blob: 0e6c92acef5abd4847ad9dacfea36ba3b18934e5 [file] [log] [blame]
// SwiftShader Software Renderer
//
// Copyright(c) 2005-2013 TransGaming Inc.
//
// All rights reserved. No part of this software may be copied, distributed, transmitted,
// transcribed, stored in a retrieval system, translated into any human or computer
// language by any means, or disclosed to third parties without the explicit written
// agreement of TransGaming Inc. Without such an agreement, no rights or licenses, express
// or implied, including but not limited to any patent rights, are granted to you.
//
// libRAD.cpp: Implements the exported OpenGL ES 2.0 functions.
#include "main.h"
#include "mathutil.h"
#include "utilities.h"
#include "Buffer.h"
#include "Context.h"
#include "Fence.h"
#include "Framebuffer.h"
#include "Program.h"
#include "Renderbuffer.h"
#include "Shader.h"
#include "Texture.h"
#include "Query.h"
#include "common/debug.h"
#include "Common/Version.h"
#include "Main/Register.hpp"
#define GL_APICALL
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <RAD/rad.h>
#include <exception>
#include <limits>
static bool validImageSize(GLint level, GLsizei width, GLsizei height)
{
if(level < 0 || level >= rad::IMPLEMENTATION_MAX_TEXTURE_LEVELS || width < 0 || height < 0)
{
return false;
}
return true;
}
static bool validateSubImageParams(bool compressed, GLsizei width, GLsizei height, GLint xoffset, GLint yoffset, GLenum target, GLint level, GLenum format, rad::Texture *texture)
{
if(!texture)
{
return error(GL_INVALID_OPERATION, false);
}
if(compressed != texture->isCompressed(target, level))
{
return error(GL_INVALID_OPERATION, false);
}
if(format != GL_NONE && format != texture->getFormat(target, level))
{
return error(GL_INVALID_OPERATION, false);
}
if(compressed)
{
if((width % 4 != 0 && width != texture->getWidth(target, 0)) ||
(height % 4 != 0 && height != texture->getHeight(target, 0)))
{
return error(GL_INVALID_OPERATION, false);
}
}
if(xoffset + width > texture->getWidth(target, level) ||
yoffset + height > texture->getHeight(target, level))
{
return error(GL_INVALID_VALUE, false);
}
return true;
}
// Check for combinations of format and type that are valid for ReadPixels
static bool validReadFormatType(GLenum format, GLenum type)
{
switch(format)
{
case GL_RGBA:
switch (type)
{
case GL_UNSIGNED_BYTE:
break;
default:
return false;
}
break;
case GL_BGRA_EXT:
switch (type)
{
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT:
case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT:
break;
default:
return false;
}
break;
case rad::IMPLEMENTATION_COLOR_READ_FORMAT:
switch (type)
{
case rad::IMPLEMENTATION_COLOR_READ_TYPE:
break;
default:
return false;
}
break;
default:
return false;
}
return true;
}
extern "C"
{
void GL_APIENTRY glActiveTexture(GLenum texture)
{
TRACE("(GLenum texture = 0x%X)", texture);
try
{
rad::Context *context = rad::getContext();
if(context)
{
if(texture < GL_TEXTURE0 || texture > GL_TEXTURE0 + rad::MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1)
{
return error(GL_INVALID_ENUM);
}
context->setActiveSampler(texture - GL_TEXTURE0);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glAttachShader(GLuint program, GLuint shader)
{
TRACE("(GLuint program = %d, GLuint shader = %d)", program, shader);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
rad::Shader *shaderObject = context->getShader(shader);
if(!programObject)
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if(!shaderObject)
{
if(context->getProgram(shader))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if(!programObject->attachShader(shaderObject))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBeginQueryEXT(GLenum target, GLuint id)
{
TRACE("(GLenum target = 0x%X, GLuint %d)", target, id);
try
{
switch(target)
{
case GL_ANY_SAMPLES_PASSED_EXT:
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT:
break;
default:
return error(GL_INVALID_ENUM);
}
if(id == 0)
{
return error(GL_INVALID_OPERATION);
}
rad::Context *context = rad::getContext();
if(context)
{
context->beginQuery(target, id);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBindAttribLocation(GLuint program, GLuint index, const GLchar* name)
{
TRACE("(GLuint program = %d, GLuint index = %d, const GLchar* name = 0x%0.8p)", program, index, name);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
if(!programObject)
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if(strncmp(name, "gl_", 3) == 0)
{
return error(GL_INVALID_OPERATION);
}
programObject->bindAttributeLocation(index, name);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBindBuffer(GLenum target, GLuint buffer)
{
TRACE("(GLenum target = 0x%X, GLuint buffer = %d)", target, buffer);
try
{
rad::Context *context = rad::getContext();
if(context)
{
switch(target)
{
case GL_ARRAY_BUFFER:
context->bindArrayBuffer(buffer);
return;
case GL_ELEMENT_ARRAY_BUFFER:
context->bindElementArrayBuffer(buffer);
return;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBindFramebuffer(GLenum target, GLuint framebuffer)
{
TRACE("(GLenum target = 0x%X, GLuint framebuffer = %d)", target, framebuffer);
try
{
if(target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER_ANGLE && target != GL_READ_FRAMEBUFFER_ANGLE)
{
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
if(target == GL_READ_FRAMEBUFFER_ANGLE || target == GL_FRAMEBUFFER)
{
context->bindReadFramebuffer(framebuffer);
}
if(target == GL_DRAW_FRAMEBUFFER_ANGLE || target == GL_FRAMEBUFFER)
{
context->bindDrawFramebuffer(framebuffer);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBindRenderbuffer(GLenum target, GLuint renderbuffer)
{
TRACE("(GLenum target = 0x%X, GLuint renderbuffer = %d)", target, renderbuffer);
try
{
if(target != GL_RENDERBUFFER)
{
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
if (renderbuffer != 0 && !context->getRenderbuffer(renderbuffer))
{
// [OpenGL ES 2.0.25] Section 4.4.3 page 112
// [OpenGL ES 3.0.2] Section 4.4.2 page 201
// 'renderbuffer' must be either zero or the name of an existing renderbuffer object of
// type 'renderbuffertarget', otherwise an INVALID_OPERATION error is generated.
return error(GL_INVALID_OPERATION);
}
context->bindRenderbuffer(renderbuffer);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBindTexture(GLenum target, GLuint texture)
{
TRACE("(GLenum target = 0x%X, GLuint texture = %d)", target, texture);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Texture *textureObject = context->getTexture(texture);
if(textureObject && textureObject->getTarget() != target && texture != 0)
{
return error(GL_INVALID_OPERATION);
}
switch(target)
{
case GL_TEXTURE_2D:
context->bindTexture2D(texture);
return;
case GL_TEXTURE_CUBE_MAP:
context->bindTextureCubeMap(texture);
return;
case GL_TEXTURE_EXTERNAL_OES:
context->bindTextureExternal(texture);
return;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBlendColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
TRACE("(GLclampf red = %f, GLclampf green = %f, GLclampf blue = %f, GLclampf alpha = %f)",
red, green, blue, alpha);
try
{
rad::Context* context = rad::getContext();
if(context)
{
context->setBlendColor(rad::clamp01(red), rad::clamp01(green), rad::clamp01(blue), rad::clamp01(alpha));
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBlendEquation(GLenum mode)
{
glBlendEquationSeparate(mode, mode);
}
void GL_APIENTRY glBlendEquationSeparate(GLenum modeRGB, GLenum modeAlpha)
{
TRACE("(GLenum modeRGB = 0x%X, GLenum modeAlpha = 0x%X)", modeRGB, modeAlpha);
try
{
switch(modeRGB)
{
case GL_FUNC_ADD:
case GL_FUNC_SUBTRACT:
case GL_FUNC_REVERSE_SUBTRACT:
case GL_MIN_EXT:
case GL_MAX_EXT:
break;
default:
return error(GL_INVALID_ENUM);
}
switch(modeAlpha)
{
case GL_FUNC_ADD:
case GL_FUNC_SUBTRACT:
case GL_FUNC_REVERSE_SUBTRACT:
case GL_MIN_EXT:
case GL_MAX_EXT:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
context->setBlendEquation(modeRGB, modeAlpha);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBlendFunc(GLenum sfactor, GLenum dfactor)
{
glBlendFuncSeparate(sfactor, dfactor, sfactor, dfactor);
}
void GL_APIENTRY glBlendFuncSeparate(GLenum srcRGB, GLenum dstRGB, GLenum srcAlpha, GLenum dstAlpha)
{
TRACE("(GLenum srcRGB = 0x%X, GLenum dstRGB = 0x%X, GLenum srcAlpha = 0x%X, GLenum dstAlpha = 0x%X)",
srcRGB, dstRGB, srcAlpha, dstAlpha);
try
{
switch(srcRGB)
{
case GL_ZERO:
case GL_ONE:
case GL_SRC_COLOR:
case GL_ONE_MINUS_SRC_COLOR:
case GL_DST_COLOR:
case GL_ONE_MINUS_DST_COLOR:
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
case GL_DST_ALPHA:
case GL_ONE_MINUS_DST_ALPHA:
case GL_CONSTANT_COLOR:
case GL_ONE_MINUS_CONSTANT_COLOR:
case GL_CONSTANT_ALPHA:
case GL_ONE_MINUS_CONSTANT_ALPHA:
case GL_SRC_ALPHA_SATURATE:
break;
default:
return error(GL_INVALID_ENUM);
}
switch(dstRGB)
{
case GL_ZERO:
case GL_ONE:
case GL_SRC_COLOR:
case GL_ONE_MINUS_SRC_COLOR:
case GL_DST_COLOR:
case GL_ONE_MINUS_DST_COLOR:
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
case GL_DST_ALPHA:
case GL_ONE_MINUS_DST_ALPHA:
case GL_CONSTANT_COLOR:
case GL_ONE_MINUS_CONSTANT_COLOR:
case GL_CONSTANT_ALPHA:
case GL_ONE_MINUS_CONSTANT_ALPHA:
break;
default:
return error(GL_INVALID_ENUM);
}
switch(srcAlpha)
{
case GL_ZERO:
case GL_ONE:
case GL_SRC_COLOR:
case GL_ONE_MINUS_SRC_COLOR:
case GL_DST_COLOR:
case GL_ONE_MINUS_DST_COLOR:
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
case GL_DST_ALPHA:
case GL_ONE_MINUS_DST_ALPHA:
case GL_CONSTANT_COLOR:
case GL_ONE_MINUS_CONSTANT_COLOR:
case GL_CONSTANT_ALPHA:
case GL_ONE_MINUS_CONSTANT_ALPHA:
case GL_SRC_ALPHA_SATURATE:
break;
default:
return error(GL_INVALID_ENUM);
}
switch(dstAlpha)
{
case GL_ZERO:
case GL_ONE:
case GL_SRC_COLOR:
case GL_ONE_MINUS_SRC_COLOR:
case GL_DST_COLOR:
case GL_ONE_MINUS_DST_COLOR:
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
case GL_DST_ALPHA:
case GL_ONE_MINUS_DST_ALPHA:
case GL_CONSTANT_COLOR:
case GL_ONE_MINUS_CONSTANT_COLOR:
case GL_CONSTANT_ALPHA:
case GL_ONE_MINUS_CONSTANT_ALPHA:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
context->setBlendFactors(srcRGB, dstRGB, srcAlpha, dstAlpha);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBufferData(GLenum target, GLsizeiptr size, const GLvoid* data, GLenum usage)
{
TRACE("(GLenum target = 0x%X, GLsizeiptr size = %d, const GLvoid* data = 0x%0.8p, GLenum usage = %d)",
target, size, data, usage);
try
{
if(size < 0)
{
return error(GL_INVALID_VALUE);
}
switch(usage)
{
case GL_STREAM_DRAW:
case GL_STATIC_DRAW:
case GL_DYNAMIC_DRAW:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Buffer *buffer;
switch(target)
{
case GL_ARRAY_BUFFER:
buffer = context->getArrayBuffer();
break;
case GL_ELEMENT_ARRAY_BUFFER:
buffer = context->getElementArrayBuffer();
break;
default:
return error(GL_INVALID_ENUM);
}
if(!buffer)
{
return error(GL_INVALID_OPERATION);
}
buffer->bufferData(data, size, usage);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBufferSubData(GLenum target, GLintptr offset, GLsizeiptr size, const GLvoid* data)
{
TRACE("(GLenum target = 0x%X, GLintptr offset = %d, GLsizeiptr size = %d, const GLvoid* data = 0x%0.8p)",
target, offset, size, data);
try
{
if(size < 0 || offset < 0)
{
return error(GL_INVALID_VALUE);
}
if(data == NULL)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Buffer *buffer;
switch(target)
{
case GL_ARRAY_BUFFER:
buffer = context->getArrayBuffer();
break;
case GL_ELEMENT_ARRAY_BUFFER:
buffer = context->getElementArrayBuffer();
break;
default:
return error(GL_INVALID_ENUM);
}
if(!buffer)
{
return error(GL_INVALID_OPERATION);
}
if((size_t)size + offset > buffer->size())
{
return error(GL_INVALID_VALUE);
}
buffer->bufferSubData(data, size, offset);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
GLenum GL_APIENTRY glCheckFramebufferStatus(GLenum target)
{
TRACE("(GLenum target = 0x%X)", target);
try
{
if(target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER_ANGLE && target != GL_READ_FRAMEBUFFER_ANGLE)
{
return error(GL_INVALID_ENUM, 0);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Framebuffer *framebuffer = NULL;
if(target == GL_READ_FRAMEBUFFER_ANGLE)
{
framebuffer = context->getReadFramebuffer();
}
else
{
framebuffer = context->getDrawFramebuffer();
}
return framebuffer->completeness();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, 0);
}
return 0;
}
void GL_APIENTRY glClear(GLbitfield mask)
{
TRACE("(GLbitfield mask = %X)", mask);
try
{
if((mask & ~(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT)) != 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
context->clear(mask);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
TRACE("(GLclampf red = %f, GLclampf green = %f, GLclampf blue = %f, GLclampf alpha = %f)",
red, green, blue, alpha);
try
{
rad::Context *context = rad::getContext();
if(context)
{
context->setClearColor(red, green, blue, alpha);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glClearDepthf(GLclampf depth)
{
TRACE("(GLclampf depth = %f)", depth);
try
{
rad::Context *context = rad::getContext();
if(context)
{
context->setClearDepth(depth);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glClearStencil(GLint s)
{
TRACE("(GLint s = %d)", s);
try
{
rad::Context *context = rad::getContext();
if(context)
{
context->setClearStencil(s);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glColorMask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha)
{
TRACE("(GLboolean red = %d, GLboolean green = %d, GLboolean blue = %d, GLboolean alpha = %d)",
red, green, blue, alpha);
try
{
rad::Context *context = rad::getContext();
if(context)
{
context->setColorMask(red == GL_TRUE, green == GL_TRUE, blue == GL_TRUE, alpha == GL_TRUE);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glCompileShader(GLuint shader)
{
TRACE("(GLuint shader = %d)", shader);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Shader *shaderObject = context->getShader(shader);
if(!shaderObject)
{
if(context->getProgram(shader))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
shaderObject->compile();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glCompressedTexImage2D(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height,
GLint border, GLsizei imageSize, const GLvoid* data)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLenum internalformat = 0x%X, GLsizei width = %d, "
