 
 |  | 
 | // e_ident size and indices. | 
 | enum { | 
 |   EI_MAG0       = 0,          // File identification index. | 
 |   EI_MAG1       = 1,          // File identification index. | 
 |   EI_MAG2       = 2,          // File identification index. | 
 |   EI_MAG3       = 3,          // File identification index. | 
 |   EI_CLASS      = 4,          // File class. | 
 |   EI_DATA       = 5,          // Data encoding. | 
 |   EI_VERSION    = 6,          // File version. | 
 |   EI_OSABI      = 7,          // OS/ABI identification. | 
 |   EI_ABIVERSION = 8,          // ABI version. | 
 |   EI_PAD        = 9,          // Start of padding bytes. | 
 |   EI_NIDENT     = 16          // Number of bytes in e_ident. | 
 | }; | 
 |  | 
 | struct Elf32_Ehdr { | 
 |   unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes | 
 |   Elf32_Half    e_type;      // Type of file (see ET_* below) | 
 |   Elf32_Half    e_machine;   // Required architecture for this file (see EM_*) | 
 |   Elf32_Word    e_version;   // Must be equal to 1 | 
 |   Elf32_Addr    e_entry;     // Address to jump to in order to start program | 
 |   Elf32_Off     e_phoff;     // Program header table's file offset, in bytes | 
 |   Elf32_Off     e_shoff;     // Section header table's file offset, in bytes | 
 |   Elf32_Word    e_flags;     // Processor-specific flags | 
 |   Elf32_Half    e_ehsize;    // Size of ELF header, in bytes | 
 |   Elf32_Half    e_phentsize; // Size of an entry in the program header table | 
 |   Elf32_Half    e_phnum;     // Number of entries in the program header table | 
 |   Elf32_Half    e_shentsize; // Size of an entry in the section header table | 
 |   Elf32_Half    e_shnum;     // Number of entries in the section header table | 
 |   Elf32_Half    e_shstrndx;  // Sect hdr table index of sect name string table | 
 |   bool checkMagic() const { | 
 |     return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; | 
 |   } | 
 |   unsigned char getFileClass() const { return e_ident[EI_CLASS]; } | 
 |   unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } | 
 | }; | 
 |  | 
 | // 64-bit ELF header. Fields are the same as for ELF32, but with different | 
 | // types (see above). | 
 | struct Elf64_Ehdr { | 
 |   unsigned char e_ident[EI_NIDENT]; | 
 |   Elf64_Half    e_type; | 
 |   Elf64_Half    e_machine; | 
 |   Elf64_Word    e_version; | 
 |   Elf64_Addr    e_entry; | 
 |   Elf64_Off     e_phoff; | 
 |   Elf64_Off     e_shoff; | 
 |   Elf64_Word    e_flags; | 
 |   Elf64_Half    e_ehsize; | 
 |   Elf64_Half    e_phentsize; | 
 |   Elf64_Half    e_phnum; | 
 |   Elf64_Half    e_shentsize; | 
 |   Elf64_Half    e_shnum; | 
 |   Elf64_Half    e_shstrndx; | 
 |   bool checkMagic() const { | 
 |     return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; | 
 |   } | 
 |   unsigned char getFileClass() const { return e_ident[EI_CLASS]; } | 
 |   unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } | 
 | }; | 
 |  | 
 | // File types | 
 | enum { | 
 |   ET_NONE   = 0,      // No file type | 
 |   ET_REL    = 1,      // Relocatable file | 
 |   ET_EXEC   = 2,      // Executable file | 
 |   ET_DYN    = 3,      // Shared object file | 
 |   ET_CORE   = 4,      // Core file | 
 |   ET_LOPROC = 0xff00, // Beginning of processor-specific codes | 
 |   ET_HIPROC = 0xffff  // Processor-specific | 
 | }; | 
 |  | 
 | // Versioning | 
 | enum { | 
 |   EV_NONE = 0, | 
 |   EV_CURRENT = 1 | 
 | }; | 
 |  | 
 | // Machine architectures | 
 | enum { | 
 |   EM_NONE          = 0, // No machine | 
 |   EM_M32           = 1, // AT&T WE 32100 | 
 |   EM_SPARC         = 2, // SPARC | 
 |   EM_386           = 3, // Intel 386 | 
 |   EM_68K           = 4, // Motorola 68000 | 
 |   EM_88K           = 5, // Motorola 88000 | 
 |   EM_486           = 6, // Intel 486 (deprecated) | 
 |   EM_860           = 7, // Intel 80860 | 
 |   EM_MIPS          = 8, // MIPS R3000 | 
 |   EM_S370          = 9, // IBM System/370 | 
 |   EM_MIPS_RS3_LE   = 10, // MIPS RS3000 Little-endian | 
 |   EM_PARISC        = 15, // Hewlett-Packard PA-RISC | 
 |   EM_VPP500        = 17, // Fujitsu VPP500 | 
 |   EM_SPARC32PLUS   = 18, // Enhanced instruction set SPARC | 
 |   EM_960           = 19, // Intel 80960 | 
 |   EM_PPC           = 20, // PowerPC | 
 |   EM_PPC64         = 21, // PowerPC64 | 
 |   EM_S390          = 22, // IBM System/390 | 
 |   EM_SPU           = 23, // IBM SPU/SPC | 
 |   EM_V800          = 36, // NEC V800 | 
 |   EM_FR20          = 37, // Fujitsu FR20 | 
 |   EM_RH32          = 38, // TRW RH-32 | 
 |   EM_RCE           = 39, // Motorola RCE | 
 |   EM_ARM           = 40, // ARM | 
 |   EM_ALPHA         = 41, // DEC Alpha | 
 |   EM_SH            = 42, // Hitachi SH | 
 |   EM_SPARCV9       = 43, // SPARC V9 | 
 |   EM_TRICORE       = 44, // Siemens TriCore | 
 |   EM_ARC           = 45, // Argonaut RISC Core | 
 |   EM_H8_300        = 46, // Hitachi H8/300 | 
 |   EM_H8_300H       = 47, // Hitachi H8/300H | 
 |   EM_H8S           = 48, // Hitachi H8S | 
 |   EM_H8_500        = 49, // Hitachi H8/500 | 
 |   EM_IA_64         = 50, // Intel IA-64 processor architecture | 
 |   EM_MIPS_X        = 51, // Stanford MIPS-X | 
 |   EM_COLDFIRE      = 52, // Motorola ColdFire | 
 |   EM_68HC12        = 53, // Motorola M68HC12 | 
 |   EM_MMA           = 54, // Fujitsu MMA Multimedia Accelerator | 
 |   EM_PCP           = 55, // Siemens PCP | 
 |   EM_NCPU          = 56, // Sony nCPU embedded RISC processor | 
 |   EM_NDR1          = 57, // Denso NDR1 microprocessor | 
 |   EM_STARCORE      = 58, // Motorola Star*Core processor | 
 |   EM_ME16          = 59, // Toyota ME16 processor | 
 |   EM_ST100         = 60, // STMicroelectronics ST100 processor | 
 |   EM_TINYJ         = 61, // Advanced Logic Corp. TinyJ embedded processor family | 
 |   EM_X86_64        = 62, // AMD x86-64 architecture | 
 |   EM_PDSP          = 63, // Sony DSP Processor | 
 |   EM_PDP10         = 64, // Digital Equipment Corp. PDP-10 | 
 |   EM_PDP11         = 65, // Digital Equipment Corp. PDP-11 | 
