| //===- subzero/src/IceTargetLoweringX8664.cpp - x86-64 lowering -----------===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// \brief Implements the TargetLoweringX8664 class, which consists almost |
| /// entirely of the lowering sequence for each high-level instruction. |
| /// |
| //===----------------------------------------------------------------------===// |
| #include "IceTargetLoweringX8664.h" |
| |
| #include "IceDefs.h" |
| #include "IceTargetLoweringX8664Traits.h" |
| |
| namespace X8664 { |
| std::unique_ptr<::Ice::TargetLowering> createTargetLowering(::Ice::Cfg *Func) { |
| return ::Ice::X8664::TargetX8664::create(Func); |
| } |
| |
| std::unique_ptr<::Ice::TargetDataLowering> |
| createTargetDataLowering(::Ice::GlobalContext *Ctx) { |
| return ::Ice::X8664::TargetDataX86<::Ice::X8664::TargetX8664Traits>::create( |
| Ctx); |
| } |
| |
| std::unique_ptr<::Ice::TargetHeaderLowering> |
| createTargetHeaderLowering(::Ice::GlobalContext *Ctx) { |
| return ::Ice::X8664::TargetHeaderX86::create(Ctx); |
| } |
| |
| void staticInit(::Ice::GlobalContext *Ctx) { |
| ::Ice::X8664::TargetX8664::staticInit(Ctx); |
| } |
| |
| bool shouldBePooled(const class ::Ice::Constant *C) { |
| return ::Ice::X8664::TargetX8664::shouldBePooled(C); |
| } |
| |
| ::Ice::Type getPointerType() { |
| return ::Ice::X8664::TargetX8664::getPointerType(); |
| } |
| |
| } // end of namespace X8664 |
| |
| namespace Ice { |
| namespace X8664 { |
| |
| //------------------------------------------------------------------------------ |
| // ______ ______ ______ __ ______ ______ |
| // /\__ _\ /\ == \ /\ __ \ /\ \ /\__ _\ /\ ___\ |
| // \/_/\ \/ \ \ __< \ \ __ \ \ \ \ \/_/\ \/ \ \___ \ |
| // \ \_\ \ \_\ \_\ \ \_\ \_\ \ \_\ \ \_\ \/\_____\ |
| // \/_/ \/_/ /_/ \/_/\/_/ \/_/ \/_/ \/_____/ |
| // |
| //------------------------------------------------------------------------------ |
| const TargetX8664Traits::TableFcmpType TargetX8664Traits::TableFcmp[] = { |
| #define X(val, dflt, swapS, C1, C2, swapV, pred) \ |
| { \ |
| dflt, swapS, X8664::Traits::Cond::C1, X8664::Traits::Cond::C2, swapV, \ |
| X8664::Traits::Cond::pred \ |
| } \ |
| , |
| FCMPX8664_TABLE |
| #undef X |
| }; |
| |
| const size_t TargetX8664Traits::TableFcmpSize = llvm::array_lengthof(TableFcmp); |
| |
| const TargetX8664Traits::TableIcmp32Type TargetX8664Traits::TableIcmp32[] = { |
| #define X(val, C_32, C1_64, C2_64, C3_64) \ |
| { X8664::Traits::Cond::C_32 } \ |
| , |
| ICMPX8664_TABLE |
| #undef X |
| }; |
| |
| const size_t TargetX8664Traits::TableIcmp32Size = |
| llvm::array_lengthof(TableIcmp32); |
| |
| const TargetX8664Traits::TableIcmp64Type TargetX8664Traits::TableIcmp64[] = { |
| #define X(val, C_32, C1_64, C2_64, C3_64) \ |
| { \ |
| X8664::Traits::Cond::C1_64, X8664::Traits::Cond::C2_64, \ |
| X8664::Traits::Cond::C3_64 \ |
| } \ |
| , |
| ICMPX8664_TABLE |
| #undef X |
| }; |
| |
| const size_t TargetX8664Traits::TableIcmp64Size = |
| llvm::array_lengthof(TableIcmp64); |
| |
| const TargetX8664Traits::TableTypeX8664AttributesType |
| TargetX8664Traits::TableTypeX8664Attributes[] = { |
| #define X(tag, elty, cvt, sdss, pdps, spsd, int_, unpack, pack, width, fld) \ |
| { IceType_##elty } \ |
| , |
| ICETYPEX8664_TABLE |
| #undef X |
| }; |
| |
| const size_t TargetX8664Traits::TableTypeX8664AttributesSize = |
| llvm::array_lengthof(TableTypeX8664Attributes); |
| |
| const uint32_t TargetX8664Traits::X86_STACK_ALIGNMENT_BYTES = 16; |