"GLsizei height = %d, GLint border = %d, GLsizei imageSize = %d, const GLvoid* data = 0x%0.8p)",
target, level, internalformat, width, height, border, imageSize, data);
try
{
if(!validImageSize(level, width, height) || border != 0 || imageSize < 0)
{
return error(GL_INVALID_VALUE);
}
switch(internalformat)
{
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE:
case GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE:
if(!S3TC_SUPPORT)
{
return error(GL_INVALID_ENUM);
}
break;
case GL_DEPTH_COMPONENT:
case GL_DEPTH_COMPONENT16:
case GL_DEPTH_COMPONENT32_OES:
case GL_DEPTH_STENCIL_OES:
case GL_DEPTH24_STENCIL8_OES:
return error(GL_INVALID_OPERATION);
default:
return error(GL_INVALID_ENUM);
}
if(border != 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
if(level > rad::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
{
return error(GL_INVALID_VALUE);
}
switch(target)
{
case GL_TEXTURE_2D:
if(width > (rad::IMPLEMENTATION_MAX_TEXTURE_SIZE >> level) ||
height > (rad::IMPLEMENTATION_MAX_TEXTURE_SIZE >> level))
{
return error(GL_INVALID_VALUE);
}
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
if(width != height)
{
return error(GL_INVALID_VALUE);
}
if(width > (rad::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE >> level) ||
height > (rad::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE >> level))
{
return error(GL_INVALID_VALUE);
}
break;
default:
return error(GL_INVALID_ENUM);
}
if(imageSize != rad::ComputeCompressedSize(width, height, internalformat))
{
return error(GL_INVALID_VALUE);
}
if(target == GL_TEXTURE_2D)
{
rad::Texture2D *texture = context->getTexture2D();
if(!texture)
{
return error(GL_INVALID_OPERATION);
}
texture->setCompressedImage(level, internalformat, width, height, imageSize, data);
}
else
{
rad::TextureCubeMap *texture = context->getTextureCubeMap();
if(!texture)
{
return error(GL_INVALID_OPERATION);
}
switch(target)
{
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
texture->setCompressedImage(target, level, internalformat, width, height, imageSize, data);
break;
default: UNREACHABLE();
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glCompressedTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLsizei imageSize, const GLvoid* data)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLint xoffset = %d, GLint yoffset = %d, "
"GLsizei width = %d, GLsizei height = %d, GLenum format = 0x%X, "
"GLsizei imageSize = %d, const GLvoid* data = 0x%0.8p)",
target, level, xoffset, yoffset, width, height, format, imageSize, data);
try
{
if(!rad::IsTextureTarget(target))
{
return error(GL_INVALID_ENUM);
}
if(xoffset < 0 || yoffset < 0 || !validImageSize(level, width, height) || imageSize < 0)
{
return error(GL_INVALID_VALUE);
}
switch(format)
{
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE:
case GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE:
if(!S3TC_SUPPORT)
{
return error(GL_INVALID_ENUM);
}
break;
default:
return error(GL_INVALID_ENUM);
}
if(width == 0 || height == 0 || data == NULL)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
if(level > rad::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
{
return error(GL_INVALID_VALUE);
}
if(imageSize != rad::ComputeCompressedSize(width, height, format))
{
return error(GL_INVALID_VALUE);
}
if(xoffset % 4 != 0 || yoffset % 4 != 0)
{
// We wait to check the offsets until this point, because the multiple-of-four restriction does not exist unless DXT1 textures are supported
return error(GL_INVALID_OPERATION);
}
if(target == GL_TEXTURE_2D)
{
rad::Texture2D *texture = context->getTexture2D();
if(validateSubImageParams(true, width, height, xoffset, yoffset, target, level, format, texture))
{
texture->subImageCompressed(level, xoffset, yoffset, width, height, format, imageSize, data);
}
}
else if(rad::IsCubemapTextureTarget(target))
{
rad::TextureCubeMap *texture = context->getTextureCubeMap();
if(validateSubImageParams(true, width, height, xoffset, yoffset, target, level, format, texture))
{
texture->subImageCompressed(target, level, xoffset, yoffset, width, height, format, imageSize, data);
}
}
else
{
UNREACHABLE();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glCopyTexImage2D(GLenum target, GLint level, GLenum internalformat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLenum internalformat = 0x%X, "
"GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d, GLint border = %d)",
target, level, internalformat, x, y, width, height, border);
try
{
if(!validImageSize(level, width, height))
{
return error(GL_INVALID_VALUE);
}
if(border != 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
switch(target)
{
case GL_TEXTURE_2D:
if(width > (rad::IMPLEMENTATION_MAX_TEXTURE_SIZE >> level) ||
height > (rad::IMPLEMENTATION_MAX_TEXTURE_SIZE >> level))
{
return error(GL_INVALID_VALUE);
}
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
if(width != height)
{
return error(GL_INVALID_VALUE);
}
if(width > (rad::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE >> level) ||
height > (rad::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE >> level))
{
return error(GL_INVALID_VALUE);
}
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Framebuffer *framebuffer = context->getReadFramebuffer();
if(framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if(context->getReadFramebufferHandle() != 0 && framebuffer->getColorbuffer()->getSamples() > 1)
{
return error(GL_INVALID_OPERATION);
}
rad::Renderbuffer *source = framebuffer->getColorbuffer();
GLenum colorbufferFormat = source->getFormat();
// [OpenGL ES 2.0.24] table 3.9
switch(internalformat)
{
case GL_ALPHA:
if(colorbufferFormat != GL_ALPHA &&
colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_LUMINANCE:
case GL_RGB:
if(colorbufferFormat != GL_RGB &&
colorbufferFormat != GL_RGB565 &&
colorbufferFormat != GL_RGB8_OES &&
colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_LUMINANCE_ALPHA:
case GL_RGBA:
if(colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE:
case GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE:
if(S3TC_SUPPORT)
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_ENUM);
}
break;
default:
return error(GL_INVALID_ENUM);
}
if(target == GL_TEXTURE_2D)
{
rad::Texture2D *texture = context->getTexture2D();
if(!texture)
{
return error(GL_INVALID_OPERATION);
}
texture->copyImage(level, internalformat, x, y, width, height, framebuffer);
}
else if(rad::IsCubemapTextureTarget(target))
{
rad::TextureCubeMap *texture = context->getTextureCubeMap();
if(!texture)
{
return error(GL_INVALID_OPERATION);
}
texture->copyImage(target, level, internalformat, x, y, width, height, framebuffer);
}
else UNREACHABLE();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glCopyTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLint xoffset = %d, GLint yoffset = %d, "
"GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d)",
target, level, xoffset, yoffset, x, y, width, height);
try
{
if(!rad::IsTextureTarget(target))
{
return error(GL_INVALID_ENUM);
}
if(level < 0 || xoffset < 0 || yoffset < 0 || width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
if(std::numeric_limits<GLsizei>::max() - xoffset < width || std::numeric_limits<GLsizei>::max() - yoffset < height)
{
return error(GL_INVALID_VALUE);
}
if(width == 0 || height == 0)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
if(level > rad::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
{
return error(GL_INVALID_VALUE);
}
rad::Framebuffer *framebuffer = context->getReadFramebuffer();
if(framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
if(context->getReadFramebufferHandle() != 0 && framebuffer->getColorbuffer()->getSamples() > 1)
{
return error(GL_INVALID_OPERATION);
}
rad::Renderbuffer *source = framebuffer->getColorbuffer();
GLenum colorbufferFormat = source->getFormat();
rad::Texture *texture = NULL;
if(target == GL_TEXTURE_2D)
{
texture = context->getTexture2D();
}
else if(rad::IsCubemapTextureTarget(target))
{
texture = context->getTextureCubeMap();
}
else UNREACHABLE();
if(!validateSubImageParams(false, width, height, xoffset, yoffset, target, level, GL_NONE, texture))
{
return;
}
GLenum textureFormat = texture->getFormat(target, level);
// [OpenGL ES 2.0.24] table 3.9
switch(textureFormat)
{
case GL_ALPHA:
if(colorbufferFormat != GL_ALPHA &&
colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_LUMINANCE:
case GL_RGB:
if(colorbufferFormat != GL_RGB &&
colorbufferFormat != GL_RGB565 &&
colorbufferFormat != GL_RGB8_OES &&
colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_LUMINANCE_ALPHA:
case GL_RGBA:
if(colorbufferFormat != GL_RGBA &&
colorbufferFormat != GL_RGBA4 &&
colorbufferFormat != GL_RGB5_A1 &&
colorbufferFormat != GL_RGBA8_OES)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE:
case GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE:
return error(GL_INVALID_OPERATION);
case GL_DEPTH_COMPONENT:
case GL_DEPTH_STENCIL_OES:
return error(GL_INVALID_OPERATION);
default:
return error(GL_INVALID_OPERATION);
}
texture->copySubImage(target, level, xoffset, yoffset, x, y, width, height, framebuffer);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
GLuint GL_APIENTRY glCreateProgram(void)
{
TRACE("()");
try
{
rad::Context *context = rad::getContext();
if(context)
{
return context->createProgram();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, 0);
}
return 0;
}
GLuint GL_APIENTRY glCreateShader(GLenum type)
{
TRACE("(GLenum type = 0x%X)", type);
try
{
rad::Context *context = rad::getContext();
if(context)
{
switch(type)
{
case GL_FRAGMENT_SHADER:
case GL_VERTEX_SHADER:
return context->createShader(type);
default:
return error(GL_INVALID_ENUM, 0);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, 0);
}
return 0;
}
void GL_APIENTRY glCullFace(GLenum mode)
{
TRACE("(GLenum mode = 0x%X)", mode);
try
{
switch(mode)
{
case GL_FRONT:
case GL_BACK:
case GL_FRONT_AND_BACK:
{
rad::Context *context = rad::getContext();
if(context)
{
context->setCullMode(mode);
}
}
break;
default:
return error(GL_INVALID_ENUM);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDeleteBuffers(GLsizei n, const GLuint* buffers)
{
TRACE("(GLsizei n = %d, const GLuint* buffers = 0x%0.8p)", n, buffers);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
context->deleteBuffer(buffers[i]);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDeleteFencesNV(GLsizei n, const GLuint* fences)
{
TRACE("(GLsizei n = %d, const GLuint* fences = 0x%0.8p)", n, fences);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
context->deleteFence(fences[i]);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDeleteFramebuffers(GLsizei n, const GLuint* framebuffers)
{
TRACE("(GLsizei n = %d, const GLuint* framebuffers = 0x%0.8p)", n, framebuffers);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
if(framebuffers[i] != 0)
{
context->deleteFramebuffer(framebuffers[i]);
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDeleteProgram(GLuint program)
{
TRACE("(GLuint program = %d)", program);
try
{
if(program == 0)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
if(!context->getProgram(program))
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
context->deleteProgram(program);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDeleteQueriesEXT(GLsizei n, const GLuint *ids)
{
TRACE("(GLsizei n = %d, const GLuint *ids = 0x%0.8p)", n, ids);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
context->deleteQuery(ids[i]);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDeleteRenderbuffers(GLsizei n, const GLuint* renderbuffers)
{
TRACE("(GLsizei n = %d, const GLuint* renderbuffers = 0x%0.8p)", n, renderbuffers);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
context->deleteRenderbuffer(renderbuffers[i]);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDeleteShader(GLuint shader)
{
TRACE("(GLuint shader = %d)", shader);
try
{
if(shader == 0)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
if(!context->getShader(shader))
{
if(context->getProgram(shader))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
context->deleteShader(shader);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDeleteTextures(GLsizei n, const GLuint* textures)
{
TRACE("(GLsizei n = %d, const GLuint* textures = 0x%0.8p)", n, textures);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
if(textures[i] != 0)
{
context->deleteTexture(textures[i]);
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDepthFunc(GLenum func)
{
TRACE("(GLenum func = 0x%X)", func);
try
{
switch(func)
{
case GL_NEVER:
case GL_ALWAYS:
case GL_LESS:
case GL_LEQUAL:
case GL_EQUAL:
case GL_GREATER:
case GL_GEQUAL:
case GL_NOTEQUAL:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
context->setDepthFunc(func);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDepthMask(GLboolean flag)
{
TRACE("(GLboolean flag = %d)", flag);
try
{
rad::Context *context = rad::getContext();
if(context)
{
context->setDepthMask(flag != GL_FALSE);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDepthRangef(GLclampf zNear, GLclampf zFar)
{
TRACE("(GLclampf zNear = %f, GLclampf zFar = %f)", zNear, zFar);
try
{
rad::Context *context = rad::getContext();
if(context)
{
context->setDepthRange(zNear, zFar);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDetachShader(GLuint program, GLuint shader)
{
TRACE("(GLuint program = %d, GLuint shader = %d)", program, shader);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
rad::Shader *shaderObject = context->getShader(shader);
if(!programObject)
{
rad::Shader *shaderByProgramHandle;
shaderByProgramHandle = context->getShader(program);
if(!shaderByProgramHandle)
{
return error(GL_INVALID_VALUE);
}
else
{
return error(GL_INVALID_OPERATION);
}
}
if(!shaderObject)
{
rad::Program *programByShaderHandle = context->getProgram(shader);
if(!programByShaderHandle)
{
return error(GL_INVALID_VALUE);
}
else
{
return error(GL_INVALID_OPERATION);
}
}
if(!programObject->detachShader(shaderObject))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDisable(GLenum cap)
{
TRACE("(GLenum cap = 0x%X)", cap);
try
{
rad::Context *context = rad::getContext();
if(context)
{
switch(cap)
{
case GL_CULL_FACE: context->setCullFace(false); break;
case GL_POLYGON_OFFSET_FILL: context->setPolygonOffsetFill(false); break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: context->setSampleAlphaToCoverage(false); break;