 |   EM_FX66          = 66, // Siemens FX66 microcontroller | 
 |   EM_ST9PLUS       = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller | 
 |   EM_ST7           = 68, // STMicroelectronics ST7 8-bit microcontroller | 
 |   EM_68HC16        = 69, // Motorola MC68HC16 Microcontroller | 
 |   EM_68HC11        = 70, // Motorola MC68HC11 Microcontroller | 
 |   EM_68HC08        = 71, // Motorola MC68HC08 Microcontroller | 
 |   EM_68HC05        = 72, // Motorola MC68HC05 Microcontroller | 
 |   EM_SVX           = 73, // Silicon Graphics SVx | 
 |   EM_ST19          = 74, // STMicroelectronics ST19 8-bit microcontroller | 
 |   EM_VAX           = 75, // Digital VAX | 
 |   EM_CRIS          = 76, // Axis Communications 32-bit embedded processor | 
 |   EM_JAVELIN       = 77, // Infineon Technologies 32-bit embedded processor | 
 |   EM_FIREPATH      = 78, // Element 14 64-bit DSP Processor | 
 |   EM_ZSP           = 79, // LSI Logic 16-bit DSP Processor | 
 |   EM_MMIX          = 80, // Donald Knuth's educational 64-bit processor | 
 |   EM_HUANY         = 81, // Harvard University machine-independent object files | 
 |   EM_PRISM         = 82, // SiTera Prism | 
 |   EM_AVR           = 83, // Atmel AVR 8-bit microcontroller | 
 |   EM_FR30          = 84, // Fujitsu FR30 | 
 |   EM_D10V          = 85, // Mitsubishi D10V | 
 |   EM_D30V          = 86, // Mitsubishi D30V | 
 |   EM_V850          = 87, // NEC v850 | 
 |   EM_M32R          = 88, // Mitsubishi M32R | 
 |   EM_MN10300       = 89, // Matsushita MN10300 | 
 |   EM_MN10200       = 90, // Matsushita MN10200 | 
 |   EM_PJ            = 91, // picoJava | 
 |   EM_OPENRISC      = 92, // OpenRISC 32-bit embedded processor | 
 |   EM_ARC_COMPACT   = 93, // ARC International ARCompact processor (old | 
 |                          // spelling/synonym: EM_ARC_A5) | 
 |   EM_XTENSA        = 94, // Tensilica Xtensa Architecture | 
 |   EM_VIDEOCORE     = 95, // Alphamosaic VideoCore processor | 
 |   EM_TMM_GPP       = 96, // Thompson Multimedia General Purpose Processor | 
 |   EM_NS32K         = 97, // National Semiconductor 32000 series | 
 |   EM_TPC           = 98, // Tenor Network TPC processor | 
 |   EM_SNP1K         = 99, // Trebia SNP 1000 processor | 
 |   EM_ST200         = 100, // STMicroelectronics (www.st.com) ST200 | 
 |   EM_IP2K          = 101, // Ubicom IP2xxx microcontroller family | 
 |   EM_MAX           = 102, // MAX Processor | 
 |   EM_CR            = 103, // National Semiconductor CompactRISC microprocessor | 
 |   EM_F2MC16        = 104, // Fujitsu F2MC16 | 
 |   EM_MSP430        = 105, // Texas Instruments embedded microcontroller msp430 | 
 |   EM_BLACKFIN      = 106, // Analog Devices Blackfin (DSP) processor | 
 |   EM_SE_C33        = 107, // S1C33 Family of Seiko Epson processors | 
 |   EM_SEP           = 108, // Sharp embedded microprocessor | 
 |   EM_ARCA          = 109, // Arca RISC Microprocessor | 
 |   EM_UNICORE       = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC | 
 |                           // of Peking University | 
 |   EM_EXCESS        = 111, // eXcess: 16/32/64-bit configurable embedded CPU | 
 |   EM_DXP           = 112, // Icera Semiconductor Inc. Deep Execution Processor | 
 |   EM_ALTERA_NIOS2  = 113, // Altera Nios II soft-core processor | 
 |   EM_CRX           = 114, // National Semiconductor CompactRISC CRX | 
 |   EM_XGATE         = 115, // Motorola XGATE embedded processor | 
 |   EM_C166          = 116, // Infineon C16x/XC16x processor | 
 |   EM_M16C          = 117, // Renesas M16C series microprocessors | 
 |   EM_DSPIC30F      = 118, // Microchip Technology dsPIC30F Digital Signal | 
 |                           // Controller | 
 |   EM_CE            = 119, // Freescale Communication Engine RISC core | 
 |   EM_M32C          = 120, // Renesas M32C series microprocessors | 
 |   EM_TSK3000       = 131, // Altium TSK3000 core | 
 |   EM_RS08          = 132, // Freescale RS08 embedded processor | 
 |   EM_SHARC         = 133, // Analog Devices SHARC family of 32-bit DSP | 
 |                           // processors | 
 |   EM_ECOG2         = 134, // Cyan Technology eCOG2 microprocessor | 
 |   EM_SCORE7        = 135, // Sunplus S+core7 RISC processor | 
 |   EM_DSP24         = 136, // New Japan Radio (NJR) 24-bit DSP Processor | 
 |   EM_VIDEOCORE3    = 137, // Broadcom VideoCore III processor | 
 |   EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture | 
 |   EM_SE_C17        = 139, // Seiko Epson C17 family | 
 |   EM_TI_C6000      = 140, // The Texas Instruments TMS320C6000 DSP family | 
 |   EM_TI_C2000      = 141, // The Texas Instruments TMS320C2000 DSP family | 
 |   EM_TI_C5500      = 142, // The Texas Instruments TMS320C55x DSP family | 
 |   EM_MMDSP_PLUS    = 160, // STMicroelectronics 64bit VLIW Data Signal Processor | 
 |   EM_CYPRESS_M8C   = 161, // Cypress M8C microprocessor | 
 |   EM_R32C          = 162, // Renesas R32C series microprocessors | 
 |   EM_TRIMEDIA      = 163, // NXP Semiconductors TriMedia architecture family | 
 |   EM_QDSP6         = 164, // QUALCOMM DSP6 Processor | 
 |   EM_8051          = 165, // Intel 8051 and variants | 
 |   EM_STXP7X        = 166, // STMicroelectronics STxP7x family of configurable | 
 |                           // and extensible RISC processors | 
 |   EM_NDS32         = 167, // Andes Technology compact code size embedded RISC | 
 |                           // processor family | 
 |   EM_ECOG1         = 168, // Cyan Technology eCOG1X family | 
 |   EM_ECOG1X        = 168, // Cyan Technology eCOG1X family | 
 |   EM_MAXQ30        = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers | 
 |   EM_XIMO16        = 170, // New Japan Radio (NJR) 16-bit DSP Processor | 
 |   EM_MANIK         = 171, // M2000 Reconfigurable RISC Microprocessor | 
 |   EM_CRAYNV2       = 172, // Cray Inc. NV2 vector architecture | 
 |   EM_RX            = 173, // Renesas RX family | 
 |   EM_METAG         = 174, // Imagination Technologies META processor | 
 |                           // architecture | 