| const char *TargetX8664Traits::TargetName = "X8664"; |
| |
| template <> |
| std::array<SmallBitVector, RCX86_NUM> |
| TargetX86Base<X8664::Traits>::TypeToRegisterSet = {{}}; |
| |
| template <> |
| std::array<SmallBitVector, RCX86_NUM> |
| TargetX86Base<X8664::Traits>::TypeToRegisterSetUnfiltered = {{}}; |
| |
| template <> |
| std::array<SmallBitVector, |
| TargetX86Base<X8664::Traits>::Traits::RegisterSet::Reg_NUM> |
| TargetX86Base<X8664::Traits>::RegisterAliases = {{}}; |
| |
| template <> |
| FixupKind TargetX86Base<X8664::Traits>::PcRelFixup = |
| TargetX86Base<X8664::Traits>::Traits::FK_PcRel; |
| |
| template <> |
| FixupKind TargetX86Base<X8664::Traits>::AbsFixup = |
| TargetX86Base<X8664::Traits>::Traits::FK_Abs; |
| |
| //------------------------------------------------------------------------------ |
| // __ ______ __ __ ______ ______ __ __ __ ______ |
| // /\ \ /\ __ \/\ \ _ \ \/\ ___\/\ == \/\ \/\ "-.\ \/\ ___\ |
| // \ \ \___\ \ \/\ \ \ \/ ".\ \ \ __\\ \ __<\ \ \ \ \-. \ \ \__ \ |
| // \ \_____\ \_____\ \__/".~\_\ \_____\ \_\ \_\ \_\ \_\\"\_\ \_____\ |
| // \/_____/\/_____/\/_/ \/_/\/_____/\/_/ /_/\/_/\/_/ \/_/\/_____/ |
| // |
| //------------------------------------------------------------------------------ |
| void TargetX8664::_add_sp(Operand *Adjustment) { |
| Variable *rsp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64); |
| if (!NeedSandboxing) { |
| _add(rsp, Adjustment); |
| return; |
| } |
| |
| Variable *esp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_esp, IceType_i32); |
| Variable *r15 = |
| getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); |
| |
| // When incrementing rsp, NaCl sandboxing requires the following sequence |
| // |
| // .bundle_start |
| // add Adjustment, %esp |
| // add %r15, %rsp |
| // .bundle_end |
| // |
| // In Subzero, even though rsp and esp alias each other, defining one does not |
| // define the other. Therefore, we must emit |
| // |
| // .bundle_start |
| // %esp = fake-def %rsp |
| // add Adjustment, %esp |
| // %rsp = fake-def %esp |
| // add %r15, %rsp |
| // .bundle_end |
| // |
| // The fake-defs ensure that the |
| // |
| // add Adjustment, %esp |
| // |
| // instruction is not DCE'd. |
| AutoBundle _(this); |
| _redefined(Context.insert<InstFakeDef>(esp, rsp)); |
| _add(esp, Adjustment); |
| _redefined(Context.insert<InstFakeDef>(rsp, esp)); |
| _add(rsp, r15); |
| } |
| |
| void TargetX8664::_mov_sp(Operand *NewValue) { |
| assert(NewValue->getType() == IceType_i32); |
| |
| Variable *esp = getPhysicalRegister(Traits::RegisterSet::Reg_esp); |
| Variable *rsp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64); |
| |
| AutoBundle _(this); |
| |
| _redefined(Context.insert<InstFakeDef>(esp, rsp)); |
| _redefined(_mov(esp, NewValue)); |
| _redefined(Context.insert<InstFakeDef>(rsp, esp)); |
| |
| if (!NeedSandboxing) { |
| return; |
| } |
| |
| Variable *r15 = |
| getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); |
| _add(rsp, r15); |
| } |
| |
| void TargetX8664::_push_rbp() { |
| assert(NeedSandboxing); |
| |
| Constant *_0 = Ctx->getConstantZero(IceType_i32); |
| Variable *ebp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_ebp, IceType_i32); |
| Variable *rsp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64); |
| auto *TopOfStack = llvm::cast<X86OperandMem>( |
| legalize(X86OperandMem::create(Func, IceType_i32, rsp, _0), |
| Legal_Reg | Legal_Mem)); |
| |
| // Emits a sequence: |
| // |