case GL_SAMPLE_COVERAGE: context->setSampleCoverage(false); break;
case GL_SCISSOR_TEST: context->setScissorTest(false); break;
case GL_STENCIL_TEST: context->setStencilTest(false); break;
case GL_DEPTH_TEST: context->setDepthTest(false); break;
case GL_BLEND: context->setBlend(false); break;
case GL_DITHER: context->setDither(false); break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDisableVertexAttribArray(GLuint index)
{
TRACE("(GLuint index = %d)", index);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
context->setEnableVertexAttribArray(index, false);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDrawArrays(GLenum mode, GLint first, GLsizei count)
{
TRACE("(GLenum mode = 0x%X, GLint first = %d, GLsizei count = %d)", mode, first, count);
try
{
if(count < 0 || first < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
context->drawArrays(mode, first, count);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid* indices)
{
TRACE("(GLenum mode = 0x%X, GLsizei count = %d, GLenum type = 0x%X, const GLvoid* indices = 0x%0.8p)",
mode, count, type, indices);
try
{
if(count < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
switch(type)
{
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT:
case GL_UNSIGNED_INT:
break;
default:
return error(GL_INVALID_ENUM);
}
context->drawElements(mode, count, type, indices);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glEnable(GLenum cap)
{
TRACE("(GLenum cap = 0x%X)", cap);
try
{
rad::Context *context = rad::getContext();
if(context)
{
switch(cap)
{
case GL_CULL_FACE: context->setCullFace(true); break;
case GL_POLYGON_OFFSET_FILL: context->setPolygonOffsetFill(true); break;
case GL_SAMPLE_ALPHA_TO_COVERAGE: context->setSampleAlphaToCoverage(true); break;
case GL_SAMPLE_COVERAGE: context->setSampleCoverage(true); break;
case GL_SCISSOR_TEST: context->setScissorTest(true); break;
case GL_STENCIL_TEST: context->setStencilTest(true); break;
case GL_DEPTH_TEST: context->setDepthTest(true); break;
case GL_BLEND: context->setBlend(true); break;
case GL_DITHER: context->setDither(true); break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glEnableVertexAttribArray(GLuint index)
{
TRACE("(GLuint index = %d)", index);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
context->setEnableVertexAttribArray(index, true);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glEndQueryEXT(GLenum target)
{
TRACE("GLenum target = 0x%X)", target);
try
{
switch(target)
{
case GL_ANY_SAMPLES_PASSED_EXT:
case GL_ANY_SAMPLES_PASSED_CONSERVATIVE_EXT:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
context->endQuery(target);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glFinishFenceNV(GLuint fence)
{
TRACE("(GLuint fence = %d)", fence);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Fence* fenceObject = context->getFence(fence);
if(fenceObject == NULL)
{
return error(GL_INVALID_OPERATION);
}
fenceObject->finishFence();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glFinish(void)
{
TRACE("()");
try
{
rad::Context *context = rad::getContext();
if(context)
{
context->finish();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glFlush(void)
{
TRACE("()");
try
{
rad::Context *context = rad::getContext();
if(context)
{
context->flush();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glFramebufferRenderbuffer(GLenum target, GLenum attachment, GLenum renderbuffertarget, GLuint renderbuffer)
{
TRACE("(GLenum target = 0x%X, GLenum attachment = 0x%X, GLenum renderbuffertarget = 0x%X, "
"GLuint renderbuffer = %d)", target, attachment, renderbuffertarget, renderbuffer);
try
{
if((target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER_ANGLE && target != GL_READ_FRAMEBUFFER_ANGLE)
|| (renderbuffertarget != GL_RENDERBUFFER && renderbuffer != 0))
{
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Framebuffer *framebuffer = NULL;
GLuint framebufferHandle = 0;
if(target == GL_READ_FRAMEBUFFER_ANGLE)
{
framebuffer = context->getReadFramebuffer();
framebufferHandle = context->getReadFramebufferHandle();
}
else
{
framebuffer = context->getDrawFramebuffer();
framebufferHandle = context->getDrawFramebufferHandle();
}
if(!framebuffer || (framebufferHandle == 0 && renderbuffer != 0))
{
return error(GL_INVALID_OPERATION);
}
switch(attachment)
{
case GL_COLOR_ATTACHMENT0:
framebuffer->setColorbuffer(GL_RENDERBUFFER, renderbuffer);
break;
case GL_DEPTH_ATTACHMENT:
framebuffer->setDepthbuffer(GL_RENDERBUFFER, renderbuffer);
break;
case GL_STENCIL_ATTACHMENT:
framebuffer->setStencilbuffer(GL_RENDERBUFFER, renderbuffer);
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glFramebufferTexture2D(GLenum target, GLenum attachment, GLenum textarget, GLuint texture, GLint level)
{
TRACE("(GLenum target = 0x%X, GLenum attachment = 0x%X, GLenum textarget = 0x%X, "
"GLuint texture = %d, GLint level = %d)", target, attachment, textarget, texture, level);
try
{
if(target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER_ANGLE && target != GL_READ_FRAMEBUFFER_ANGLE)
{
return error(GL_INVALID_ENUM);
}
switch(attachment)
{
case GL_COLOR_ATTACHMENT0:
case GL_DEPTH_ATTACHMENT:
case GL_STENCIL_ATTACHMENT:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
if(texture == 0)
{
textarget = GL_NONE;
}
else
{
rad::Texture *tex = context->getTexture(texture);
if(tex == NULL)
{
return error(GL_INVALID_OPERATION);
}
if(tex->isCompressed(textarget, level))
{
return error(GL_INVALID_OPERATION);
}
switch(textarget)
{
case GL_TEXTURE_2D:
if(tex->getTarget() != GL_TEXTURE_2D)
{
return error(GL_INVALID_OPERATION);
}
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
if(tex->getTarget() != GL_TEXTURE_CUBE_MAP)
{
return error(GL_INVALID_OPERATION);
}
break;
default:
return error(GL_INVALID_ENUM);
}
if(level != 0)
{
return error(GL_INVALID_VALUE);
}
}
rad::Framebuffer *framebuffer = NULL;
GLuint framebufferHandle = 0;
if(target == GL_READ_FRAMEBUFFER_ANGLE)
{
framebuffer = context->getReadFramebuffer();
framebufferHandle = context->getReadFramebufferHandle();
}
else
{
framebuffer = context->getDrawFramebuffer();
framebufferHandle = context->getDrawFramebufferHandle();
}
if(framebufferHandle == 0 || !framebuffer)
{
return error(GL_INVALID_OPERATION);
}
switch(attachment)
{
case GL_COLOR_ATTACHMENT0: framebuffer->setColorbuffer(textarget, texture); break;
case GL_DEPTH_ATTACHMENT: framebuffer->setDepthbuffer(textarget, texture); break;
case GL_STENCIL_ATTACHMENT: framebuffer->setStencilbuffer(textarget, texture); break;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glFrontFace(GLenum mode)
{
TRACE("(GLenum mode = 0x%X)", mode);
try
{
switch(mode)
{
case GL_CW:
case GL_CCW:
{
rad::Context *context = rad::getContext();
if(context)
{
context->setFrontFace(mode);
}
}
break;
default:
return error(GL_INVALID_ENUM);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGenBuffers(GLsizei n, GLuint* buffers)
{
TRACE("(GLsizei n = %d, GLuint* buffers = 0x%0.8p)", n, buffers);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
buffers[i] = context->createBuffer();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGenerateMipmap(GLenum target)
{
TRACE("(GLenum target = 0x%X)", target);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Texture *texture;
switch(target)
{
case GL_TEXTURE_2D:
texture = context->getTexture2D();
break;
case GL_TEXTURE_CUBE_MAP:
texture = context->getTextureCubeMap();
break;
default:
return error(GL_INVALID_ENUM);
}
if(texture->isCompressed(target, 0) || texture->isDepth(target, 0))
{
return error(GL_INVALID_OPERATION);
}
texture->generateMipmaps();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGenFencesNV(GLsizei n, GLuint* fences)
{
TRACE("(GLsizei n = %d, GLuint* fences = 0x%0.8p)", n, fences);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
fences[i] = context->createFence();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGenFramebuffers(GLsizei n, GLuint* framebuffers)
{
TRACE("(GLsizei n = %d, GLuint* framebuffers = 0x%0.8p)", n, framebuffers);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
framebuffers[i] = context->createFramebuffer();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGenQueriesEXT(GLsizei n, GLuint* ids)
{
TRACE("(GLsizei n = %d, GLuint* ids = 0x%0.8p)", n, ids);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
ids[i] = context->createQuery();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGenRenderbuffers(GLsizei n, GLuint* renderbuffers)
{
TRACE("(GLsizei n = %d, GLuint* renderbuffers = 0x%0.8p)", n, renderbuffers);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
renderbuffers[i] = context->createRenderbuffer();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGenTextures(GLsizei n, GLuint* textures)
{
TRACE("(GLsizei n = %d, GLuint* textures = 0x%0.8p)", n, textures);
try
{
if(n < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
for(int i = 0; i < n; i++)
{
textures[i] = context->createTexture();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetActiveAttrib(GLuint program, GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
TRACE("(GLuint program = %d, GLuint index = %d, GLsizei bufsize = %d, GLsizei *length = 0x%0.8p, "
"GLint *size = 0x%0.8p, GLenum *type = %0.8p, GLchar *name = %0.8p)",
program, index, bufsize, length, size, type, name);
try
{
if(bufsize < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
if(!programObject)
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if(index >= (GLuint)programObject->getActiveAttributeCount())
{
return error(GL_INVALID_VALUE);
}
programObject->getActiveAttribute(index, bufsize, length, size, type, name);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetActiveUniform(GLuint program, GLuint index, GLsizei bufsize, GLsizei* length, GLint* size, GLenum* type, GLchar* name)
{
TRACE("(GLuint program = %d, GLuint index = %d, GLsizei bufsize = %d, "
"GLsizei* length = 0x%0.8p, GLint* size = 0x%0.8p, GLenum* type = 0x%0.8p, GLchar* name = 0x%0.8p)",
program, index, bufsize, length, size, type, name);
try
{
if(bufsize < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
if(!programObject)
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if(index >= (GLuint)programObject->getActiveUniformCount())
{
return error(GL_INVALID_VALUE);
}
programObject->getActiveUniform(index, bufsize, length, size, type, name);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetAttachedShaders(GLuint program, GLsizei maxcount, GLsizei* count, GLuint* shaders)
{
TRACE("(GLuint program = %d, GLsizei maxcount = %d, GLsizei* count = 0x%0.8p, GLuint* shaders = 0x%0.8p)",
program, maxcount, count, shaders);
try
{
if(maxcount < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
if(!programObject)
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
return programObject->getAttachedShaders(maxcount, count, shaders);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
int GL_APIENTRY glGetAttribLocation(GLuint program, const GLchar* name)
{
TRACE("(GLuint program = %d, const GLchar* name = %s)", program, name);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
if(!programObject)
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION, -1);
}
else
{
return error(GL_INVALID_VALUE, -1);
}
}
if(!programObject->isLinked())
{
return error(GL_INVALID_OPERATION, -1);
}
return programObject->getAttributeLocation(name);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, -1);
}
return -1;
}
void GL_APIENTRY glGetBooleanv(GLenum pname, GLboolean* params)
{
TRACE("(GLenum pname = 0x%X, GLboolean* params = 0x%0.8p)", pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
if(!(context->getBooleanv(pname, params)))
{
GLenum nativeType;
unsigned int numParams = 0;
if(!context->getQueryParameterInfo(pname, &nativeType, &numParams))
return error(GL_INVALID_ENUM);
if(numParams == 0)
return; // it is known that the pname is valid, but there are no parameters to return
if(nativeType == GL_FLOAT)
{
GLfloat *floatParams = NULL;
floatParams = new GLfloat[numParams];
context->getFloatv(pname, floatParams);
for(unsigned int i = 0; i < numParams; ++i)
{
if(floatParams[i] == 0.0f)
params[i] = GL_FALSE;
else
params[i] = GL_TRUE;
}
delete [] floatParams;
}
else if(nativeType == GL_INT)
{
GLint *intParams = NULL;
intParams = new GLint[numParams];
context->getIntegerv(pname, intParams);
for(unsigned int i = 0; i < numParams; ++i)
{
if(intParams[i] == 0)
params[i] = GL_FALSE;
else
params[i] = GL_TRUE;
}
delete [] intParams;
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetBufferParameteriv(GLenum target, GLenum pname, GLint* params)
{
TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLint* params = 0x%0.8p)", target, pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Buffer *buffer;
switch(target)
{
case GL_ARRAY_BUFFER:
buffer = context->getArrayBuffer();
break;
case GL_ELEMENT_ARRAY_BUFFER:
buffer = context->getElementArrayBuffer();
break;
default: return error(GL_INVALID_ENUM);
}
if(!buffer)
{
// A null buffer means that "0" is bound to the requested buffer target
return error(GL_INVALID_OPERATION);
}
switch(pname)
{
case GL_BUFFER_USAGE:
*params = buffer->usage();
break;
case GL_BUFFER_SIZE:
*params = buffer->size();
break;
default: return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
GLenum GL_APIENTRY glGetError(void)
{
TRACE("()");
rad::Context *context = rad::getContext();
if(context)
{
return context->getError();
}
return GL_NO_ERROR;
}
void GL_APIENTRY glGetFenceivNV(GLuint fence, GLenum pname, GLint *params)
{
TRACE("(GLuint fence = %d, GLenum pname = 0x%X, GLint *params = 0x%0.8p)", fence, pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Fence *fenceObject = context->getFence(fence);
if(fenceObject == NULL)
{
return error(GL_INVALID_OPERATION);
}
fenceObject->getFenceiv(pname, params);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetFloatv(GLenum pname, GLfloat* params)
{
TRACE("(GLenum pname = 0x%X, GLfloat* params = 0x%0.8p)", pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
if(!(context->getFloatv(pname, params)))
{
GLenum nativeType;
unsigned int numParams = 0;
if(!context->getQueryParameterInfo(pname, &nativeType, &numParams))
return error(GL_INVALID_ENUM);
if(numParams == 0)
return; // it is known that the pname is valid, but that there are no parameters to return.