 |   EM_MCST_ELBRUS   = 175, // MCST Elbrus general purpose hardware architecture | 
 |   EM_ECOG16        = 176, // Cyan Technology eCOG16 family | 
 |   EM_CR16          = 177, // National Semiconductor CompactRISC CR16 16-bit | 
 |                           // microprocessor | 
 |   EM_ETPU          = 178, // Freescale Extended Time Processing Unit | 
 |   EM_SLE9X         = 179, // Infineon Technologies SLE9X core | 
 |   EM_L10M          = 180, // Intel L10M | 
 |   EM_K10M          = 181, // Intel K10M | 
 |   EM_AVR32         = 185, // Atmel Corporation 32-bit microprocessor family | 
 |   EM_STM8          = 186, // STMicroeletronics STM8 8-bit microcontroller | 
 |   EM_TILE64        = 187, // Tilera TILE64 multicore architecture family | 
 |   EM_TILEPRO       = 188, // Tilera TILEPro multicore architecture family | 
 |   EM_MICROBLAZE    = 189, // Xilinx MicroBlaze 32-bit RISC soft processor core | 
 |   EM_CUDA          = 190, // NVIDIA CUDA architecture | 
 |   EM_TILEGX        = 191, // Tilera TILE-Gx multicore architecture family | 
 |   EM_CLOUDSHIELD   = 192, // CloudShield architecture family | 
 |   EM_COREA_1ST     = 193, // KIPO-KAIST Core-A 1st generation processor family | 
 |   EM_COREA_2ND     = 194, // KIPO-KAIST Core-A 2nd generation processor family | 
 |   EM_ARC_COMPACT2  = 195, // Synopsys ARCompact V2 | 
 |   EM_OPEN8         = 196, // Open8 8-bit RISC soft processor core | 
 |   EM_RL78          = 197, // Renesas RL78 family | 
 |   EM_VIDEOCORE5    = 198, // Broadcom VideoCore V processor | 
 |   EM_78KOR         = 199, // Renesas 78KOR family | 
 |   EM_56800EX       = 200, // Freescale 56800EX Digital Signal Controller (DSC) | 
 |   EM_MBLAZE        = 47787 // Xilinx MicroBlaze | 
 | }; | 
 |  | 
 | // Object file classes. | 
 | enum { | 
 |   ELFCLASSNONE = 0, | 
 |   ELFCLASS32 = 1, // 32-bit object file | 
 |   ELFCLASS64 = 2  // 64-bit object file | 
 | }; | 
 |  | 
 | // Object file byte orderings. | 
 | enum { | 
 |   ELFDATANONE = 0, // Invalid data encoding. | 
 |   ELFDATA2LSB = 1, // Little-endian object file | 
 |   ELFDATA2MSB = 2  // Big-endian object file | 
 | }; | 
 |  | 
 | // OS ABI identification. | 
 | enum { | 
 |   ELFOSABI_NONE = 0,          // UNIX System V ABI | 
 |   ELFOSABI_HPUX = 1,          // HP-UX operating system | 
 |   ELFOSABI_NETBSD = 2,        // NetBSD | 
 |   ELFOSABI_LINUX = 3,         // GNU/Linux | 
 |   ELFOSABI_HURD = 4,          // GNU/Hurd | 
 |   ELFOSABI_SOLARIS = 6,       // Solaris | 
 |   ELFOSABI_AIX = 7,           // AIX | 
 |   ELFOSABI_IRIX = 8,          // IRIX | 
 |   ELFOSABI_FREEBSD = 9,       // FreeBSD | 
 |   ELFOSABI_TRU64 = 10,        // TRU64 UNIX | 
 |   ELFOSABI_MODESTO = 11,      // Novell Modesto | 
 |   ELFOSABI_OPENBSD = 12,      // OpenBSD | 
 |   ELFOSABI_OPENVMS = 13,      // OpenVMS | 
 |   ELFOSABI_NSK = 14,          // Hewlett-Packard Non-Stop Kernel | 
 |   ELFOSABI_AROS = 15,         // AROS | 
 |   ELFOSABI_FENIXOS = 16,      // FenixOS | 
 |   ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000 | 
 |   ELFOSABI_C6000_LINUX = 65,  // Linux TMS320C6000 | 
 |   ELFOSABI_ARM = 97,          // ARM | 
 |   ELFOSABI_STANDALONE = 255   // Standalone (embedded) application | 
 | }; | 
 |  | 
 | // X86_64 relocations. | 
 | enum { | 
 |   R_X86_64_NONE       = 0, | 
 |   R_X86_64_64         = 1, | 
 |   R_X86_64_PC32       = 2, | 
 |   R_X86_64_GOT32      = 3, | 
 |   R_X86_64_PLT32      = 4, | 
 |   R_X86_64_COPY       = 5, | 
 |   R_X86_64_GLOB_DAT   = 6, | 
 |   R_X86_64_JUMP_SLOT  = 7, | 
 |   R_X86_64_RELATIVE   = 8, | 
 |   R_X86_64_GOTPCREL   = 9, | 
 |   R_X86_64_32         = 10, | 
 |   R_X86_64_32S        = 11, | 
 |   R_X86_64_16         = 12, | 
 |   R_X86_64_PC16       = 13, | 
 |   R_X86_64_8          = 14, | 
 |   R_X86_64_PC8        = 15, | 
 |   R_X86_64_DTPMOD64   = 16, | 
 |   R_X86_64_DTPOFF64   = 17, | 
 |   R_X86_64_TPOFF64    = 18, | 
 |   R_X86_64_TLSGD      = 19, | 
 |   R_X86_64_TLSLD      = 20, | 
 |   R_X86_64_DTPOFF32   = 21, | 
 |   R_X86_64_GOTTPOFF   = 22, | 
 |   R_X86_64_TPOFF32    = 23, | 
 |   R_X86_64_PC64       = 24, | 
 |   R_X86_64_GOTOFF64   = 25, | 
 |   R_X86_64_GOTPC32    = 26, | 
 |   R_X86_64_GOT64      = 27, | 
 |   R_X86_64_GOTPCREL64 = 28, | 
 |   R_X86_64_GOTPC64    = 29, | 
 |   R_X86_64_GOTPLT64   = 30, | 
 |   R_X86_64_PLTOFF64   = 31, | 
 |   R_X86_64_SIZE32     = 32, | 
 |   R_X86_64_SIZE64     = 33, | 
 |   R_X86_64_GOTPC32_TLSDESC = 34, | 
 |   R_X86_64_TLSDESC_CALL    = 35, | 
 |   R_X86_64_TLSDESC    = 36 | 
 | }; | 
 |  | 
 | // i386 relocations. | 
 | // TODO: this is just a subset | 
 | enum { | 
 |   R_386_NONE          = 0, | 
 |   R_386_32            = 1, | 
 |   R_386_PC32          = 2, | 
 |   R_386_GOT32         = 3, | 
 |   R_386_PLT32         = 4, | 
 |   R_386_COPY          = 5, | 
 |   R_386_GLOB_DAT      = 6, | 
 |   R_386_JUMP_SLOT     = 7, | 
 |   R_386_RELATIVE      = 8, | 
 |   R_386_GOTOFF        = 9, | 
 |   R_386_GOTPC         = 10, | 
 |   R_386_32PLT         = 11, | 
 |   R_386_TLS_TPOFF     = 14, | 
 |   R_386_TLS_IE        = 15, | 
 |   R_386_TLS_GOTIE     = 16, | 
 |   R_386_TLS_LE        = 17, | 
 |   R_386_TLS_GD        = 18, | 
 |   R_386_TLS_LDM       = 19, | 
 |   R_386_16            = 20, | 
 |   R_386_PC16          = 21, | 
 |   R_386_8             = 22, | 
 |   R_386_PC8           = 23, | 
 |   R_386_TLS_GD_32     = 24, | 
 |   R_386_TLS_GD_PUSH   = 25, | 
 |   R_386_TLS_GD_CALL   = 26, | 
 |   R_386_TLS_GD_POP    = 27, | 
 |   R_386_TLS_LDM_32    = 28, | 
 |   R_386_TLS_LDM_PUSH  = 29, | 
 |   R_386_TLS_LDM_CALL  = 30, | 
 |   R_386_TLS_LDM_POP   = 31, | 
 |   R_386_TLS_LDO_32    = 32, | 
 |   R_386_TLS_IE_32     = 33, | 
 |   R_386_TLS_LE_32     = 34, | 
 |   R_386_TLS_DTPMOD32  = 35, | 
 |   R_386_TLS_DTPOFF32  = 36, | 
 |   R_386_TLS_TPOFF32   = 37, | 
 |   R_386_TLS_GOTDESC   = 39, | 
 |   R_386_TLS_DESC_CALL = 40, | 
 |   R_386_TLS_DESC      = 41, | 
 |   R_386_IRELATIVE     = 42, | 
 |   R_386_NUM           = 43 | 
 | }; | 
 |  | 
 | // MBlaze relocations. | 
 | enum { | 