| // .bundle_start |
| // push 0 |
| // mov %ebp, %(rsp) |
| // .bundle_end |
| // |
| // to avoid leaking the upper 32-bits (i.e., the sandbox address.) |
| AutoBundle _(this); |
| _push(_0); |
| Context.insert<typename Traits::Insts::Store>(ebp, TopOfStack); |
| } |
| |
| void TargetX8664::_link_bp() { |
| Variable *esp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_esp, IceType_i32); |
| Variable *rsp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_rsp, Traits::WordType); |
| Variable *ebp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_ebp, IceType_i32); |
| Variable *rbp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_rbp, Traits::WordType); |
| Variable *r15 = |
| getPhysicalRegister(Traits::RegisterSet::Reg_r15, Traits::WordType); |
| |
| if (!NeedSandboxing) { |
| _push(rbp); |
| _mov(rbp, rsp); |
| } else { |
| _push_rbp(); |
| |
| AutoBundle _(this); |
| _redefined(Context.insert<InstFakeDef>(ebp, rbp)); |
| _redefined(Context.insert<InstFakeDef>(esp, rsp)); |
| _mov(ebp, esp); |
| _redefined(Context.insert<InstFakeDef>(rsp, esp)); |
| _add(rbp, r15); |
| } |
| // Keep ebp live for late-stage liveness analysis (e.g. asm-verbose mode). |
| Context.insert<InstFakeUse>(rbp); |
| } |
| |
| void TargetX8664::_unlink_bp() { |
| Variable *rsp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_rsp, IceType_i64); |
| Variable *rbp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_rbp, IceType_i64); |
| Variable *ebp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_ebp, IceType_i32); |
| // For late-stage liveness analysis (e.g. asm-verbose mode), adding a fake |
| // use of rsp before the assignment of rsp=rbp keeps previous rsp |
| // adjustments from being dead-code eliminated. |
| Context.insert<InstFakeUse>(rsp); |
| if (!NeedSandboxing) { |
| _mov(rsp, rbp); |
| _pop(rbp); |
| } else { |
| _mov_sp(ebp); |
| |
| Variable *r15 = |
| getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); |
| Variable *rcx = |
| getPhysicalRegister(Traits::RegisterSet::Reg_rcx, IceType_i64); |
| Variable *ecx = |
| getPhysicalRegister(Traits::RegisterSet::Reg_ecx, IceType_i32); |
| |
| _pop(rcx); |
| Context.insert<InstFakeDef>(ecx, rcx); |
| AutoBundle _(this); |
| _mov(ebp, ecx); |
| |
| _redefined(Context.insert<InstFakeDef>(rbp, ebp)); |
| _add(rbp, r15); |
| } |
| } |
| |
| void TargetX8664::_push_reg(Variable *Reg) { |
| Variable *rbp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_rbp, Traits::WordType); |
| if (Reg != rbp || !NeedSandboxing) { |
| _push(Reg); |
| } else { |
| _push_rbp(); |
| } |
| } |
| |
| void TargetX8664::emitGetIP(CfgNode *Node) { |
| // No IP base register is needed on X86-64. |
| (void)Node; |
| } |
| |
| namespace { |
| bool isAssignedToRspOrRbp(const Variable *Var) { |
| if (Var == nullptr) { |
| return false; |
| } |
| |
| if (Var->isRematerializable()) { |
| return true; |
| } |
| |
| if (!Var->hasReg()) { |
| return false; |
| } |
| |
| const auto RegNum = Var->getRegNum(); |
| if ((RegNum == Traits::RegisterSet::Reg_rsp) || |
| (RegNum == Traits::RegisterSet::Reg_rbp)) { |
| return true; |
| } |
| |
| return false; |
| } |
| } // end of anonymous namespace |
| |
| Traits::X86OperandMem *TargetX8664::_sandbox_mem_reference(X86OperandMem *Mem) { |
| if (SandboxingType == ST_None) { |
| return Mem; |
| } |
| |
| if (SandboxingType == ST_Nonsfi) { |
| llvm::report_fatal_error( |
| "_sandbox_mem_reference not implemented for nonsfi"); |
| } |
| |