if(nativeType == GL_BOOL)
{
GLboolean *boolParams = NULL;
boolParams = new GLboolean[numParams];
context->getBooleanv(pname, boolParams);
for(unsigned int i = 0; i < numParams; ++i)
{
if(boolParams[i] == GL_FALSE)
params[i] = 0.0f;
else
params[i] = 1.0f;
}
delete [] boolParams;
}
else if(nativeType == GL_INT)
{
GLint *intParams = NULL;
intParams = new GLint[numParams];
context->getIntegerv(pname, intParams);
for(unsigned int i = 0; i < numParams; ++i)
{
params[i] = (GLfloat)intParams[i];
}
delete [] intParams;
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetFramebufferAttachmentParameteriv(GLenum target, GLenum attachment, GLenum pname, GLint* params)
{
TRACE("(GLenum target = 0x%X, GLenum attachment = 0x%X, GLenum pname = 0x%X, GLint* params = 0x%0.8p)",
target, attachment, pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
if(target != GL_FRAMEBUFFER && target != GL_DRAW_FRAMEBUFFER_ANGLE && target != GL_READ_FRAMEBUFFER_ANGLE)
{
return error(GL_INVALID_ENUM);
}
rad::Framebuffer *framebuffer = NULL;
if(target == GL_READ_FRAMEBUFFER_ANGLE)
{
if(context->getReadFramebufferHandle() == 0)
{
return error(GL_INVALID_OPERATION);
}
framebuffer = context->getReadFramebuffer();
}
else
{
if(context->getDrawFramebufferHandle() == 0)
{
return error(GL_INVALID_OPERATION);
}
framebuffer = context->getDrawFramebuffer();
}
GLenum attachmentType;
GLuint attachmentHandle;
switch(attachment)
{
case GL_COLOR_ATTACHMENT0:
attachmentType = framebuffer->getColorbufferType();
attachmentHandle = framebuffer->getColorbufferHandle();
break;
case GL_DEPTH_ATTACHMENT:
attachmentType = framebuffer->getDepthbufferType();
attachmentHandle = framebuffer->getDepthbufferHandle();
break;
case GL_STENCIL_ATTACHMENT:
attachmentType = framebuffer->getStencilbufferType();
attachmentHandle = framebuffer->getStencilbufferHandle();
break;
default: return error(GL_INVALID_ENUM);
}
GLenum attachmentObjectType; // Type category
if(attachmentType == GL_NONE || attachmentType == GL_RENDERBUFFER)
{
attachmentObjectType = attachmentType;
}
else if(rad::IsTextureTarget(attachmentType))
{
attachmentObjectType = GL_TEXTURE;
}
else UNREACHABLE();
switch(pname)
{
case GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE:
*params = attachmentObjectType;
break;
case GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME:
if(attachmentObjectType == GL_RENDERBUFFER || attachmentObjectType == GL_TEXTURE)
{
*params = attachmentHandle;
}
else
{
return error(GL_INVALID_ENUM);
}
break;
case GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL:
if(attachmentObjectType == GL_TEXTURE)
{
*params = 0; // FramebufferTexture2D will not allow level to be set to anything else in GL ES 2.0
}
else
{
return error(GL_INVALID_ENUM);
}
break;
case GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE:
if(attachmentObjectType == GL_TEXTURE)
{
if(rad::IsCubemapTextureTarget(attachmentType))
{
*params = attachmentType;
}
else
{
*params = 0;
}
}
else
{
return error(GL_INVALID_ENUM);
}
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
GLenum GL_APIENTRY glGetGraphicsResetStatusEXT(void)
{
TRACE("()");
return GL_NO_ERROR;
}
void GL_APIENTRY glGetIntegerv(GLenum pname, GLint* params)
{
TRACE("(GLenum pname = 0x%X, GLint* params = 0x%0.8p)", pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
if(!(context->getIntegerv(pname, params)))
{
GLenum nativeType;
unsigned int numParams = 0;
if(!context->getQueryParameterInfo(pname, &nativeType, &numParams))
return error(GL_INVALID_ENUM);
if(numParams == 0)
return; // it is known that pname is valid, but there are no parameters to return
if(nativeType == GL_BOOL)
{
GLboolean *boolParams = NULL;
boolParams = new GLboolean[numParams];
context->getBooleanv(pname, boolParams);
for(unsigned int i = 0; i < numParams; ++i)
{
if(boolParams[i] == GL_FALSE)
params[i] = 0;
else
params[i] = 1;
}
delete [] boolParams;
}
else if(nativeType == GL_FLOAT)
{
GLfloat *floatParams = NULL;
floatParams = new GLfloat[numParams];
context->getFloatv(pname, floatParams);
for(unsigned int i = 0; i < numParams; ++i)
{
if(pname == GL_DEPTH_RANGE || pname == GL_COLOR_CLEAR_VALUE || pname == GL_DEPTH_CLEAR_VALUE || pname == GL_BLEND_COLOR)
{
params[i] = (GLint)(((GLfloat)(0xFFFFFFFF) * floatParams[i] - 1.0f) / 2.0f);
}
else
params[i] = (GLint)(floatParams[i] > 0.0f ? floor(floatParams[i] + 0.5) : ceil(floatParams[i] - 0.5));
}
delete [] floatParams;
}
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetProgramiv(GLuint program, GLenum pname, GLint* params)
{
TRACE("(GLuint program = %d, GLenum pname = %d, GLint* params = 0x%0.8p)", program, pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
if(!programObject)
{
return error(GL_INVALID_VALUE);
}
switch(pname)
{
case GL_DELETE_STATUS:
*params = programObject->isFlaggedForDeletion();
return;
case GL_LINK_STATUS:
*params = programObject->isLinked();
return;
case GL_VALIDATE_STATUS:
*params = programObject->isValidated();
return;
case GL_INFO_LOG_LENGTH:
*params = programObject->getInfoLogLength();
return;
case GL_ATTACHED_SHADERS:
*params = programObject->getAttachedShadersCount();
return;
case GL_ACTIVE_ATTRIBUTES:
*params = programObject->getActiveAttributeCount();
return;
case GL_ACTIVE_ATTRIBUTE_MAX_LENGTH:
*params = programObject->getActiveAttributeMaxLength();
return;
case GL_ACTIVE_UNIFORMS:
*params = programObject->getActiveUniformCount();
return;
case GL_ACTIVE_UNIFORM_MAX_LENGTH:
*params = programObject->getActiveUniformMaxLength();
return;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetProgramInfoLog(GLuint program, GLsizei bufsize, GLsizei* length, GLchar* infolog)
{
TRACE("(GLuint program = %d, GLsizei bufsize = %d, GLsizei* length = 0x%0.8p, GLchar* infolog = 0x%0.8p)",
program, bufsize, length, infolog);
try
{
if(bufsize < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
if(!programObject)
{
return error(GL_INVALID_VALUE);
}
programObject->getInfoLog(bufsize, length, infolog);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetQueryivEXT(GLenum target, GLenum pname, GLint *params)
{
TRACE("GLenum target = 0x%X, GLenum pname = 0x%X, GLint *params = 0x%0.8p)", target, pname, params);
try
{
switch(pname)
{
case GL_CURRENT_QUERY_EXT:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
params[0] = context->getActiveQuery(target);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetQueryObjectuivEXT(GLuint id, GLenum pname, GLuint *params)
{
TRACE("(GLuint id = %d, GLenum pname = 0x%X, GLuint *params = 0x%0.8p)", id, pname, params);
try
{
switch(pname)
{
case GL_QUERY_RESULT_EXT:
case GL_QUERY_RESULT_AVAILABLE_EXT:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Query *queryObject = context->getQuery(id, false, GL_NONE);
if(!queryObject)
{
return error(GL_INVALID_OPERATION);
}
if(context->getActiveQuery(queryObject->getType()) == id)
{
return error(GL_INVALID_OPERATION);
}
switch(pname)
{
case GL_QUERY_RESULT_EXT:
params[0] = queryObject->getResult();
break;
case GL_QUERY_RESULT_AVAILABLE_EXT:
params[0] = queryObject->isResultAvailable();
break;
default:
ASSERT(false);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetRenderbufferParameteriv(GLenum target, GLenum pname, GLint* params)
{
TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLint* params = 0x%0.8p)", target, pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
if(target != GL_RENDERBUFFER)
{
return error(GL_INVALID_ENUM);
}
if(context->getRenderbufferHandle() == 0)
{
return error(GL_INVALID_OPERATION);
}
rad::Renderbuffer *renderbuffer = context->getRenderbuffer(context->getRenderbufferHandle());
switch(pname)
{
case GL_RENDERBUFFER_WIDTH: *params = renderbuffer->getWidth(); break;
case GL_RENDERBUFFER_HEIGHT: *params = renderbuffer->getHeight(); break;
case GL_RENDERBUFFER_INTERNAL_FORMAT: *params = renderbuffer->getFormat(); break;
case GL_RENDERBUFFER_RED_SIZE: *params = renderbuffer->getRedSize(); break;
case GL_RENDERBUFFER_GREEN_SIZE: *params = renderbuffer->getGreenSize(); break;
case GL_RENDERBUFFER_BLUE_SIZE: *params = renderbuffer->getBlueSize(); break;
case GL_RENDERBUFFER_ALPHA_SIZE: *params = renderbuffer->getAlphaSize(); break;
case GL_RENDERBUFFER_DEPTH_SIZE: *params = renderbuffer->getDepthSize(); break;
case GL_RENDERBUFFER_STENCIL_SIZE: *params = renderbuffer->getStencilSize(); break;
case GL_RENDERBUFFER_SAMPLES_ANGLE: *params = renderbuffer->getSamples(); break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetShaderiv(GLuint shader, GLenum pname, GLint* params)
{
TRACE("(GLuint shader = %d, GLenum pname = %d, GLint* params = 0x%0.8p)", shader, pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Shader *shaderObject = context->getShader(shader);
if(!shaderObject)
{
return error(GL_INVALID_VALUE);
}
switch(pname)
{
case GL_SHADER_TYPE:
*params = shaderObject->getType();
return;
case GL_DELETE_STATUS:
*params = shaderObject->isFlaggedForDeletion();
return;
case GL_COMPILE_STATUS:
*params = shaderObject->isCompiled() ? GL_TRUE : GL_FALSE;
return;
case GL_INFO_LOG_LENGTH:
*params = shaderObject->getInfoLogLength();
return;
case GL_SHADER_SOURCE_LENGTH:
*params = shaderObject->getSourceLength();
return;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetShaderInfoLog(GLuint shader, GLsizei bufsize, GLsizei* length, GLchar* infolog)
{
TRACE("(GLuint shader = %d, GLsizei bufsize = %d, GLsizei* length = 0x%0.8p, GLchar* infolog = 0x%0.8p)",
shader, bufsize, length, infolog);
try
{
if(bufsize < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Shader *shaderObject = context->getShader(shader);
if(!shaderObject)
{
return error(GL_INVALID_VALUE);
}
shaderObject->getInfoLog(bufsize, length, infolog);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetShaderPrecisionFormat(GLenum shadertype, GLenum precisiontype, GLint* range, GLint* precision)
{
TRACE("(GLenum shadertype = 0x%X, GLenum precisiontype = 0x%X, GLint* range = 0x%0.8p, GLint* precision = 0x%0.8p)",
shadertype, precisiontype, range, precision);
try
{
switch(shadertype)
{
case GL_VERTEX_SHADER:
case GL_FRAGMENT_SHADER:
break;
default:
return error(GL_INVALID_ENUM);
}
switch(precisiontype)
{
case GL_LOW_FLOAT:
case GL_MEDIUM_FLOAT:
case GL_HIGH_FLOAT:
// IEEE 754 single-precision
range[0] = 127;
range[1] = 127;
*precision = 23;
break;
case GL_LOW_INT:
case GL_MEDIUM_INT:
case GL_HIGH_INT:
// Single-precision floating-point numbers can accurately represent integers up to +/-16777216
range[0] = 24;
range[1] = 24;
*precision = 0;
break;
default:
return error(GL_INVALID_ENUM);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetShaderSource(GLuint shader, GLsizei bufsize, GLsizei* length, GLchar* source)
{
TRACE("(GLuint shader = %d, GLsizei bufsize = %d, GLsizei* length = 0x%0.8p, GLchar* source = 0x%0.8p)",
shader, bufsize, length, source);
try
{
if(bufsize < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Shader *shaderObject = context->getShader(shader);
if(!shaderObject)
{
return error(GL_INVALID_OPERATION);
}
shaderObject->getSource(bufsize, length, source);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
const GLubyte* GL_APIENTRY glGetString(GLenum name)
{
TRACE("(GLenum name = 0x%X)", name);
try
{
rad::Context *context = rad::getContext();
switch(name)
{
case GL_VENDOR:
return (GLubyte*)"TransGaming Inc.";
case GL_RENDERER:
return (GLubyte*)"SwiftShader";
case GL_VERSION:
return (GLubyte*)"OpenGL ES 2.0 SwiftShader "VERSION_STRING;
case GL_SHADING_LANGUAGE_VERSION:
return (GLubyte*)"OpenGL ES GLSL ES 1.00 SwiftShader "VERSION_STRING;
case GL_EXTENSIONS:
// Keep list sorted in following order:
// OES extensions
// EXT extensions
// Vendor extensions
return (GLubyte*)
"GL_OES_depth_texture "
"GL_OES_depth_texture_cube_map "
"GL_OES_EGL_image "
"GL_OES_EGL_image_external "
"GL_OES_element_index_uint "
"GL_OES_packed_depth_stencil "
"GL_OES_rgb8_rgba8 "
"GL_OES_standard_derivatives "
"GL_OES_texture_float "
"GL_OES_texture_float_linear "
"GL_OES_texture_half_float "
"GL_OES_texture_half_float_linear "
"GL_OES_texture_npot "
"GL_EXT_blend_minmax "
"GL_EXT_occlusion_query_boolean "
"GL_EXT_read_format_bgra "
#if (S3TC_SUPPORT)
"GL_EXT_texture_compression_dxt1 "
"GL_ANGLE_texture_compression_dxt3 "
"GL_ANGLE_texture_compression_dxt5 "
#endif
"GL_EXT_texture_filter_anisotropic "
"GL_EXT_texture_format_BGRA8888 "
"GL_ANGLE_framebuffer_blit "
"GL_ANGLE_framebuffer_multisample "
"GL_NV_fence";
default:
return error(GL_INVALID_ENUM, (GLubyte*)NULL);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, (GLubyte*)NULL);
}
return NULL;
}
void GL_APIENTRY glGetTexParameterfv(GLenum target, GLenum pname, GLfloat* params)
{
TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLfloat* params = 0x%0.8p)", target, pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Texture *texture;
switch(target)
{
case GL_TEXTURE_2D:
texture = context->getTexture2D();
break;
case GL_TEXTURE_CUBE_MAP:
texture = context->getTextureCubeMap();
break;
case GL_TEXTURE_EXTERNAL_OES:
texture = context->getTextureExternal();
break;
default:
return error(GL_INVALID_ENUM);
}
switch(pname)
{
case GL_TEXTURE_MAG_FILTER:
*params = (GLfloat)texture->getMagFilter();
break;
case GL_TEXTURE_MIN_FILTER:
*params = (GLfloat)texture->getMinFilter();
break;
case GL_TEXTURE_WRAP_S:
*params = (GLfloat)texture->getWrapS();
break;
case GL_TEXTURE_WRAP_T:
*params = (GLfloat)texture->getWrapT();
break;
case GL_TEXTURE_MAX_ANISOTROPY_EXT:
*params = texture->getMaxAnisotropy();
break;
case GL_REQUIRED_TEXTURE_IMAGE_UNITS_OES:
*params = (GLfloat)1;
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetTexParameteriv(GLenum target, GLenum pname, GLint* params)
{
TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLint* params = 0x%0.8p)", target, pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Texture *texture;
switch(target)
{
case GL_TEXTURE_2D:
texture = context->getTexture2D();
break;
case GL_TEXTURE_CUBE_MAP:
texture = context->getTextureCubeMap();
break;
case GL_TEXTURE_EXTERNAL_OES:
texture = context->getTextureExternal();
break;
default:
return error(GL_INVALID_ENUM);
}
switch(pname)
{
case GL_TEXTURE_MAG_FILTER:
*params = texture->getMagFilter();
break;
case GL_TEXTURE_MIN_FILTER:
*params = texture->getMinFilter();
break;
case GL_TEXTURE_WRAP_S:
*params = texture->getWrapS();
break;
case GL_TEXTURE_WRAP_T:
*params = texture->getWrapT();
break;
case GL_TEXTURE_MAX_ANISOTROPY_EXT:
*params = (GLint)texture->getMaxAnisotropy();
break;
case GL_REQUIRED_TEXTURE_IMAGE_UNITS_OES:
*params = 1;
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetnUniformfvEXT(GLuint program, GLint location, GLsizei bufSize, GLfloat* params)
{
TRACE("(GLuint program = %d, GLint location = %d, GLsizei bufSize = %d, GLfloat* params = 0x%0.8p)",
program, location, bufSize, params);
try
{
if(bufSize < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
if(program == 0)
{
return error(GL_INVALID_VALUE);
}
rad::Program *programObject = context->getProgram(program);
if(!programObject || !programObject->isLinked())
{
return error(GL_INVALID_OPERATION);
}
if(!programObject->getUniformfv(location, &bufSize, params))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetUniformfv(GLuint program, GLint location, GLfloat* params)
{
TRACE("(GLuint program = %d, GLint location = %d, GLfloat* params = 0x%0.8p)", program, location, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
if(program == 0)
{
return error(GL_INVALID_VALUE);
}
rad::Program *programObject = context->getProgram(program);
if(!programObject || !programObject->isLinked())
{
return error(GL_INVALID_OPERATION);
}
if(!programObject->getUniformfv(location, NULL, params))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetnUniformivEXT(GLuint program, GLint location, GLsizei bufSize, GLint* params)
{
TRACE("(GLuint program = %d, GLint location = %d, GLsizei bufSize = %d, GLint* params = 0x%0.8p)",
program, location, bufSize, params);
try
{
if(bufSize < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
if(program == 0)
{
return error(GL_INVALID_VALUE);
}
rad::Program *programObject = context->getProgram(program);
if(!programObject || !programObject->isLinked())
{
return error(GL_INVALID_OPERATION);
}
if(!programObject)
{
return error(GL_INVALID_OPERATION);
}
if(!programObject->getUniformiv(location, &bufSize, params))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetUniformiv(GLuint program, GLint location, GLint* params)
{
TRACE("(GLuint program = %d, GLint location = %d, GLint* params = 0x%0.8p)", program, location, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
if(program == 0)
{
return error(GL_INVALID_VALUE);
}
rad::Program *programObject = context->getProgram(program);
if(!programObject || !programObject->isLinked())
{
return error(GL_INVALID_OPERATION);
}
if(!programObject)
{
return error(GL_INVALID_OPERATION);
}
if(!programObject->getUniformiv(location, NULL, params))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
int GL_APIENTRY glGetUniformLocation(GLuint program, const GLchar* name)
{
TRACE("(GLuint program = %d, const GLchar* name = 0x%0.8p)", program, name);
try
{
rad::Context *context = rad::getContext();
if(strstr(name, "gl_") == name)
{
return -1;
}
if(context)
{
rad::Program *programObject = context->getProgram(program);
if(!programObject)
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION, -1);
}
else
{
return error(GL_INVALID_VALUE, -1);
}
}
if(!programObject->isLinked())
{
return error(GL_INVALID_OPERATION, -1);
}
return programObject->getUniformLocation(name);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, -1);
}
return -1;
}
void GL_APIENTRY glGetVertexAttribfv(GLuint index, GLenum pname, GLfloat* params)
{
TRACE("(GLuint index = %d, GLenum pname = 0x%X, GLfloat* params = 0x%0.8p)", index, pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
const rad::VertexAttribute &attribState = context->getVertexAttribState(index);
switch(pname)
{
case GL_VERTEX_ATTRIB_ARRAY_ENABLED:
*params = (GLfloat)(attribState.mArrayEnabled ? GL_TRUE : GL_FALSE);
break;
case GL_VERTEX_ATTRIB_ARRAY_SIZE:
*params = (GLfloat)attribState.mSize;
break;
case GL_VERTEX_ATTRIB_ARRAY_STRIDE:
*params = (GLfloat)attribState.mStride;
break;
case GL_VERTEX_ATTRIB_ARRAY_TYPE:
*params = (GLfloat)attribState.mType;
break;
case GL_VERTEX_ATTRIB_ARRAY_NORMALIZED:
*params = (GLfloat)(attribState.mNormalized ? GL_TRUE : GL_FALSE);
break;
case GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING:
*params = (GLfloat)attribState.mBoundBuffer.id();
break;
case GL_CURRENT_VERTEX_ATTRIB:
for(int i = 0; i < 4; ++i)
{
params[i] = attribState.mCurrentValue[i];
}
break;
default: return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetVertexAttribiv(GLuint index, GLenum pname, GLint* params)
{
TRACE("(GLuint index = %d, GLenum pname = 0x%X, GLint* params = 0x%0.8p)", index, pname, params);
try
{
rad::Context *context = rad::getContext();
if(context)
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
const rad::VertexAttribute &attribState = context->getVertexAttribState(index);
switch(pname)
{
case GL_VERTEX_ATTRIB_ARRAY_ENABLED:
*params = (attribState.mArrayEnabled ? GL_TRUE : GL_FALSE);
break;
case GL_VERTEX_ATTRIB_ARRAY_SIZE:
*params = attribState.mSize;
break;
case GL_VERTEX_ATTRIB_ARRAY_STRIDE:
*params = attribState.mStride;
break;
case GL_VERTEX_ATTRIB_ARRAY_TYPE:
*params = attribState.mType;
break;
case GL_VERTEX_ATTRIB_ARRAY_NORMALIZED:
*params = (attribState.mNormalized ? GL_TRUE : GL_FALSE);
break;
case GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING:
*params = attribState.mBoundBuffer.id();
break;
case GL_CURRENT_VERTEX_ATTRIB:
for(int i = 0; i < 4; ++i)
{
float currentValue = attribState.mCurrentValue[i];
params[i] = (GLint)(currentValue > 0.0f ? floor(currentValue + 0.5f) : ceil(currentValue - 0.5f));
}
break;
default: return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glGetVertexAttribPointerv(GLuint index, GLenum pname, GLvoid** pointer)
{
TRACE("(GLuint index = %d, GLenum pname = 0x%X, GLvoid** pointer = 0x%0.8p)", index, pname, pointer);
try
{
rad::Context *context = rad::getContext();
if(context)
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
if(pname != GL_VERTEX_ATTRIB_ARRAY_POINTER)
{
return error(GL_INVALID_ENUM);
}
*pointer = const_cast<GLvoid*>(context->getVertexAttribPointer(index));
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glHint(GLenum target, GLenum mode)
{
TRACE("(GLenum target = 0x%X, GLenum mode = 0x%X)", target, mode);
try
{
switch(mode)
{
case GL_FASTEST:
case GL_NICEST:
case GL_DONT_CARE:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
switch(target)
{
case GL_GENERATE_MIPMAP_HINT:
if(context) context->setGenerateMipmapHint(mode);
break;
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES:
if(context) context->setFragmentShaderDerivativeHint(mode);
break;
default:
return error(GL_INVALID_ENUM);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
GLboolean GL_APIENTRY glIsBuffer(GLuint buffer)
{
TRACE("(GLuint buffer = %d)", buffer);
try
{
rad::Context *context = rad::getContext();
if(context && buffer)
{
rad::Buffer *bufferObject = context->getBuffer(buffer);
if(bufferObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean GL_APIENTRY glIsEnabled(GLenum cap)
{
TRACE("(GLenum cap = 0x%X)", cap);
try
{
rad::Context *context = rad::getContext();
if(context)
{
switch(cap)
{
case GL_CULL_FACE: return context->isCullFaceEnabled();
case GL_POLYGON_OFFSET_FILL: return context->isPolygonOffsetFillEnabled();
case GL_SAMPLE_ALPHA_TO_COVERAGE: return context->isSampleAlphaToCoverageEnabled();
case GL_SAMPLE_COVERAGE: return context->isSampleCoverageEnabled();
case GL_SCISSOR_TEST: return context->isScissorTestEnabled();
case GL_STENCIL_TEST: return context->isStencilTestEnabled();
case GL_DEPTH_TEST: return context->isDepthTestEnabled();
case GL_BLEND: return context->isBlendEnabled();
case GL_DITHER: return context->isDitherEnabled();
default:
return error(GL_INVALID_ENUM, false);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, false);
}
return false;
}
GLboolean GL_APIENTRY glIsFenceNV(GLuint fence)
{
TRACE("(GLuint fence = %d)", fence);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Fence *fenceObject = context->getFence(fence);
if(fenceObject == NULL)
{
return GL_FALSE;
}
return fenceObject->isFence();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean GL_APIENTRY glIsFramebuffer(GLuint framebuffer)
{
TRACE("(GLuint framebuffer = %d)", framebuffer);
try
{
rad::Context *context = rad::getContext();
if(context && framebuffer)
{
rad::Framebuffer *framebufferObject = context->getFramebuffer(framebuffer);
if(framebufferObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean GL_APIENTRY glIsProgram(GLuint program)
{
TRACE("(GLuint program = %d)", program);
try
{
rad::Context *context = rad::getContext();
if(context && program)
{
rad::Program *programObject = context->getProgram(program);
if(programObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean GL_APIENTRY glIsQueryEXT(GLuint id)
{
TRACE("(GLuint id = %d)", id);
try
{
if(id == 0)
{
return GL_FALSE;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Query *queryObject = context->getQuery(id, false, GL_NONE);
if(queryObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean GL_APIENTRY glIsRenderbuffer(GLuint renderbuffer)
{
TRACE("(GLuint renderbuffer = %d)", renderbuffer);
try
{
rad::Context *context = rad::getContext();
if(context && renderbuffer)
{
rad::Renderbuffer *renderbufferObject = context->getRenderbuffer(renderbuffer);
if(renderbufferObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean GL_APIENTRY glIsShader(GLuint shader)
{
TRACE("(GLuint shader = %d)", shader);
try
{
rad::Context *context = rad::getContext();
if(context && shader)
{
rad::Shader *shaderObject = context->getShader(shader);
if(shaderObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
GLboolean GL_APIENTRY glIsTexture(GLuint texture)
{
TRACE("(GLuint texture = %d)", texture);
try
{
rad::Context *context = rad::getContext();
if(context && texture)
{
rad::Texture *textureObject = context->getTexture(texture);
if(textureObject)
{
return GL_TRUE;
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY, GL_FALSE);
}
return GL_FALSE;
}
void GL_APIENTRY glLineWidth(GLfloat width)
{
TRACE("(GLfloat width = %f)", width);
try
{
if(width <= 0.0f)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
context->setLineWidth(width);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glLinkProgram(GLuint program)
{
TRACE("(GLuint program = %d)", program);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
if(!programObject)
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
programObject->link();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glPixelStorei(GLenum pname, GLint param)
{
TRACE("(GLenum pname = 0x%X, GLint param = %d)", pname, param);
try
{
rad::Context *context = rad::getContext();
if(context)
{
switch(pname)
{
case GL_UNPACK_ALIGNMENT:
if(param != 1 && param != 2 && param != 4 && param != 8)
{
return error(GL_INVALID_VALUE);
}
context->setUnpackAlignment(param);
break;
case GL_PACK_ALIGNMENT:
if(param != 1 && param != 2 && param != 4 && param != 8)
{
return error(GL_INVALID_VALUE);
}
context->setPackAlignment(param);