 |   R_MICROBLAZE_NONE           = 0, | 
 |   R_MICROBLAZE_32             = 1, | 
 |   R_MICROBLAZE_32_PCREL       = 2, | 
 |   R_MICROBLAZE_64_PCREL       = 3, | 
 |   R_MICROBLAZE_32_PCREL_LO    = 4, | 
 |   R_MICROBLAZE_64             = 5, | 
 |   R_MICROBLAZE_32_LO          = 6, | 
 |   R_MICROBLAZE_SRO32          = 7, | 
 |   R_MICROBLAZE_SRW32          = 8, | 
 |   R_MICROBLAZE_64_NONE        = 9, | 
 |   R_MICROBLAZE_32_SYM_OP_SYM  = 10, | 
 |   R_MICROBLAZE_GNU_VTINHERIT  = 11, | 
 |   R_MICROBLAZE_GNU_VTENTRY    = 12, | 
 |   R_MICROBLAZE_GOTPC_64       = 13, | 
 |   R_MICROBLAZE_GOT_64         = 14, | 
 |   R_MICROBLAZE_PLT_64         = 15, | 
 |   R_MICROBLAZE_REL            = 16, | 
 |   R_MICROBLAZE_JUMP_SLOT      = 17, | 
 |   R_MICROBLAZE_GLOB_DAT       = 18, | 
 |   R_MICROBLAZE_GOTOFF_64      = 19, | 
 |   R_MICROBLAZE_GOTOFF_32      = 20, | 
 |   R_MICROBLAZE_COPY           = 21 | 
 | }; | 
 |  | 
 | enum { | 
 |   R_PPC_NONE                  = 0,      /* No relocation. */ | 
 |   R_PPC_ADDR32                = 1, | 
 |   R_PPC_ADDR24                = 2, | 
 |   R_PPC_ADDR16                = 3, | 
 |   R_PPC_ADDR16_LO             = 4, | 
 |   R_PPC_ADDR16_HI             = 5, | 
 |   R_PPC_ADDR16_HA             = 6, | 
 |   R_PPC_ADDR14                = 7, | 
 |   R_PPC_ADDR14_BRTAKEN        = 8, | 
 |   R_PPC_ADDR14_BRNTAKEN       = 9, | 
 |   R_PPC_REL24                 = 10, | 
 |   R_PPC_REL14                 = 11, | 
 |   R_PPC_REL14_BRTAKEN         = 12, | 
 |   R_PPC_REL14_BRNTAKEN        = 13, | 
 |   R_PPC_REL32                 = 26 | 
 | }; | 
 |  | 
 | // ARM Specific e_flags | 
 | enum { EF_ARM_EABIMASK = 0xFF000000U }; | 
 |  | 
 | // ELF Relocation types for ARM | 
 | // Meets 2.08 ABI Specs. | 
 |  | 
 | enum { | 
 |   R_ARM_NONE                  = 0x00, | 
 |   R_ARM_PC24                  = 0x01, | 
 |   R_ARM_ABS32                 = 0x02, | 
 |   R_ARM_REL32                 = 0x03, | 
 |   R_ARM_LDR_PC_G0             = 0x04, | 
 |   R_ARM_ABS16                 = 0x05, | 
 |   R_ARM_ABS12                 = 0x06, | 
 |   R_ARM_THM_ABS5              = 0x07, | 
 |   R_ARM_ABS8                  = 0x08, | 
 |   R_ARM_SBREL32               = 0x09, | 
 |   R_ARM_THM_CALL              = 0x0a, | 
 |   R_ARM_THM_PC8               = 0x0b, | 
 |   R_ARM_BREL_ADJ              = 0x0c, | 
 |   R_ARM_TLS_DESC              = 0x0d, | 
 |   R_ARM_THM_SWI8              = 0x0e, | 
 |   R_ARM_XPC25                 = 0x0f, | 
 |   R_ARM_THM_XPC22             = 0x10, | 
 |   R_ARM_TLS_DTPMOD32          = 0x11, | 
 |   R_ARM_TLS_DTPOFF32          = 0x12, | 
 |   R_ARM_TLS_TPOFF32           = 0x13, | 
 |   R_ARM_COPY                  = 0x14, | 
 |   R_ARM_GLOB_DAT              = 0x15, | 
 |   R_ARM_JUMP_SLOT             = 0x16, | 
 |   R_ARM_RELATIVE              = 0x17, | 
 |   R_ARM_GOTOFF32              = 0x18, | 
 |   R_ARM_BASE_PREL             = 0x19, | 
 |   R_ARM_GOT_BREL              = 0x1a, | 
 |   R_ARM_PLT32                 = 0x1b, | 
 |   R_ARM_CALL                  = 0x1c, | 
 |   R_ARM_JUMP24                = 0x1d, | 
 |   R_ARM_THM_JUMP24            = 0x1e, | 
 |   R_ARM_BASE_ABS              = 0x1f, | 
 |   R_ARM_ALU_PCREL_7_0         = 0x20, | 
 |   R_ARM_ALU_PCREL_15_8        = 0x21, | 
 |   R_ARM_ALU_PCREL_23_15       = 0x22, | 
 |   R_ARM_LDR_SBREL_11_0_NC     = 0x23, | 
 |   R_ARM_ALU_SBREL_19_12_NC    = 0x24, | 
 |   R_ARM_ALU_SBREL_27_20_CK    = 0x25, | 
 |   R_ARM_TARGET1               = 0x26, | 
 |   R_ARM_SBREL31               = 0x27, | 
 |   R_ARM_V4BX                  = 0x28, | 
 |   R_ARM_TARGET2               = 0x29, | 
 |   R_ARM_PREL31                = 0x2a, | 
 |   R_ARM_MOVW_ABS_NC           = 0x2b, | 
 |   R_ARM_MOVT_ABS              = 0x2c, | 
 |   R_ARM_MOVW_PREL_NC          = 0x2d, | 
 |   R_ARM_MOVT_PREL             = 0x2e, | 
 |   R_ARM_THM_MOVW_ABS_NC       = 0x2f, | 
 |   R_ARM_THM_MOVT_ABS          = 0x30, | 
 |   R_ARM_THM_MOVW_PREL_NC      = 0x31, | 
 |   R_ARM_THM_MOVT_PREL         = 0x32, | 
 |   R_ARM_THM_JUMP19            = 0x33, | 
 |   R_ARM_THM_JUMP6             = 0x34, | 
 |   R_ARM_THM_ALU_PREL_11_0     = 0x35, | 
 |   R_ARM_THM_PC12              = 0x36, | 
 |   R_ARM_ABS32_NOI             = 0x37, | 
 |   R_ARM_REL32_NOI             = 0x38, | 
 |   R_ARM_ALU_PC_G0_NC          = 0x39, | 
 |   R_ARM_ALU_PC_G0             = 0x3a, | 
 |   R_ARM_ALU_PC_G1_NC          = 0x3b, | 
 |   R_ARM_ALU_PC_G1             = 0x3c, | 
 |   R_ARM_ALU_PC_G2             = 0x3d, | 
 |   R_ARM_LDR_PC_G1             = 0x3e, | 
 |   R_ARM_LDR_PC_G2             = 0x3f, | 
 |   R_ARM_LDRS_PC_G0            = 0x40, | 
 |   R_ARM_LDRS_PC_G1            = 0x41, | 
 |   R_ARM_LDRS_PC_G2            = 0x42, | 
 |   R_ARM_LDC_PC_G0             = 0x43, | 
 |   R_ARM_LDC_PC_G1             = 0x44, | 
 |   R_ARM_LDC_PC_G2             = 0x45, | 
 |   R_ARM_ALU_SB_G0_NC          = 0x46, | 
 |   R_ARM_ALU_SB_G0             = 0x47, | 
 |   R_ARM_ALU_SB_G1_NC          = 0x48, | 
 |   R_ARM_ALU_SB_G1             = 0x49, | 
 |   R_ARM_ALU_SB_G2             = 0x4a, | 
 |   R_ARM_LDR_SB_G0             = 0x4b, | 
 |   R_ARM_LDR_SB_G1             = 0x4c, | 
 |   R_ARM_LDR_SB_G2             = 0x4d, | 
 |   R_ARM_LDRS_SB_G0            = 0x4e, | 
 |   R_ARM_LDRS_SB_G1            = 0x4f, | 
 |   R_ARM_LDRS_SB_G2            = 0x50, | 
 |   R_ARM_LDC_SB_G0             = 0x51, | 
 |   R_ARM_LDC_SB_G1             = 0x52, | 
 |   R_ARM_LDC_SB_G2             = 0x53, | 
 |   R_ARM_MOVW_BREL_NC          = 0x54, | 
 |   R_ARM_MOVT_BREL             = 0x55, | 
 |   R_ARM_MOVW_BREL             = 0x56, | 
 |   R_ARM_THM_MOVW_BREL_NC      = 0x57, | 
 |   R_ARM_THM_MOVT_BREL         = 0x58, | 
 |   R_ARM_THM_MOVW_BREL         = 0x59, | 
 |   R_ARM_TLS_GOTDESC           = 0x5a, | 
 |   R_ARM_TLS_CALL              = 0x5b, | 
 |   R_ARM_TLS_DESCSEQ           = 0x5c, | 
 |   R_ARM_THM_TLS_CALL          = 0x5d, | 
 |   R_ARM_PLT32_ABS             = 0x5e, | 
 |   R_ARM_GOT_ABS               = 0x5f, | 
 |   R_ARM_GOT_PREL              = 0x60, | 
 |   R_ARM_GOT_BREL12            = 0x61, | 