| // In x86_64-nacl, all memory references are relative to a base register |
| // (%r15, %rsp, %rbp, or %rip). |
| |
| Variable *Base = Mem->getBase(); |
| Variable *Index = Mem->getIndex(); |
| uint16_t Shift = 0; |
| Variable *ZeroReg = RebasePtr; |
| Constant *Offset = Mem->getOffset(); |
| Variable *T = nullptr; |
| |
| bool AbsoluteAddress = false; |
| if (Base == nullptr && Index == nullptr) { |
| if (llvm::isa<ConstantRelocatable>(Offset)) { |
| // Mem is RIP-relative. There's no need to rebase it. |
| return Mem; |
| } |
| // Offset is an absolute address, so we need to emit |
| // Offset(%r15) |
| AbsoluteAddress = true; |
| } |
| |
| if (Mem->getIsRebased()) { |
| // If Mem.IsRebased, then we don't need to update Mem, as it's already been |
| // updated to contain a reference to one of %rsp, %rbp, or %r15. |
| // We don't return early because we still need to zero extend Index. |
| assert(ZeroReg == Base || AbsoluteAddress || isAssignedToRspOrRbp(Base)); |
| if (!AbsoluteAddress) { |
| // If Mem is an absolute address, no need to update ZeroReg (which is |
| // already set to %r15.) |
| ZeroReg = Base; |
| } |
| if (Index != nullptr) { |
| T = makeReg(IceType_i32); |
| _mov(T, Index); |
| Shift = Mem->getShift(); |
| } |
| } else { |
| if (Base != nullptr) { |
| // If Base is a valid base pointer we don't need to use the RebasePtr. By |
| // doing this we might save us the need to zero extend the memory operand. |
| if (isAssignedToRspOrRbp(Base)) { |
| ZeroReg = Base; |
| } else { |
| T = Base; |
| } |
| } |
| |
| if (Index != nullptr) { |
| assert(!Index->isRematerializable()); |
| // If Index is not nullptr, it is mandatory that T is a nullptr. |
| // Otherwise, the lowering generated a memory operand with two registers. |
| // Note that Base might still be non-nullptr, but it must be a valid |
| // base register. |
| if (T != nullptr) { |
| llvm::report_fatal_error("memory reference contains base and index."); |
| } |
| // If the Index is not shifted, and it is a Valid Base, and the ZeroReg is |
| // still RebasePtr, then we do ZeroReg = Index, and hopefully prevent the |
| // need to zero-extend the memory operand (which may still happen -- see |
| // NeedLea below.) |
| if (Shift == 0 && isAssignedToRspOrRbp(Index) && ZeroReg == RebasePtr) { |
| ZeroReg = Index; |
| } else { |
| T = Index; |
| Shift = Mem->getShift(); |
| } |
| } |
| } |
| |
| // NeedsLea is a flag indicating whether Mem needs to be materialized to a GPR |
| // prior to being used. A LEA is needed if Mem.Offset is a constant |
| // relocatable with a nonzero offset, or if Mem.Offset is a nonzero immediate; |
| // but only when the address mode contains a "user" register other than the |
| // rsp/rbp/r15 base. In both these cases, the LEA is needed to ensure the |
| // sandboxed memory operand will only use the lower 32-bits of T+Offset. |
| bool NeedsLea = false; |
| if (!Mem->getIsRebased()) { |
| bool IsOffsetZero = false; |
| if (Offset == nullptr) { |
| IsOffsetZero = true; |
| } else if (const auto *CR = llvm::dyn_cast<ConstantRelocatable>(Offset)) { |
| IsOffsetZero = (CR->getOffset() == 0); |
| } else if (const auto *Imm = llvm::dyn_cast<ConstantInteger32>(Offset)) { |
| IsOffsetZero = (Imm->getValue() == 0); |
| } else { |
| llvm::report_fatal_error("Unexpected Offset type."); |
| } |
| if (!IsOffsetZero) { |
| if (Base != nullptr && Base != ZeroReg) |
| NeedsLea = true; |
| if (Index != nullptr && Index != ZeroReg) |