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glPolygonOffset(GLfloat factor, GLfloat units)
{
TRACE("(GLfloat factor = %f, GLfloat units = %f)", factor, units);
try
{
rad::Context *context = rad::getContext();
if(context)
{
context->setPolygonOffsetParams(factor, units);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glReadnPixelsEXT(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLsizei bufSize,
GLvoid *data)
{
TRACE("(GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d, "
"GLenum format = 0x%X, GLenum type = 0x%X, GLsizei bufSize = 0x%d, GLvoid *data = 0x%0.8p)",
x, y, width, height, format, type, bufSize, data);
try
{
if(width < 0 || height < 0 || bufSize < 0)
{
return error(GL_INVALID_VALUE);
}
if(!validReadFormatType(format, type))
{
return error(GL_INVALID_OPERATION);
}
rad::Context *context = rad::getContext();
if(context)
{
context->readPixels(x, y, width, height, format, type, &bufSize, data);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid* pixels)
{
TRACE("(GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d, "
"GLenum format = 0x%X, GLenum type = 0x%X, GLvoid* pixels = 0x%0.8p)",
x, y, width, height, format, type, pixels);
try
{
if(width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
if(!validReadFormatType(format, type))
{
return error(GL_INVALID_OPERATION);
}
rad::Context *context = rad::getContext();
if(context)
{
context->readPixels(x, y, width, height, format, type, NULL, pixels);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glReleaseShaderCompiler(void)
{
TRACE("()");
try
{
rad::Shader::releaseCompiler();
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glRenderbufferStorageMultisampleANGLE(GLenum target, GLsizei samples, GLenum internalformat, GLsizei width, GLsizei height)
{
TRACE("(GLenum target = 0x%X, GLsizei samples = %d, GLenum internalformat = 0x%X, GLsizei width = %d, GLsizei height = %d)",
target, samples, internalformat, width, height);
try
{
switch(target)
{
case GL_RENDERBUFFER:
break;
default:
return error(GL_INVALID_ENUM);
}
if(!rad::IsColorRenderable(internalformat) && !rad::IsDepthRenderable(internalformat) && !rad::IsStencilRenderable(internalformat))
{
return error(GL_INVALID_ENUM);
}
if(width < 0 || height < 0 || samples < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
if(width > rad::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE ||
height > rad::IMPLEMENTATION_MAX_RENDERBUFFER_SIZE ||
samples > rad::IMPLEMENTATION_MAX_SAMPLES)
{
return error(GL_INVALID_VALUE);
}
GLuint handle = context->getRenderbufferHandle();
if(handle == 0)
{
return error(GL_INVALID_OPERATION);
}
switch(internalformat)
{
case GL_DEPTH_COMPONENT16:
context->setRenderbufferStorage(new rad::Depthbuffer(width, height, samples));
break;
case GL_RGBA4:
case GL_RGB5_A1:
case GL_RGB565:
case GL_RGB8_OES:
case GL_RGBA8_OES:
context->setRenderbufferStorage(new rad::Colorbuffer(width, height, internalformat, samples));
break;
case GL_STENCIL_INDEX8:
context->setRenderbufferStorage(new rad::Stencilbuffer(width, height, samples));
break;
case GL_DEPTH24_STENCIL8_OES:
context->setRenderbufferStorage(new rad::DepthStencilbuffer(width, height, samples));
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glRenderbufferStorage(GLenum target, GLenum internalformat, GLsizei width, GLsizei height)
{
glRenderbufferStorageMultisampleANGLE(target, 0, internalformat, width, height);
}
void GL_APIENTRY glSampleCoverage(GLclampf value, GLboolean invert)
{
TRACE("(GLclampf value = %f, GLboolean invert = %d)", value, invert);
try
{
rad::Context* context = rad::getContext();
if(context)
{
context->setSampleCoverageParams(rad::clamp01(value), invert == GL_TRUE);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glSetFenceNV(GLuint fence, GLenum condition)
{
TRACE("(GLuint fence = %d, GLenum condition = 0x%X)", fence, condition);
try
{
if(condition != GL_ALL_COMPLETED_NV)
{
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Fence *fenceObject = context->getFence(fence);
if(fenceObject == NULL)
{
return error(GL_INVALID_OPERATION);
}
fenceObject->setFence(condition);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glScissor(GLint x, GLint y, GLsizei width, GLsizei height)
{
TRACE("(GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d)", x, y, width, height);
try
{
if(width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context* context = rad::getContext();
if(context)
{
context->setScissorParams(x, y, width, height);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glShaderBinary(GLsizei n, const GLuint* shaders, GLenum binaryformat, const GLvoid* binary, GLsizei length)
{
TRACE("(GLsizei n = %d, const GLuint* shaders = 0x%0.8p, GLenum binaryformat = 0x%X, "
"const GLvoid* binary = 0x%0.8p, GLsizei length = %d)",
n, shaders, binaryformat, binary, length);
try
{
// No binary shader formats are supported.
return error(GL_INVALID_ENUM);
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glShaderSource(GLuint shader, GLsizei count, const GLchar *const *string, const GLint *length)
{
TRACE("(GLuint shader = %d, GLsizei count = %d, const GLchar** string = 0x%0.8p, const GLint* length = 0x%0.8p)",
shader, count, string, length);
try
{
if(count < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Shader *shaderObject = context->getShader(shader);
if(!shaderObject)
{
if(context->getProgram(shader))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
shaderObject->setSource(count, string, length);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glStencilFunc(GLenum func, GLint ref, GLuint mask)
{
glStencilFuncSeparate(GL_FRONT_AND_BACK, func, ref, mask);
}
void GL_APIENTRY glStencilFuncSeparate(GLenum face, GLenum func, GLint ref, GLuint mask)
{
TRACE("(GLenum face = 0x%X, GLenum func = 0x%X, GLint ref = %d, GLuint mask = %d)", face, func, ref, mask);
try
{
switch(face)
{
case GL_FRONT:
case GL_BACK:
case GL_FRONT_AND_BACK:
break;
default:
return error(GL_INVALID_ENUM);
}
switch(func)
{
case GL_NEVER:
case GL_ALWAYS:
case GL_LESS:
case GL_LEQUAL:
case GL_EQUAL:
case GL_GEQUAL:
case GL_GREATER:
case GL_NOTEQUAL:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
if(face == GL_FRONT || face == GL_FRONT_AND_BACK)
{
context->setStencilParams(func, ref, mask);
}
if(face == GL_BACK || face == GL_FRONT_AND_BACK)
{
context->setStencilBackParams(func, ref, mask);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glStencilMask(GLuint mask)
{
glStencilMaskSeparate(GL_FRONT_AND_BACK, mask);
}
void GL_APIENTRY glStencilMaskSeparate(GLenum face, GLuint mask)
{
TRACE("(GLenum face = 0x%X, GLuint mask = %d)", face, mask);
try
{
switch(face)
{
case GL_FRONT:
case GL_BACK:
case GL_FRONT_AND_BACK:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
if(face == GL_FRONT || face == GL_FRONT_AND_BACK)
{
context->setStencilWritemask(mask);
}
if(face == GL_BACK || face == GL_FRONT_AND_BACK)
{
context->setStencilBackWritemask(mask);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glStencilOp(GLenum fail, GLenum zfail, GLenum zpass)
{
glStencilOpSeparate(GL_FRONT_AND_BACK, fail, zfail, zpass);
}
void GL_APIENTRY glStencilOpSeparate(GLenum face, GLenum fail, GLenum zfail, GLenum zpass)
{
TRACE("(GLenum face = 0x%X, GLenum fail = 0x%X, GLenum zfail = 0x%X, GLenum zpas = 0x%Xs)",
face, fail, zfail, zpass);
try
{
switch(face)
{
case GL_FRONT:
case GL_BACK:
case GL_FRONT_AND_BACK:
break;
default:
return error(GL_INVALID_ENUM);
}
switch(fail)
{
case GL_ZERO:
case GL_KEEP:
case GL_REPLACE:
case GL_INCR:
case GL_DECR:
case GL_INVERT:
case GL_INCR_WRAP:
case GL_DECR_WRAP:
break;
default:
return error(GL_INVALID_ENUM);
}
switch(zfail)
{
case GL_ZERO:
case GL_KEEP:
case GL_REPLACE:
case GL_INCR:
case GL_DECR:
case GL_INVERT:
case GL_INCR_WRAP:
case GL_DECR_WRAP:
break;
default:
return error(GL_INVALID_ENUM);
}
switch(zpass)
{
case GL_ZERO:
case GL_KEEP:
case GL_REPLACE:
case GL_INCR:
case GL_DECR:
case GL_INVERT:
case GL_INCR_WRAP:
case GL_DECR_WRAP:
break;
default:
return error(GL_INVALID_ENUM);
}
rad::Context *context = rad::getContext();
if(context)
{
if(face == GL_FRONT || face == GL_FRONT_AND_BACK)
{
context->setStencilOperations(fail, zfail, zpass);
}
if(face == GL_BACK || face == GL_FRONT_AND_BACK)
{
context->setStencilBackOperations(fail, zfail, zpass);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
GLboolean GL_APIENTRY glTestFenceNV(GLuint fence)
{
TRACE("(GLuint fence = %d)", fence);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Fence *fenceObject = context->getFence(fence);
if(fenceObject == NULL)
{
return error(GL_INVALID_OPERATION, GL_TRUE);
}
return fenceObject->testFence();
}
}
catch(std::bad_alloc&)
{
error(GL_OUT_OF_MEMORY);
}
return GL_TRUE;
}
void GL_APIENTRY glTexImage2D(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height,
GLint border, GLenum format, GLenum type, const GLvoid* pixels)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLint internalformat = %d, GLsizei width = %d, GLsizei height = %d, "
"GLint border = %d, GLenum format = 0x%X, GLenum type = 0x%X, const GLvoid* pixels = 0x%0.8p)",
target, level, internalformat, width, height, border, format, type, pixels);
try
{
if(!validImageSize(level, width, height))
{
return error(GL_INVALID_VALUE);
}
if(internalformat != format)
{
return error(GL_INVALID_OPERATION);
}
switch(format)
{
case GL_ALPHA:
case GL_LUMINANCE:
case GL_LUMINANCE_ALPHA:
switch(type)
{
case GL_UNSIGNED_BYTE:
case GL_FLOAT:
case GL_HALF_FLOAT_OES:
break;
default:
return error(GL_INVALID_ENUM);
}
break;
case GL_RGB:
switch(type)
{
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT_5_6_5:
case GL_FLOAT:
case GL_HALF_FLOAT_OES:
break;
default:
return error(GL_INVALID_ENUM);
}
break;
case GL_RGBA:
switch(type)
{
case GL_UNSIGNED_BYTE:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_FLOAT:
case GL_HALF_FLOAT_OES:
break;
default:
return error(GL_INVALID_ENUM);
}
break;
case GL_BGRA_EXT:
switch(type)
{
case GL_UNSIGNED_BYTE:
break;
default:
return error(GL_INVALID_ENUM);
}
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT: // error cases for compressed textures are handled below
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE:
case GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE:
break;
case GL_DEPTH_COMPONENT:
switch(type)
{
case GL_UNSIGNED_SHORT:
case GL_UNSIGNED_INT:
break;
default:
return error(GL_INVALID_ENUM);
}
break;
case GL_DEPTH_STENCIL_OES:
switch(type)
{
case GL_UNSIGNED_INT_24_8_OES:
break;
default:
return error(GL_INVALID_ENUM);
}
break;
default:
return error(GL_INVALID_VALUE);
}
if(border != 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
switch(target)
{
case GL_TEXTURE_2D:
if(width > (rad::IMPLEMENTATION_MAX_TEXTURE_SIZE >> level) ||
height > (rad::IMPLEMENTATION_MAX_TEXTURE_SIZE >> level))
{
return error(GL_INVALID_VALUE);
}
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
if(width != height)
{
return error(GL_INVALID_VALUE);
}
if(width > (rad::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE >> level) ||
height > (rad::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE >> level))
{
return error(GL_INVALID_VALUE);
}
break;
default:
return error(GL_INVALID_ENUM);
}
if(format == GL_COMPRESSED_RGB_S3TC_DXT1_EXT ||
format == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT ||
format == GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE ||
format == GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE)
{
if(S3TC_SUPPORT)
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_ENUM);
}
}
if(target == GL_TEXTURE_2D)
{
rad::Texture2D *texture = context->getTexture2D();
if(!texture)
{
return error(GL_INVALID_OPERATION);
}
texture->setImage(level, width, height, format, type, context->getUnpackAlignment(), pixels);
}
else
{
rad::TextureCubeMap *texture = context->getTextureCubeMap();
if(!texture)
{
return error(GL_INVALID_OPERATION);
}
texture->setImage(target, level, width, height, format, type, context->getUnpackAlignment(), pixels);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glTexParameterf(GLenum target, GLenum pname, GLfloat param)
{
TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLfloat param = %f)", target, pname, param);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Texture *texture;
switch(target)
{
case GL_TEXTURE_2D:
texture = context->getTexture2D();
break;
case GL_TEXTURE_CUBE_MAP:
texture = context->getTextureCubeMap();
break;
case GL_TEXTURE_EXTERNAL_OES:
texture = context->getTextureExternal();
break;
default:
return error(GL_INVALID_ENUM);
}
switch(pname)
{
case GL_TEXTURE_WRAP_S:
if(!texture->setWrapS((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