 |   R_ARM_GOTOFF12              = 0x62, | 
 |   R_ARM_GOTRELAX              = 0x63, | 
 |   R_ARM_GNU_VTENTRY           = 0x64, | 
 |   R_ARM_GNU_VTINHERIT         = 0x65, | 
 |   R_ARM_THM_JUMP11            = 0x66, | 
 |   R_ARM_THM_JUMP8             = 0x67, | 
 |   R_ARM_TLS_GD32              = 0x68, | 
 |   R_ARM_TLS_LDM32             = 0x69, | 
 |   R_ARM_TLS_LDO32             = 0x6a, | 
 |   R_ARM_TLS_IE32              = 0x6b, | 
 |   R_ARM_TLS_LE32              = 0x6c, | 
 |   R_ARM_TLS_LDO12             = 0x6d, | 
 |   R_ARM_TLS_LE12              = 0x6e, | 
 |   R_ARM_TLS_IE12GP            = 0x6f, | 
 |   R_ARM_PRIVATE_0             = 0x70, | 
 |   R_ARM_PRIVATE_1             = 0x71, | 
 |   R_ARM_PRIVATE_2             = 0x72, | 
 |   R_ARM_PRIVATE_3             = 0x73, | 
 |   R_ARM_PRIVATE_4             = 0x74, | 
 |   R_ARM_PRIVATE_5             = 0x75, | 
 |   R_ARM_PRIVATE_6             = 0x76, | 
 |   R_ARM_PRIVATE_7             = 0x77, | 
 |   R_ARM_PRIVATE_8             = 0x78, | 
 |   R_ARM_PRIVATE_9             = 0x79, | 
 |   R_ARM_PRIVATE_10            = 0x7a, | 
 |   R_ARM_PRIVATE_11            = 0x7b, | 
 |   R_ARM_PRIVATE_12            = 0x7c, | 
 |   R_ARM_PRIVATE_13            = 0x7d, | 
 |   R_ARM_PRIVATE_14            = 0x7e, | 
 |   R_ARM_PRIVATE_15            = 0x7f, | 
 |   R_ARM_ME_TOO                = 0x80, | 
 |   R_ARM_THM_TLS_DESCSEQ16     = 0x81, | 
 |   R_ARM_THM_TLS_DESCSEQ32     = 0x82 | 
 | }; | 
 |  | 
 | // ELF Relocation types for Mips | 
 | enum { | 
 |   R_MIPS_NONE              =  0, | 
 |   R_MIPS_16                =  1, | 
 |   R_MIPS_32                =  2, | 
 |   R_MIPS_REL32             =  3, | 
 |   R_MIPS_26                =  4, | 
 |   R_MIPS_HI16              =  5, | 
 |   R_MIPS_LO16              =  6, | 
 |   R_MIPS_GPREL16           =  7, | 
 |   R_MIPS_LITERAL           =  8, | 
 |   R_MIPS_GOT16             =  9, | 
 |   R_MIPS_PC16              = 10, | 
 |   R_MIPS_CALL16            = 11, | 
 |   R_MIPS_GPREL32           = 12, | 
 |   R_MIPS_SHIFT5            = 16, | 
 |   R_MIPS_SHIFT6            = 17, | 
 |   R_MIPS_64                = 18, | 
 |   R_MIPS_GOT_DISP          = 19, | 
 |   R_MIPS_GOT_PAGE          = 20, | 
 |   R_MIPS_GOT_OFST          = 21, | 
 |   R_MIPS_GOT_HI16          = 22, | 
 |   R_MIPS_GOT_LO16          = 23, | 
 |   R_MIPS_SUB               = 24, | 
 |   R_MIPS_INSERT_A          = 25, | 
 |   R_MIPS_INSERT_B          = 26, | 
 |   R_MIPS_DELETE            = 27, | 
 |   R_MIPS_HIGHER            = 28, | 
 |   R_MIPS_HIGHEST           = 29, | 
 |   R_MIPS_CALL_HI16         = 30, | 
 |   R_MIPS_CALL_LO16         = 31, | 
 |   R_MIPS_SCN_DISP          = 32, | 
 |   R_MIPS_REL16             = 33, | 
 |   R_MIPS_ADD_IMMEDIATE     = 34, | 
 |   R_MIPS_PJUMP             = 35, | 
 |   R_MIPS_RELGOT            = 36, | 
 |   R_MIPS_JALR              = 37, | 
 |   R_MIPS_TLS_DTPMOD32      = 38, | 
 |   R_MIPS_TLS_DTPREL32      = 39, | 
 |   R_MIPS_TLS_DTPMOD64      = 40, | 
 |   R_MIPS_TLS_DTPREL64      = 41, | 
 |   R_MIPS_TLS_GD            = 42, | 
 |   R_MIPS_TLS_LDM           = 43, | 
 |   R_MIPS_TLS_DTPREL_HI16   = 44, | 
 |   R_MIPS_TLS_DTPREL_LO16   = 45, | 
 |   R_MIPS_TLS_GOTTPREL      = 46, | 
 |   R_MIPS_TLS_TPREL32       = 47, | 
 |   R_MIPS_TLS_TPREL64       = 48, | 
 |   R_MIPS_TLS_TPREL_HI16    = 49, | 
 |   R_MIPS_TLS_TPREL_LO16    = 50, | 
 |   R_MIPS_GLOB_DAT          = 51, | 
 |   R_MIPS_COPY              = 126, | 
 |   R_MIPS_JUMP_SLOT         = 127, | 
 |   R_MIPS_NUM               = 218 | 
 | }; | 
 |  | 
 | // Section header. | 
 | struct Elf32_Shdr { | 
 |   Elf32_Word sh_name;      // Section name (index into string table) | 
 |   Elf32_Word sh_type;      // Section type (SHT_*) | 
 |   Elf32_Word sh_flags;     // Section flags (SHF_*) | 
 |   Elf32_Addr sh_addr;      // Address where section is to be loaded | 
 |   Elf32_Off  sh_offset;    // File offset of section data, in bytes | 
 |   Elf32_Word sh_size;      // Size of section, in bytes | 
 |   Elf32_Word sh_link;      // Section type-specific header table index link | 
 |   Elf32_Word sh_info;      // Section type-specific extra information | 
 |   Elf32_Word sh_addralign; // Section address alignment | 
 |   Elf32_Word sh_entsize;   // Size of records contained within the section | 
 | }; | 
 |  | 
 | // Section header for ELF64 - same fields as ELF32, different types. | 
 | struct Elf64_Shdr { | 
 |   Elf64_Word  sh_name; | 
 |   Elf64_Word  sh_type; | 
 |   Elf64_Xword sh_flags; | 
 |   Elf64_Addr  sh_addr; | 
 |   Elf64_Off   sh_offset; | 
 |   Elf64_Xword sh_size; | 
 |   Elf64_Word  sh_link; | 
 |   Elf64_Word  sh_info; | 
 |   Elf64_Xword sh_addralign; | 
 |   Elf64_Xword sh_entsize; | 
 | }; | 
 |  | 
 | // Special section indices. | 
 | enum { | 
 |   SHN_UNDEF     = 0,      // Undefined, missing, irrelevant, or meaningless | 
 |   SHN_LORESERVE = 0xff00, // Lowest reserved index | 
 |   SHN_LOPROC    = 0xff00, // Lowest processor-specific index | 
 |   SHN_HIPROC    = 0xff1f, // Highest processor-specific index | 
 |   SHN_LOOS      = 0xff20, // Lowest operating system-specific index | 
 |   SHN_HIOS      = 0xff3f, // Highest operating system-specific index | 
 |   SHN_ABS       = 0xfff1, // Symbol has absolute value; does not need relocation | 
 |   SHN_COMMON    = 0xfff2, // FORTRAN COMMON or C external global variables | 
 |   SHN_XINDEX    = 0xffff, // Mark that the index is >= SHN_LORESERVE | 
 |   SHN_HIRESERVE = 0xffff  // Highest reserved index | 
 | }; | 
 |  | 
 | // Section types. | 
 | enum { | 
 |   SHT_NULL          = 0,  // No associated section (inactive entry). | 
 |   SHT_PROGBITS      = 1,  // Program-defined contents. | 
 |   SHT_SYMTAB        = 2,  // Symbol table. | 
 |   SHT_STRTAB        = 3,  // String table. | 
 |   SHT_RELA          = 4,  // Relocation entries; explicit addends. | 
 |   SHT_HASH          = 5,  // Symbol hash table. | 
 |   SHT_DYNAMIC       = 6,  // Information for dynamic linking. | 
 |   SHT_NOTE          = 7,  // Information about the file. | 