| NeedsLea = true; |
| } |
| } |
| |
| RegNumT RegNum, RegNum32; |
| if (T != nullptr) { |
| if (T->hasReg()) { |
| RegNum = Traits::getGprForType(IceType_i64, T->getRegNum()); |
| RegNum32 = Traits::getGprForType(IceType_i32, RegNum); |
| // At this point, if T was assigned to rsp/rbp, then we would have already |
| // made this the ZeroReg. |
| assert(RegNum != Traits::RegisterSet::Reg_rsp); |
| assert(RegNum != Traits::RegisterSet::Reg_rbp); |
| } |
| |
| switch (T->getType()) { |
| default: |
| llvm::report_fatal_error("Mem pointer should be a 32-bit GPR."); |
| case IceType_i64: |
| // Even though "default:" would also catch T.Type == IceType_i64, an |
| // explicit 'case IceType_i64' shows that memory operands are always |
| // supposed to be 32-bits. |
| llvm::report_fatal_error("Mem pointer should not be a 64-bit GPR."); |
| case IceType_i32: { |
| Variable *T64 = makeReg(IceType_i64, RegNum); |
| auto *Movzx = _movzx(T64, T); |
| if (!NeedsLea) { |
| // This movzx is only needed when Mem does not need to be lea'd into a |
| // temporary. If an lea is going to be emitted, then eliding this movzx |
| // is safe because the emitted lea will write a 32-bit result -- |
| // implicitly zero-extended to 64-bit. |
| Movzx->setMustKeep(); |
| } |
| T = T64; |
| } break; |
| } |
| } |
| |
| if (NeedsLea) { |
| Variable *NewT = makeReg(IceType_i32, RegNum32); |
| Variable *Base = T; |
| Variable *Index = T; |
| static constexpr bool NotRebased = false; |
| if (Shift == 0) { |
| Index = nullptr; |
| } else { |
| Base = nullptr; |
| } |
| _lea(NewT, Traits::X86OperandMem::create( |
| Func, Mem->getType(), Base, Offset, Index, Shift, |
| Traits::X86OperandMem::DefaultSegment, NotRebased)); |
| |
| T = makeReg(IceType_i64, RegNum); |
| _movzx(T, NewT); |
| Shift = 0; |
| Offset = nullptr; |
| } |
| |
| static constexpr bool IsRebased = true; |
| return Traits::X86OperandMem::create( |
| Func, Mem->getType(), ZeroReg, Offset, T, Shift, |
| Traits::X86OperandMem::DefaultSegment, IsRebased); |
| } |
| |
| void TargetX8664::_sub_sp(Operand *Adjustment) { |
| Variable *rsp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_rsp, Traits::WordType); |
| |
| if (NeedSandboxing) { |
| Variable *esp = |
| getPhysicalRegister(Traits::RegisterSet::Reg_esp, IceType_i32); |
| Variable *r15 = |
| getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); |
| |
| // .bundle_start |
| // sub Adjustment, %esp |
| // add %r15, %rsp |
| // .bundle_end |
| AutoBundle _(this); |
| _redefined(Context.insert<InstFakeDef>(esp, rsp)); |
| _sub(esp, Adjustment); |
| _redefined(Context.insert<InstFakeDef>(rsp, esp)); |
| _add(rsp, r15); |
| } else { |
| _sub(rsp, Adjustment); |
| } |
| |
| // Add a fake use of the stack pointer, to prevent the stack pointer adustment |
| // from being dead-code eliminated in a function that doesn't return. |
| Context.insert<InstFakeUse>(rsp); |
| } |
| |
| void TargetX8664::initRebasePtr() { |
| switch (SandboxingType) { |
| case ST_Nonsfi: |
| // Probably no implementation is needed, but error to be safe for now. |
| llvm::report_fatal_error( |
| "initRebasePtr() is not yet implemented on x32-nonsfi."); |
| case ST_NaCl: |
| RebasePtr = getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); |
| break; |
| case ST_None: |
| // nothing. |
| break; |
| } |
| } |
| |
| void TargetX8664::initSandbox() { |
| assert(SandboxingType == ST_NaCl); |
| Context.init(Func->getEntryNode()); |