case GL_TEXTURE_WRAP_T:
if(!texture->setWrapT((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
case GL_TEXTURE_MIN_FILTER:
if(!texture->setMinFilter((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
case GL_TEXTURE_MAG_FILTER:
if(!texture->setMagFilter((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
case GL_TEXTURE_MAX_ANISOTROPY_EXT:
if(!texture->setMaxAnisotropy(param))
{
return error(GL_INVALID_VALUE);
}
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glTexParameterfv(GLenum target, GLenum pname, const GLfloat* params)
{
glTexParameterf(target, pname, *params);
}
void GL_APIENTRY glTexParameteri(GLenum target, GLenum pname, GLint param)
{
TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLint param = %d)", target, pname, param);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Texture *texture;
switch(target)
{
case GL_TEXTURE_2D:
texture = context->getTexture2D();
break;
case GL_TEXTURE_CUBE_MAP:
texture = context->getTextureCubeMap();
break;
case GL_TEXTURE_EXTERNAL_OES:
texture = context->getTextureExternal();
break;
default:
return error(GL_INVALID_ENUM);
}
switch(pname)
{
case GL_TEXTURE_WRAP_S:
if(!texture->setWrapS((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
case GL_TEXTURE_WRAP_T:
if(!texture->setWrapT((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
case GL_TEXTURE_MIN_FILTER:
if(!texture->setMinFilter((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
case GL_TEXTURE_MAG_FILTER:
if(!texture->setMagFilter((GLenum)param))
{
return error(GL_INVALID_ENUM);
}
break;
case GL_TEXTURE_MAX_ANISOTROPY_EXT:
if(!texture->setMaxAnisotropy((GLfloat)param))
{
return error(GL_INVALID_VALUE);
}
break;
default:
return error(GL_INVALID_ENUM);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glTexParameteriv(GLenum target, GLenum pname, const GLint* params)
{
glTexParameteri(target, pname, *params);
}
void GL_APIENTRY glTexSubImage2D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid* pixels)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLint xoffset = %d, GLint yoffset = %d, "
"GLsizei width = %d, GLsizei height = %d, GLenum format = 0x%X, GLenum type = 0x%X, "
"const GLvoid* pixels = 0x%0.8p)",
target, level, xoffset, yoffset, width, height, format, type, pixels);
try
{
if(!rad::IsTextureTarget(target))
{
return error(GL_INVALID_ENUM);
}
if(level < 0 || xoffset < 0 || yoffset < 0 || width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
if(std::numeric_limits<GLsizei>::max() - xoffset < width || std::numeric_limits<GLsizei>::max() - yoffset < height)
{
return error(GL_INVALID_VALUE);
}
if(!rad::CheckTextureFormatType(format, type))
{
return error(GL_INVALID_ENUM);
}
if(width == 0 || height == 0 || pixels == NULL)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
if(level > rad::IMPLEMENTATION_MAX_TEXTURE_LEVELS)
{
return error(GL_INVALID_VALUE);
}
if(target == GL_TEXTURE_2D)
{
rad::Texture2D *texture = context->getTexture2D();
if(validateSubImageParams(false, width, height, xoffset, yoffset, target, level, format, texture))
{
texture->subImage(level, xoffset, yoffset, width, height, format, type, context->getUnpackAlignment(), pixels);
}
}
else if(rad::IsCubemapTextureTarget(target))
{
rad::TextureCubeMap *texture = context->getTextureCubeMap();
if(validateSubImageParams(false, width, height, xoffset, yoffset, target, level, format, texture))
{
texture->subImage(target, level, xoffset, yoffset, width, height, format, type, context->getUnpackAlignment(), pixels);
}
}
else
{
UNREACHABLE();
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUniform1f(GLint location, GLfloat x)
{
glUniform1fv(location, 1, &x);
}
void GL_APIENTRY glUniform1fv(GLint location, GLsizei count, const GLfloat* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLfloat* v = 0x%0.8p)", location, count, v);
try
{
if(count < 0)
{
return error(GL_INVALID_VALUE);
}
if(location == -1)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *program = context->getCurrentProgram();
if(!program)
{
return error(GL_INVALID_OPERATION);
}
if(!program->setUniform1fv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUniform1i(GLint location, GLint x)
{
glUniform1iv(location, 1, &x);
}
void GL_APIENTRY glUniform1iv(GLint location, GLsizei count, const GLint* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLint* v = 0x%0.8p)", location, count, v);
try
{
if(count < 0)
{
return error(GL_INVALID_VALUE);
}
if(location == -1)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *program = context->getCurrentProgram();
if(!program)
{
return error(GL_INVALID_OPERATION);
}
if(!program->setUniform1iv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUniform2f(GLint location, GLfloat x, GLfloat y)
{
GLfloat xy[2] = {x, y};
glUniform2fv(location, 1, (GLfloat*)&xy);
}
void GL_APIENTRY glUniform2fv(GLint location, GLsizei count, const GLfloat* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLfloat* v = 0x%0.8p)", location, count, v);
try
{
if(count < 0)
{
return error(GL_INVALID_VALUE);
}
if(location == -1)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *program = context->getCurrentProgram();
if(!program)
{
return error(GL_INVALID_OPERATION);
}
if(!program->setUniform2fv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUniform2i(GLint location, GLint x, GLint y)
{
GLint xy[4] = {x, y};
glUniform2iv(location, 1, (GLint*)&xy);
}
void GL_APIENTRY glUniform2iv(GLint location, GLsizei count, const GLint* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLint* v = 0x%0.8p)", location, count, v);
try
{
if(count < 0)
{
return error(GL_INVALID_VALUE);
}
if(location == -1)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *program = context->getCurrentProgram();
if(!program)
{
return error(GL_INVALID_OPERATION);
}
if(!program->setUniform2iv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUniform3f(GLint location, GLfloat x, GLfloat y, GLfloat z)
{
GLfloat xyz[3] = {x, y, z};
glUniform3fv(location, 1, (GLfloat*)&xyz);
}
void GL_APIENTRY glUniform3fv(GLint location, GLsizei count, const GLfloat* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLfloat* v = 0x%0.8p)", location, count, v);
try
{
if(count < 0)
{
return error(GL_INVALID_VALUE);
}
if(location == -1)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *program = context->getCurrentProgram();
if(!program)
{
return error(GL_INVALID_OPERATION);
}
if(!program->setUniform3fv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUniform3i(GLint location, GLint x, GLint y, GLint z)
{
GLint xyz[3] = {x, y, z};
glUniform3iv(location, 1, (GLint*)&xyz);
}
void GL_APIENTRY glUniform3iv(GLint location, GLsizei count, const GLint* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLint* v = 0x%0.8p)", location, count, v);
try
{
if(count < 0)
{
return error(GL_INVALID_VALUE);
}
if(location == -1)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *program = context->getCurrentProgram();
if(!program)
{
return error(GL_INVALID_OPERATION);
}
if(!program->setUniform3iv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUniform4f(GLint location, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GLfloat xyzw[4] = {x, y, z, w};
glUniform4fv(location, 1, (GLfloat*)&xyzw);
}
void GL_APIENTRY glUniform4fv(GLint location, GLsizei count, const GLfloat* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLfloat* v = 0x%0.8p)", location, count, v);
try
{
if(count < 0)
{
return error(GL_INVALID_VALUE);
}
if(location == -1)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *program = context->getCurrentProgram();
if(!program)
{
return error(GL_INVALID_OPERATION);
}
if(!program->setUniform4fv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUniform4i(GLint location, GLint x, GLint y, GLint z, GLint w)
{
GLint xyzw[4] = {x, y, z, w};
glUniform4iv(location, 1, (GLint*)&xyzw);
}
void GL_APIENTRY glUniform4iv(GLint location, GLsizei count, const GLint* v)
{
TRACE("(GLint location = %d, GLsizei count = %d, const GLint* v = 0x%0.8p)", location, count, v);
try
{
if(count < 0)
{
return error(GL_INVALID_VALUE);
}
if(location == -1)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *program = context->getCurrentProgram();
if(!program)
{
return error(GL_INVALID_OPERATION);
}
if(!program->setUniform4iv(location, count, v))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUniformMatrix2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat* value)
{
TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat* value = 0x%0.8p)",
location, count, transpose, value);
try
{
if(count < 0 || transpose != GL_FALSE)
{
return error(GL_INVALID_VALUE);
}
if(location == -1)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *program = context->getCurrentProgram();
if(!program)
{
return error(GL_INVALID_OPERATION);
}
if(!program->setUniformMatrix2fv(location, count, value))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUniformMatrix3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat* value)
{
TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat* value = 0x%0.8p)",
location, count, transpose, value);
try
{
if(count < 0 || transpose != GL_FALSE)
{
return error(GL_INVALID_VALUE);
}
if(location == -1)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *program = context->getCurrentProgram();
if(!program)
{
return error(GL_INVALID_OPERATION);
}
if(!program->setUniformMatrix3fv(location, count, value))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat* value)
{
TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat* value = 0x%0.8p)",
location, count, transpose, value);
try
{
if(count < 0 || transpose != GL_FALSE)
{
return error(GL_INVALID_VALUE);
}
if(location == -1)
{
return;
}
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *program = context->getCurrentProgram();
if(!program)
{
return error(GL_INVALID_OPERATION);
}
if(!program->setUniformMatrix4fv(location, count, value))
{
return error(GL_INVALID_OPERATION);
}
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glUseProgram(GLuint program)
{
TRACE("(GLuint program = %d)", program);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
if(!programObject && program != 0)
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
if(program != 0 && !programObject->isLinked())
{
return error(GL_INVALID_OPERATION);
}
context->useProgram(program);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glValidateProgram(GLuint program)
{
TRACE("(GLuint program = %d)", program);
try
{
rad::Context *context = rad::getContext();
if(context)
{
rad::Program *programObject = context->getProgram(program);
if(!programObject)
{
if(context->getShader(program))
{
return error(GL_INVALID_OPERATION);
}
else
{
return error(GL_INVALID_VALUE);
}
}
programObject->validate();
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glVertexAttrib1f(GLuint index, GLfloat x)
{
TRACE("(GLuint index = %d, GLfloat x = %f)", index, x);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
GLfloat vals[4] = { x, 0, 0, 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glVertexAttrib1fv(GLuint index, const GLfloat* values)
{
TRACE("(GLuint index = %d, const GLfloat* values = 0x%0.8p)", index, values);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
GLfloat vals[4] = { values[0], 0, 0, 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glVertexAttrib2f(GLuint index, GLfloat x, GLfloat y)
{
TRACE("(GLuint index = %d, GLfloat x = %f, GLfloat y = %f)", index, x, y);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
GLfloat vals[4] = { x, y, 0, 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glVertexAttrib2fv(GLuint index, const GLfloat* values)
{
TRACE("(GLuint index = %d, const GLfloat* values = 0x%0.8p)", index, values);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
GLfloat vals[4] = { values[0], values[1], 0, 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glVertexAttrib3f(GLuint index, GLfloat x, GLfloat y, GLfloat z)
{
TRACE("(GLuint index = %d, GLfloat x = %f, GLfloat y = %f, GLfloat z = %f)", index, x, y, z);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
GLfloat vals[4] = { x, y, z, 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glVertexAttrib3fv(GLuint index, const GLfloat* values)
{
TRACE("(GLuint index = %d, const GLfloat* values = 0x%0.8p)", index, values);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
GLfloat vals[4] = { values[0], values[1], values[2], 1 };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glVertexAttrib4f(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
TRACE("(GLuint index = %d, GLfloat x = %f, GLfloat y = %f, GLfloat z = %f, GLfloat w = %f)", index, x, y, z, w);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