 |   SHT_NOBITS        = 8,  // Data occupies no space in the file. | 
 |   SHT_REL           = 9,  // Relocation entries; no explicit addends. | 
 |   SHT_SHLIB         = 10, // Reserved. | 
 |   SHT_DYNSYM        = 11, // Symbol table. | 
 |   SHT_INIT_ARRAY    = 14, // Pointers to initialization functions. | 
 |   SHT_FINI_ARRAY    = 15, // Pointers to termination functions. | 
 |   SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions. | 
 |   SHT_GROUP         = 17, // Section group. | 
 |   SHT_SYMTAB_SHNDX  = 18, // Indices for SHN_XINDEX entries. | 
 |   SHT_LOOS          = 0x60000000, // Lowest operating system-specific type. | 
 |   SHT_HIOS          = 0x6fffffff, // Highest operating system-specific type. | 
 |   SHT_LOPROC        = 0x70000000, // Lowest processor architecture-specific type. | 
 |   // Fixme: All this is duplicated in MCSectionELF. Why?? | 
 |   // Exception Index table | 
 |   SHT_ARM_EXIDX           = 0x70000001U, | 
 |   // BPABI DLL dynamic linking pre-emption map | 
 |   SHT_ARM_PREEMPTMAP      = 0x70000002U, | 
 |   //  Object file compatibility attributes | 
 |   SHT_ARM_ATTRIBUTES      = 0x70000003U, | 
 |   SHT_ARM_DEBUGOVERLAY    = 0x70000004U, | 
 |   SHT_ARM_OVERLAYSECTION  = 0x70000005U, | 
 |  | 
 |   SHT_X86_64_UNWIND       = 0x70000001, // Unwind information | 
 |  | 
 |   SHT_HIPROC        = 0x7fffffff, // Highest processor architecture-specific type. | 
 |   SHT_LOUSER        = 0x80000000, // Lowest type reserved for applications. | 
 |   SHT_HIUSER        = 0xffffffff  // Highest type reserved for applications. | 
 | }; | 
 |  | 
 | // Section flags. | 
 | enum { | 
 |   // Section data should be writable during execution. | 
 |   SHF_WRITE = 0x1, | 
 |  | 
 |   // Section occupies memory during program execution. | 
 |   SHF_ALLOC = 0x2, | 
 |  | 
 |   // Section contains executable machine instructions. | 
 |   SHF_EXECINSTR = 0x4, | 
 |  | 
 |   // The data in this section may be merged. | 
 |   SHF_MERGE = 0x10, | 
 |  | 
 |   // The data in this section is null-terminated strings. | 
 |   SHF_STRINGS = 0x20, | 
 |  | 
 |   // A field in this section holds a section header table index. | 
 |   SHF_INFO_LINK = 0x40U, | 
 |  | 
 |   // Adds special ordering requirements for link editors. | 
 |   SHF_LINK_ORDER = 0x80U, | 
 |  | 
 |   // This section requires special OS-specific processing to avoid incorrect | 
 |   // behavior. | 
 |   SHF_OS_NONCONFORMING = 0x100U, | 
 |  | 
 |   // This section is a member of a section group. | 
 |   SHF_GROUP = 0x200U, | 
 |  | 
 |   // This section holds Thread-Local Storage. | 
 |   SHF_TLS = 0x400U, | 
 |  | 
 |   // Start of target-specific flags. | 
 |  | 
 |   /// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped | 
 |   /// together by the linker to form the constant pool and the cp register is | 
 |   /// set to the start of the constant pool by the boot code. | 
 |   XCORE_SHF_CP_SECTION = 0x800U, | 
 |  | 
 |   /// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped | 
 |   /// together by the linker to form the data section and the dp register is | 
 |   /// set to the start of the section by the boot code. | 
 |   XCORE_SHF_DP_SECTION = 0x1000U, | 
 |  | 
 |   SHF_MASKOS   = 0x0ff00000, | 
 |  | 
 |   // Bits indicating processor-specific flags. | 
 |   SHF_MASKPROC = 0xf0000000, | 
 |  | 
 |   // If an object file section does not have this flag set, then it may not hold | 
 |   // more than 2GB and can be freely referred to in objects using smaller code | 
 |   // models. Otherwise, only objects using larger code models can refer to them. | 
 |   // For example, a medium code model object can refer to data in a section that | 
 |   // sets this flag besides being able to refer to data in a section that does | 
 |   // not set it; likewise, a small code model object can refer only to code in a | 
 |   // section that does not set this flag. | 
 |   SHF_X86_64_LARGE = 0x10000000 | 
 | }; | 
 |  | 
 | // Section Group Flags | 
 | enum { | 
 |   GRP_COMDAT = 0x1, | 
 |   GRP_MASKOS = 0x0ff00000, | 
 |   GRP_MASKPROC = 0xf0000000 | 
 | }; | 
 |  | 
 | // Symbol table entries for ELF32. | 
 | struct Elf32_Sym { | 
 |   Elf32_Word    st_name;  // Symbol name (index into string table) | 
 |   Elf32_Addr    st_value; // Value or address associated with the symbol | 
 |   Elf32_Word    st_size;  // Size of the symbol | 
 |   unsigned char st_info;  // Symbol's type and binding attributes | 
 |   unsigned char st_other; // Must be zero; reserved | 
 |   Elf32_Half    st_shndx; // Which section (header table index) it's defined in | 
 |  | 
 |   // These accessors and mutators correspond to the ELF32_ST_BIND, | 
 |   // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: | 
 |   unsigned char getBinding() const { return st_info >> 4; } | 
 |   unsigned char getType() const { return st_info & 0x0f; } | 
 |   void setBinding(unsigned char b) { setBindingAndType(b, getType()); } | 
 |   void setType(unsigned char t) { setBindingAndType(getBinding(), t); } | 
 |   void setBindingAndType(unsigned char b, unsigned char t) { | 
 |     st_info = (b << 4) + (t & 0x0f); | 
 |   } | 
 | }; | 
 |  | 
 | // Symbol table entries for ELF64. | 
 | struct Elf64_Sym { | 
 |   Elf64_Word      st_name;  // Symbol name (index into string table) | 
 |   unsigned char   st_info;  // Symbol's type and binding attributes | 
 |   unsigned char   st_other; // Must be zero; reserved | 
 |   Elf64_Half      st_shndx; // Which section (header table index) it's defined in | 
 |   Elf64_Addr      st_value; // Value or address associated with the symbol | 
 |   Elf64_Xword     st_size;  // Size of the symbol | 
 |  | 
 |   // These accessors and mutators are identical to those defined for ELF32 | 
 |   // symbol table entries. | 
 |   unsigned char getBinding() const { return st_info >> 4; } | 
 |   unsigned char getType() const { return st_info & 0x0f; } | 
 |   void setBinding(unsigned char b) { setBindingAndType(b, getType()); } | 
 |   void setType(unsigned char t) { setBindingAndType(getBinding(), t); } | 