| Context.setInsertPoint(Context.getCur()); |
| Variable *r15 = |
| getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); |
| Context.insert<InstFakeDef>(r15); |
| Context.insert<InstFakeUse>(r15); |
| } |
| |
| namespace { |
| bool isRematerializable(const Variable *Var) { |
| return Var != nullptr && Var->isRematerializable(); |
| } |
| } // end of anonymous namespace |
| |
| bool TargetX8664::legalizeOptAddrForSandbox(OptAddr *Addr) { |
| if (SandboxingType == ST_Nonsfi) { |
| llvm::report_fatal_error("Nonsfi not yet implemented for x8664."); |
| } |
| |
| if (isRematerializable(Addr->Base)) { |
| if (Addr->Index == RebasePtr) { |
| Addr->Index = nullptr; |
| Addr->Shift = 0; |
| } |
| return true; |
| } |
| |
| if (isRematerializable(Addr->Index)) { |
| if (Addr->Base == RebasePtr) { |
| Addr->Base = nullptr; |
| } |
| return true; |
| } |
| |
| assert(Addr->Base != RebasePtr && Addr->Index != RebasePtr); |
| |
| if (Addr->Base == nullptr) { |
| return true; |
| } |
| |
| if (Addr->Index == nullptr) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void TargetX8664::lowerIndirectJump(Variable *JumpTarget) { |
| std::unique_ptr<AutoBundle> Bundler; |
| |
| if (!NeedSandboxing) { |
| if (JumpTarget->getType() != IceType_i64) { |
| Variable *T = makeReg(IceType_i64); |
| _movzx(T, JumpTarget); |
| JumpTarget = T; |
| } |
| } else { |
| Variable *T = makeReg(IceType_i32); |
| Variable *T64 = makeReg(IceType_i64); |
| Variable *r15 = |
| getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); |
| |
| _mov(T, JumpTarget); |
| Bundler = makeUnique<AutoBundle>(this); |
| const SizeT BundleSize = |
| 1 << Func->getAssembler<>()->getBundleAlignLog2Bytes(); |
| _and(T, Ctx->getConstantInt32(~(BundleSize - 1))); |
| _movzx(T64, T); |
| _add(T64, r15); |
| JumpTarget = T64; |
| } |
| |
| _jmp(JumpTarget); |
| } |
| |
| Inst *TargetX8664::emitCallToTarget(Operand *CallTarget, Variable *ReturnReg) { |
| Inst *NewCall = nullptr; |
| auto *CallTargetR = llvm::dyn_cast<Variable>(CallTarget); |
| if (NeedSandboxing) { |
| // In NaCl sandbox, calls are replaced by a push/jmp pair: |
| // |
| // push .after_call |
| // jmp CallTarget |
| // .align bundle_size |
| // after_call: |
| // |
| // In order to emit this sequence, we need a temporary label ("after_call", |
| // in this example.) |
| // |
| // The operand to push is a ConstantRelocatable. The easy way to implement |
| // this sequence is to create a ConstantRelocatable(0, "after_call"), but |
| // this ends up creating more relocations for the linker to resolve. |
| // Therefore, we create a ConstantRelocatable from the name of the function |
| // being compiled (i.e., ConstantRelocatable(after_call - Func, Func). |
| // |
| // By default, ConstantRelocatables are emitted (in textual output) as |
| // |
| // ConstantName + Offset |
| // |
| // ReturnReloc has an offset that is only known during binary emission. |
| // Therefore, we set a custom emit string for ReturnReloc that will be |
| // used instead. In this particular case, the code will be emitted as |
| // |
| // push .after_call |
| InstX86Label *ReturnAddress = InstX86Label::create(Func, this); |
| auto *ReturnRelocOffset = RelocOffset::create(Func->getAssembler()); |
| ReturnAddress->setRelocOffset(ReturnRelocOffset); |
| constexpr RelocOffsetT NoFixedOffset = 0; |
| const std::string EmitString = |
| BuildDefs::dump() ? ReturnAddress->getLabelName().toString() : ""; |
| auto *ReturnReloc = ConstantRelocatable::create( |