 |   void setBindingAndType(unsigned char b, unsigned char t) { | 
 |     st_info = (b << 4) + (t & 0x0f); | 
 |   } | 
 | }; | 
 |  | 
 | // The size (in bytes) of symbol table entries. | 
 | enum { | 
 |   SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size | 
 |   SYMENTRY_SIZE64 = 24  // 64-bit symbol entry size. | 
 | }; | 
 |  | 
 | // Symbol bindings. | 
 | enum { | 
 |   STB_LOCAL = 0,   // Local symbol, not visible outside obj file containing def | 
 |   STB_GLOBAL = 1,  // Global symbol, visible to all object files being combined | 
 |   STB_WEAK = 2,    // Weak symbol, like global but lower-precedence | 
 |   STB_LOOS   = 10, // Lowest operating system-specific binding type | 
 |   STB_HIOS   = 12, // Highest operating system-specific binding type | 
 |   STB_LOPROC = 13, // Lowest processor-specific binding type | 
 |   STB_HIPROC = 15  // Highest processor-specific binding type | 
 | }; | 
 |  | 
 | // Symbol types. | 
 | enum { | 
 |   STT_NOTYPE  = 0,   // Symbol's type is not specified | 
 |   STT_OBJECT  = 1,   // Symbol is a data object (variable, array, etc.) | 
 |   STT_FUNC    = 2,   // Symbol is executable code (function, etc.) | 
 |   STT_SECTION = 3,   // Symbol refers to a section | 
 |   STT_FILE    = 4,   // Local, absolute symbol that refers to a file | 
 |   STT_COMMON  = 5,   // An uninitialized common block | 
 |   STT_TLS     = 6,   // Thread local data object | 
 |   STT_LOOS    = 7,   // Lowest operating system-specific symbol type | 
 |   STT_HIOS    = 8,   // Highest operating system-specific symbol type | 
 |   STT_LOPROC  = 13,  // Lowest processor-specific symbol type | 
 |   STT_HIPROC  = 15   // Highest processor-specific symbol type | 
 | }; | 
 |  | 
 | enum { | 
 |   STV_DEFAULT   = 0,  // Visibility is specified by binding type | 
 |   STV_INTERNAL  = 1,  // Defined by processor supplements | 
 |   STV_HIDDEN    = 2,  // Not visible to other components | 
 |   STV_PROTECTED = 3   // Visible in other components but not preemptable | 
 | }; | 
 |  | 
 | // Relocation entry, without explicit addend. | 
 | struct Elf32_Rel { | 
 |   Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) | 
 |   Elf32_Word r_info;   // Symbol table index and type of relocation to apply | 
 |  | 
 |   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, | 
 |   // and ELF32_R_INFO macros defined in the ELF specification: | 
 |   Elf32_Word getSymbol() const { return (r_info >> 8); } | 
 |   unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); } | 
 |   void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } | 
 |   void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } | 
 |   void setSymbolAndType(Elf32_Word s, unsigned char t) { | 
 |     r_info = (s << 8) + t; | 
 |   } | 
 | }; | 
 |  | 
 | // Relocation entry with explicit addend. | 
 | struct Elf32_Rela { | 
 |   Elf32_Addr  r_offset; // Location (file byte offset, or program virtual addr) | 
 |   Elf32_Word  r_info;   // Symbol table index and type of relocation to apply | 
 |   Elf32_Sword r_addend; // Compute value for relocatable field by adding this | 
 |  | 
 |   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, | 
 |   // and ELF32_R_INFO macros defined in the ELF specification: | 
 |   Elf32_Word getSymbol() const { return (r_info >> 8); } | 
 |   unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); } | 
 |   void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } | 
 |   void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } | 
 |   void setSymbolAndType(Elf32_Word s, unsigned char t) { | 
 |     r_info = (s << 8) + t; | 
 |   } | 
 | }; | 
 |  | 
 | // Relocation entry, without explicit addend. | 
 | struct Elf64_Rel { | 
 |   Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). | 
 |   Elf64_Xword r_info;   // Symbol table index and type of relocation to apply. | 
 |  | 
 |   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, | 
 |   // and ELF64_R_INFO macros defined in the ELF specification: | 
 |   Elf64_Xword getSymbol() const { return (r_info >> 32); } | 
 |   unsigned char getType() const { | 
 |     return (unsigned char) (r_info & 0xffffffffL); | 
 |   } | 
 |   void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } | 
 |   void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } | 
 |   void setSymbolAndType(Elf64_Xword s, unsigned char t) { | 
 |     r_info = (s << 32) + (t&0xffffffffL); | 
 |   } | 
 | }; | 
 |  | 
 | // Relocation entry with explicit addend. | 
 | struct Elf64_Rela { | 
 |   Elf64_Addr  r_offset; // Location (file byte offset, or program virtual addr). | 
 |   Elf64_Xword  r_info;   // Symbol table index and type of relocation to apply. | 
 |   Elf64_Sxword r_addend; // Compute value for relocatable field by adding this. | 
 |  | 
 |   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, | 
 |   // and ELF64_R_INFO macros defined in the ELF specification: | 
 |   Elf64_Xword getSymbol() const { return (r_info >> 32); } | 
 |   unsigned char getType() const { | 
 |     return (unsigned char) (r_info & 0xffffffffL); | 
 |   } | 
 |   void setSymbol(Elf64_Xword s) { setSymbolAndType(s, getType()); } | 
 |   void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } | 
 |   void setSymbolAndType(Elf64_Xword s, unsigned char t) { | 
 |     r_info = (s << 32) + (t&0xffffffffL); | 
 |   } | 
 | }; | 
 |  | 
 | // Program header for ELF32. | 
 | struct Elf32_Phdr { | 
 |   Elf32_Word p_type;   // Type of segment | 
 |   Elf32_Off  p_offset; // File offset where segment is located, in bytes | 
 |   Elf32_Addr p_vaddr;  // Virtual address of beginning of segment | 
 |   Elf32_Addr p_paddr;  // Physical address of beginning of segment (OS-specific) | 
 |   Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero) | 
 |   Elf32_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero) | 
 |   Elf32_Word p_flags;  // Segment flags | 
 |   Elf32_Word p_align;  // Segment alignment constraint | 
 | }; | 
 |  | 
 | // Program header for ELF64. | 
 | struct Elf64_Phdr { | 
 |   Elf64_Word   p_type;   // Type of segment | 
 |   Elf64_Word   p_flags;  // Segment flags | 
 |   Elf64_Off    p_offset; // File offset where segment is located, in bytes | 
 |   Elf64_Addr   p_vaddr;  // Virtual address of beginning of segment | 
 |   Elf64_Addr   p_paddr;  // Physical address of beginning of segment (OS-specific) | 
 |   Elf64_Xword  p_filesz; // Num. of bytes in file image of segment (may be zero) | 
 |   Elf64_Xword  p_memsz;  // Num. of bytes in mem image of segment (may be zero) | 
 |   Elf64_Xword  p_align;  // Segment alignment constraint | 
 | }; | 
 |  | 
 | // Segment types. | 
 | enum { | 
 |   PT_NULL    = 0, // Unused segment. | 
 |   PT_LOAD    = 1, // Loadable segment. | 
 |   PT_DYNAMIC = 2, // Dynamic linking information. | 
 |   PT_INTERP  = 3, // Interpreter pathname. | 
 |   PT_NOTE    = 4, // Auxiliary information. | 
 |   PT_SHLIB   = 5, // Reserved. | 
 |   PT_PHDR    = 6, // The program header table itself. | 
 |   PT_TLS     = 7, // The thread-local storage template. | 
 |   PT_LOOS    = 0x60000000, // Lowest operating system-specific pt entry type. | 
 |  | 
 |   // x86-64 program header types. | 
 |   // These all contain stack unwind tables. | 
 |   PT_GNU_EH_FRAME  = 0x6474e550, | 
 |   PT_SUNW_EH_FRAME = 0x6474e550, | 
 |   PT_SUNW_UNWIND   = 0x6464e550, | 
 |  | 
 |   PT_HIOS    = 0x6fffffff, // Highest operating system-specific pt entry type. | 
 |   PT_LOPROC  = 0x70000000, // Lowest processor-specific program hdr entry type. | 
 |   PT_HIPROC  = 0x7fffffff  // Highest processor-specific program hdr entry type. | 
 | }; | 
 |  | 
 | // Segment flag bits. | 
 | enum { | 
 |   PF_X        = 1,         // Execute | 
 |   PF_W        = 2,         // Write | 
 |   PF_R        = 4,         // Read | 
 |   PF_MASKOS   = 0x0ff00000,// Bits for operating system-specific semantics. | 
 |   PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics. | 
 | }; | 
 |  | 
 | // Dynamic table entry for ELF32. | 
 | struct Elf32_Dyn | 
 | { | 
 |   Elf32_Sword d_tag;            // Type of dynamic table entry. | 
 |   union | 
 |   { | 
 |       Elf32_Word d_val;         // Integer value of entry. | 
 |       Elf32_Addr d_ptr;         // Pointer value of entry. | 
 |   } d_un; | 
 | }; | 
 |  | 
 | // Dynamic table entry for ELF64. | 
 | struct Elf64_Dyn | 
 | { | 
 |   Elf64_Sxword d_tag;           // Type of dynamic table entry. | 
 |   union | 
 |   { | 
 |       Elf64_Xword d_val;        // Integer value of entry. | 
 |       Elf64_Addr  d_ptr;        // Pointer value of entry. | 
 |   } d_un; | 
 | }; | 
 |  | 
 | // Dynamic table entry tags. | 
 | enum { | 
 |   DT_NULL         = 0,        // Marks end of dynamic array. | 
 |   DT_NEEDED       = 1,        // String table offset of needed library. | 
 |   DT_PLTRELSZ     = 2,        // Size of relocation entries in PLT. | 
 |   DT_PLTGOT       = 3,        // Address associated with linkage table. | 
 |   DT_HASH         = 4,        // Address of symbolic hash table. | 
 |   DT_STRTAB       = 5,        // Address of dynamic string table. | 
 |   DT_SYMTAB       = 6,        // Address of dynamic symbol table. | 
 |   DT_RELA         = 7,        // Address of relocation table (Rela entries). | 
 |   DT_RELASZ       = 8,        // Size of Rela relocation table. | 
 |   DT_RELAENT      = 9,        // Size of a Rela relocation entry. | 
 |   DT_STRSZ        = 10,       // Total size of the string table. | 
 |   DT_SYMENT       = 11,       // Size of a symbol table entry. | 
 |   DT_INIT         = 12,       // Address of initialization function. | 
 |   DT_FINI         = 13,       // Address of termination function. | 
 |   DT_SONAME       = 14,       // String table offset of a shared objects name. | 
 |   DT_RPATH        = 15,       // String table offset of library search path. | 
 |   DT_SYMBOLIC     = 16,       // Changes symbol resolution algorithm. | 
 |   DT_REL          = 17,       // Address of relocation table (Rel entries). | 
 |   DT_RELSZ        = 18,       // Size of Rel relocation table. | 
 |   DT_RELENT       = 19,       // Size of a Rel relocation entry. | 
 |   DT_PLTREL       = 20,       // Type of relocation entry used for linking. | 
 |   DT_DEBUG        = 21,       // Reserved for debugger. | 
 |   DT_TEXTREL      = 22,       // Relocations exist for non-writable segments. | 
 |   DT_JMPREL       = 23,       // Address of relocations associated with PLT. | 
 |   DT_BIND_NOW     = 24,       // Process all relocations before execution. | 
 |   DT_INIT_ARRAY   = 25,       // Pointer to array of initialization functions. | 
 |   DT_FINI_ARRAY   = 26,       // Pointer to array of termination functions. | 
 |   DT_INIT_ARRAYSZ = 27,       // Size of DT_INIT_ARRAY. | 
 |   DT_FINI_ARRAYSZ = 28,       // Size of DT_FINI_ARRAY. | 
 |   DT_RUNPATH      = 29,       // String table offset of lib search path. | 
 |   DT_FLAGS        = 30,       // Flags. | 
 |   DT_ENCODING     = 32,       // Values from here to DT_LOOS follow the rules | 
 |                               // for the interpretation of the d_un union. | 
 |  | 
 |   DT_PREINIT_ARRAY = 32,      // Pointer to array of preinit functions. | 
 |   DT_PREINIT_ARRAYSZ = 33,    // Size of the DT_PREINIT_ARRAY array. | 
 |  | 
 |   DT_LOOS         = 0x60000000, // Start of environment specific tags. | 
 |   DT_HIOS         = 0x6FFFFFFF, // End of environment specific tags. | 
 |   DT_LOPROC       = 0x70000000, // Start of processor specific tags. | 
 |   DT_HIPROC       = 0x7FFFFFFF  // End of processor specific tags. | 
 | }; | 
 |  | 
 | // DT_FLAGS values. | 
 | enum { | 
 |   DF_ORIGIN     = 0x01, // The object may reference $ORIGIN. | 
 |   DF_SYMBOLIC   = 0x02, // Search the shared lib before searching the exe. | 
 |   DF_TEXTREL    = 0x04, // Relocations may modify a non-writable segment. | 
 |   DF_BIND_NOW   = 0x08, // Process all relocations on load. | 
 |   DF_STATIC_TLS = 0x10  // Reject attempts to load dynamically. | 
 | }; | 
 |  | 
 | } // end namespace ELF | 
 |  | 
 | } // end namespace llvm | 
 |  | 
 | #endif |