| Func->getAssembler(), IceType_i32, |
| RelocatableTuple(NoFixedOffset, {ReturnRelocOffset}, |
| Func->getFunctionName(), EmitString)); |
| /* AutoBundle scoping */ { |
| std::unique_ptr<AutoBundle> Bundler; |
| if (CallTargetR == nullptr) { |
| Bundler = makeUnique<AutoBundle>(this, InstBundleLock::Opt_PadToEnd); |
| _push(ReturnReloc); |
| } else { |
| Variable *T = makeReg(IceType_i32); |
| Variable *T64 = makeReg(IceType_i64); |
| Variable *r15 = |
| getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); |
| |
| _mov(T, CallTargetR); |
| Bundler = makeUnique<AutoBundle>(this, InstBundleLock::Opt_PadToEnd); |
| _push(ReturnReloc); |
| const SizeT BundleSize = |
| 1 << Func->getAssembler<>()->getBundleAlignLog2Bytes(); |
| _and(T, Ctx->getConstantInt32(~(BundleSize - 1))); |
| _movzx(T64, T); |
| _add(T64, r15); |
| CallTarget = T64; |
| } |
| |
| NewCall = Context.insert<Traits::Insts::Jmp>(CallTarget); |
| } |
| if (ReturnReg != nullptr) { |
| Context.insert<InstFakeDef>(ReturnReg); |
| } |
| |
| Context.insert(ReturnAddress); |
| } else { |
| if (CallTargetR != nullptr) { |
| // x86-64 in Subzero is ILP32. Therefore, CallTarget is i32, but the |
| // emitted call needs a i64 register (for textual asm.) |
| Variable *T = makeReg(IceType_i64); |
| _movzx(T, CallTargetR); |
| CallTarget = T; |
| } |
| NewCall = Context.insert<Traits::Insts::Call>(ReturnReg, CallTarget); |
| } |
| return NewCall; |
| } |
| |
| Variable *TargetX8664::moveReturnValueToRegister(Operand *Value, |
| Type ReturnType) { |
| if (isVectorType(ReturnType) || isScalarFloatingType(ReturnType)) { |
| return legalizeToReg(Value, Traits::RegisterSet::Reg_xmm0); |
| } else { |
| assert(ReturnType == IceType_i32 || ReturnType == IceType_i64); |
| Variable *Reg = nullptr; |
| _mov(Reg, Value, |
| Traits::getGprForType(ReturnType, Traits::RegisterSet::Reg_rax)); |
| return Reg; |
| } |
| } |
| |
| void TargetX8664::emitSandboxedReturn() { |
| Variable *T_rcx = makeReg(IceType_i64, Traits::RegisterSet::Reg_rcx); |
| Variable *T_ecx = makeReg(IceType_i32, Traits::RegisterSet::Reg_ecx); |
| _pop(T_rcx); |
| _mov(T_ecx, T_rcx); |
| // lowerIndirectJump(T_ecx); |
| Variable *r15 = |
| getPhysicalRegister(Traits::RegisterSet::Reg_r15, IceType_i64); |
| |
| /* AutoBundle scoping */ { |
| AutoBundle _(this); |
| const SizeT BundleSize = |
| 1 << Func->getAssembler<>()->getBundleAlignLog2Bytes(); |
| _and(T_ecx, Ctx->getConstantInt32(~(BundleSize - 1))); |
| Context.insert<InstFakeDef>(T_rcx, T_ecx); |
| _add(T_rcx, r15); |
| |
| _jmp(T_rcx); |
| } |
| } |
| |
| // In some cases, there are x-macros tables for both high-level and low-level |
| // instructions/operands that use the same enum key value. The tables are kept |
| // separate to maintain a proper separation between abstraction layers. There |
| // is a risk that the tables could get out of sync if enum values are reordered |
| // or if entries are added or deleted. The following dummy namespaces use |
| // static_asserts to ensure everything is kept in sync. |
| |
| namespace { |
| // Validate the enum values in FCMPX8664_TABLE. |
| namespace dummy1 { |
| // Define a temporary set of enum values based on low-level table entries. |
| enum _tmp_enum { |
| #define X(val, dflt, swapS, C1, C2, swapV, pred) _tmp_##val, |
| FCMPX8664_TABLE |
| #undef X |
| _num |
| }; |
| // Define a set of constants based on high-level table entries. |
| #define X(tag, str) static const int _table1_##tag = InstFcmp::tag; |
| ICEINSTFCMP_TABLE |
| #undef X |
| // Define a set of constants based on low-level table entries, and ensure the |
| // table entry keys are consistent. |
| #define X(val, dflt, swapS, C1, C2, swapV, pred) \ |
| static const int _table2_##val = _tmp_##val; \ |
| static_assert( \ |
| _table1_##val == _table2_##val, \ |
| "Inconsistency between FCMPX8664_TABLE and ICEINSTFCMP_TABLE"); |
| FCMPX8664_TABLE |
| #undef X |
| // Repeat the static asserts with respect to the high-level table entries in |
| // case the high-level table has extra entries. |
| #define X(tag, str) \ |
| static_assert( \ |
| _table1_##tag == _table2_##tag, \ |
| "Inconsistency between FCMPX8664_TABLE and ICEINSTFCMP_TABLE"); |
| ICEINSTFCMP_TABLE |
| #undef X |
| } // end of namespace dummy1 |
| |
| // Validate the enum values in ICMPX8664_TABLE. |
| namespace dummy2 { |
| // Define a temporary set of enum values based on low-level table entries. |
| enum _tmp_enum { |
| #define X(val, C_32, C1_64, C2_64, C3_64) _tmp_##val, |
| ICMPX8664_TABLE |
| #undef X |
| _num |
| }; |
| // Define a set of constants based on high-level table entries. |
| #define X(tag, reverse, str) static const int _table1_##tag = InstIcmp::tag; |
| ICEINSTICMP_TABLE |
| #undef X |
| // Define a set of constants based on low-level table entries, and ensure the |
| // table entry keys are consistent. |
| #define X(val, C_32, C1_64, C2_64, C3_64) \ |
| static const int _table2_##val = _tmp_##val; \ |
| static_assert( \ |
| _table1_##val == _table2_##val, \ |
| "Inconsistency between ICMPX8664_TABLE and ICEINSTICMP_TABLE"); |
| ICMPX8664_TABLE |
| #undef X |
| // Repeat the static asserts with respect to the high-level table entries in |
| // case the high-level table has extra entries. |
| #define X(tag, reverse, str) \ |
| static_assert( \ |
| _table1_##tag == _table2_##tag, \ |
| "Inconsistency between ICMPX8664_TABLE and ICEINSTICMP_TABLE"); |
| ICEINSTICMP_TABLE |
| #undef X |
| } // end of namespace dummy2 |
| |
| // Validate the enum values in ICETYPEX8664_TABLE. |
| namespace dummy3 { |
| // Define a temporary set of enum values based on low-level table entries. |
| enum _tmp_enum { |
| #define X(tag, elty, cvt, sdss, pdps, spsd, int_, unpack, pack, width, fld) \ |
| _tmp_##tag, |
| ICETYPEX8664_TABLE |
| #undef X |
| _num |
| }; |
| // Define a set of constants based on high-level table entries. |
| #define X(tag, sizeLog2, align, elts, elty, str, rcstr) \ |
| static const int _table1_##tag = IceType_##tag; |
| ICETYPE_TABLE |
| #undef X |
| // Define a set of constants based on low-level table entries, and ensure the |
| // table entry keys are consistent. |
| #define X(tag, elty, cvt, sdss, pdps, spsd, int_, unpack, pack, width, fld) \ |
| static const int _table2_##tag = _tmp_##tag; \ |
| static_assert(_table1_##tag == _table2_##tag, \ |
| "Inconsistency between ICETYPEX8664_TABLE and ICETYPE_TABLE"); |
| ICETYPEX8664_TABLE |
| #undef X |
| // Repeat the static asserts with respect to the high-level table entries in |
| // case the high-level table has extra entries. |
| #define X(tag, sizeLog2, align, elts, elty, str, rcstr) \ |
| static_assert(_table1_##tag == _table2_##tag, \ |
| "Inconsistency between ICETYPEX8664_TABLE and ICETYPE_TABLE"); |
| ICETYPE_TABLE |
| #undef X |
| } // end of namespace dummy3 |
| } // end of anonymous namespace |
| |
| } // end of namespace X8664 |
| } // end of namespace Ice |