GLfloat vals[4] = { x, y, z, w };
context->setVertexAttrib(index, vals);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glVertexAttrib4fv(GLuint index, const GLfloat* values)
{
TRACE("(GLuint index = %d, const GLfloat* values = 0x%0.8p)", index, values);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
context->setVertexAttrib(index, values);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glVertexAttribPointer(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid* ptr)
{
TRACE("(GLuint index = %d, GLint size = %d, GLenum type = 0x%X, "
"GLboolean normalized = %d, GLsizei stride = %d, const GLvoid* ptr = 0x%0.8p)",
index, size, type, normalized, stride, ptr);
try
{
if(index >= rad::MAX_VERTEX_ATTRIBS)
{
return error(GL_INVALID_VALUE);
}
if(size < 1 || size > 4)
{
return error(GL_INVALID_VALUE);
}
switch(type)
{
case GL_BYTE:
case GL_UNSIGNED_BYTE:
case GL_SHORT:
case GL_UNSIGNED_SHORT:
case GL_FIXED:
case GL_FLOAT:
break;
default:
return error(GL_INVALID_ENUM);
}
if(stride < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
context->setVertexAttribState(index, context->getArrayBuffer(), size, type, (normalized == GL_TRUE), stride, ptr);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glViewport(GLint x, GLint y, GLsizei width, GLsizei height)
{
TRACE("(GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d)", x, y, width, height);
try
{
if(width < 0 || height < 0)
{
return error(GL_INVALID_VALUE);
}
rad::Context *context = rad::getContext();
if(context)
{
context->setViewportParams(x, y, width, height);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glBlitFramebufferANGLE(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask, GLenum filter)
{
TRACE("(GLint srcX0 = %d, GLint srcY0 = %d, GLint srcX1 = %d, GLint srcY1 = %d, "
"GLint dstX0 = %d, GLint dstY0 = %d, GLint dstX1 = %d, GLint dstY1 = %d, "
"GLbitfield mask = 0x%X, GLenum filter = 0x%X)",
srcX0, srcY0, srcX1, srcX1, dstX0, dstY0, dstX1, dstY1, mask, filter);
try
{
switch(filter)
{
case GL_NEAREST:
break;
default:
return error(GL_INVALID_ENUM);
}
if((mask & ~(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)) != 0)
{
return error(GL_INVALID_VALUE);
}
if(srcX1 - srcX0 != dstX1 - dstX0 || srcY1 - srcY0 != dstY1 - dstY0)
{
ERR("Scaling and flipping in BlitFramebufferANGLE not supported by this implementation");
return error(GL_INVALID_OPERATION);
}
rad::Context *context = rad::getContext();
if(context)
{
if(context->getReadFramebufferHandle() == context->getDrawFramebufferHandle())
{
ERR("Blits with the same source and destination framebuffer are not supported by this implementation.");
return error(GL_INVALID_OPERATION);
}
context->blitFramebuffer(srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, mask);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glTexImage3DOES(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth,
GLint border, GLenum format, GLenum type, const GLvoid* pixels)
{
TRACE("(GLenum target = 0x%X, GLint level = %d, GLenum internalformat = 0x%X, "
"GLsizei width = %d, GLsizei height = %d, GLsizei depth = %d, GLint border = %d, "
"GLenum format = 0x%X, GLenum type = 0x%x, const GLvoid* pixels = 0x%0.8p)",
target, level, internalformat, width, height, depth, border, format, type, pixels);
try
{
UNIMPLEMENTED(); // FIXME
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
void GL_APIENTRY glEGLImageTargetTexture2DOES(GLenum target, GLeglImageOES image)
{
TRACE("(GLenum target = 0x%X, GLeglImageOES image = 0x%0.8p)", target, image);
try
{
switch(target)
{
case GL_TEXTURE_EXTERNAL_OES:
break;
default:
return error(GL_INVALID_ENUM);
}
if(!image)
{
return error(GL_INVALID_OPERATION);
}
rad::Context *context = rad::getContext();
if(context)
{
rad::TextureExternal *texture = context->getTextureExternal();
if(!texture)
{
return error(GL_INVALID_OPERATION);
}
rad::Image *glImage = static_cast<rad::Image*>(image);
texture->setImage(glImage);
}
}
catch(std::bad_alloc&)
{
return error(GL_OUT_OF_MEMORY);
}
}
RADdevice RADAPIENTRY radCreateDevice (void) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceDevice (RADdevice device) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseDevice (RADdevice device) {UNIMPLEMENTED();}
RADuint RADAPIENTRY radGetTokenHeader (RADdevice device, RADtokenName name) {UNIMPLEMENTED(); return 0;}
RADqueue RADAPIENTRY radCreateQueue (RADdevice device, RADqueueType queuetype) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceQueue (RADqueue queue) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseQueue (RADqueue queue) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueTagBuffer (RADqueue queue, RADbuffer buffer) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueTagTexture (RADqueue queue, RADtexture texture) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueSubmitCommands (RADqueue queue, RADuint numCommands, const RADcommandHandle *handles) {UNIMPLEMENTED();}
void RADAPIENTRY radFlushQueue (RADqueue queue) {UNIMPLEMENTED();}
void RADAPIENTRY radFinishQueue (RADqueue queue) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueViewport (RADqueue queue, RADint x, RADint y, RADint w, RADint h) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueScissor (RADqueue queue, RADint x, RADint y, RADint w, RADint h) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueCopyBufferToImage (RADqueue queue, RADbuffer buffer, RADintptr bufferOffset, RADtexture texture, RADint level, RADuint xoffset, RADuint yoffset, RADuint zoffset, RADsizei width, RADsizei height, RADsizei depth) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueCopyImageToBuffer (RADqueue queue, RADbuffer buffer, RADintptr bufferOffset, RADtexture texture, RADint level, RADuint xoffset, RADuint yoffset, RADuint zoffset, RADsizei width, RADsizei height, RADsizei depth) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueCopyBuffer (RADqueue queue, RADbuffer srcBuffer, RADintptr srcOffset, RADbuffer dstBuffer, RADintptr dstOffset, RADsizei size) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueClearColor (RADqueue queue, RADuint index, const RADfloat *color) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueClearDepth (RADqueue queue, RADfloat depth) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueClearStencil (RADqueue queue, RADuint stencil) {UNIMPLEMENTED();}
void RADAPIENTRY radQueuePresent (RADqueue queue, RADtexture texture) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueDrawArrays (RADqueue queue, RADprimitiveType mode, RADint first, RADsizei count) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueDrawElements (RADqueue queue, RADprimitiveType mode, RADindexType type, RADsizei count, RADindexHandle indexHandle, RADuint offset) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueBindPipeline (RADqueue queue, RADpipelineType pipelineType, RADpipelineHandle pipelineHandle) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueBindGroup (RADqueue queue, RADbitfield stages, RADuint group, RADuint count, RADbindGroupHandle groupHandle, RADuint offset) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueBeginPass (RADqueue queue, RADpass pass) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueEndPass (RADqueue queue, RADpass pass) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueSubmitDynamic (RADqueue queue, const void *dynamic, RADsizei length) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueStencilValueMask (RADqueue queue, RADfaceBitfield faces, RADuint mask) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueStencilMask (RADqueue queue, RADfaceBitfield faces, RADuint mask) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueStencilRef (RADqueue queue, RADfaceBitfield faces, RADint ref) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueBlendColor (RADqueue queue, const RADfloat *blendColor) {UNIMPLEMENTED();}
void RADAPIENTRY radQueuePointSize (RADqueue queue, RADfloat pointSize) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueLineWidth (RADqueue queue, RADfloat lineWidth) {UNIMPLEMENTED();}
void RADAPIENTRY radQueuePolygonOffsetClamp (RADqueue queue, RADfloat factor, RADfloat units, RADfloat clamp) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueSampleMask (RADqueue queue, RADuint mask) {UNIMPLEMENTED();}
RADprogram RADAPIENTRY radCreateProgram (RADdevice device) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceProgram (RADprogram program) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseProgram (RADprogram program) {UNIMPLEMENTED();}
void RADAPIENTRY radProgramSource (RADprogram program, RADprogramFormat format, RADsizei length, const void *source) {UNIMPLEMENTED();}
RADbuffer RADAPIENTRY radCreateBuffer (RADdevice device) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceBuffer (RADbuffer buffer) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseBuffer (RADbuffer buffer, RADtagMode tagMode) {UNIMPLEMENTED();}
void RADAPIENTRY radBufferAccess (RADbuffer buffer, RADbitfield access) {UNIMPLEMENTED();}
void RADAPIENTRY radBufferMapAccess (RADbuffer buffer, RADbitfield mapAccess) {UNIMPLEMENTED();}
void RADAPIENTRY radBufferStorage (RADbuffer buffer, RADsizei size) {UNIMPLEMENTED();}
void* RADAPIENTRY radMapBuffer (RADbuffer buffer) {UNIMPLEMENTED(); return 0;}
RADvertexHandle RADAPIENTRY radGetVertexHandle (RADbuffer buffer) {UNIMPLEMENTED(); return 0;}
RADindexHandle RADAPIENTRY radGetIndexHandle (RADbuffer buffer) {UNIMPLEMENTED(); return 0;}
RADuniformHandle RADAPIENTRY radGetUniformHandle (RADbuffer buffer) {UNIMPLEMENTED(); return 0;}
RADbindGroupHandle RADAPIENTRY radGetBindGroupHandle (RADbuffer buffer) {UNIMPLEMENTED(); return 0;}
RADtexture RADAPIENTRY radCreateTexture (RADdevice device) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceTexture (RADtexture texture) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseTexture (RADtexture texture, RADtagMode tagMode) {UNIMPLEMENTED();}
void RADAPIENTRY radTextureAccess (RADtexture texture, RADbitfield access) {UNIMPLEMENTED();}
void RADAPIENTRY radTextureStorage (RADtexture texture, RADtextureTarget target, RADsizei levels, RADinternalFormat internalFormat, RADsizei width, RADsizei height, RADsizei depth, RADsizei samples) {UNIMPLEMENTED();}
RADtextureHandle RADAPIENTRY radGetTextureSamplerHandle (RADtexture texture, RADsampler sampler, RADtextureTarget target, RADinternalFormat internalFormat, RADuint minLevel, RADuint numLevels, RADuint minLayer, RADuint numLayers) {UNIMPLEMENTED(); return 0;}
RADrenderTargetHandle RADAPIENTRY radGetTextureRenderTargetHandle (RADtexture texture, RADtextureTarget target, RADinternalFormat internalFormat, RADuint level, RADuint minLayer, RADuint numLayers) {UNIMPLEMENTED(); return 0;}
RADsampler RADAPIENTRY radCreateSampler (RADdevice device) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceSampler (RADsampler sampler) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseSampler (RADsampler sampler) {UNIMPLEMENTED();}
void RADAPIENTRY radSamplerDefault (RADsampler sampler) {UNIMPLEMENTED();}
void RADAPIENTRY radSamplerMinMagFilter (RADsampler sampler, RADminFilter min, RADmagFilter mag) {UNIMPLEMENTED();}
void RADAPIENTRY radSamplerWrapMode (RADsampler sampler, RADwrapMode s, RADwrapMode t, RADwrapMode r) {UNIMPLEMENTED();}
void RADAPIENTRY radSamplerLodClamp (RADsampler sampler, RADfloat min, RADfloat max) {UNIMPLEMENTED();}
void RADAPIENTRY radSamplerLodBias (RADsampler sampler, RADfloat bias) {UNIMPLEMENTED();}
void RADAPIENTRY radSamplerCompare (RADsampler sampler, RADcompareMode mode, RADcompareFunc func) {UNIMPLEMENTED();}
void RADAPIENTRY radSamplerBorderColorFloat (RADsampler sampler, const RADfloat *borderColor) {UNIMPLEMENTED();}
void RADAPIENTRY radSamplerBorderColorInt (RADsampler sampler, const RADuint *borderColor) {UNIMPLEMENTED();}
RADcolorState RADAPIENTRY radCreateColorState (RADdevice device) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceColorState (RADcolorState color) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseColorState (RADcolorState color) {UNIMPLEMENTED();}
void RADAPIENTRY radColorDefault (RADcolorState color) {UNIMPLEMENTED();}
void RADAPIENTRY radColorBlendEnable (RADcolorState color, RADuint index, RADboolean enable) {UNIMPLEMENTED();}
void RADAPIENTRY radColorBlendFunc (RADcolorState color, RADuint index, RADblendFunc srcFunc, RADblendFunc dstFunc, RADblendFunc srcFuncAlpha, RADblendFunc dstFuncAlpha) {UNIMPLEMENTED();}
void RADAPIENTRY radColorBlendEquation (RADcolorState color, RADuint index, RADblendEquation modeRGB, RADblendEquation modeAlpha) {UNIMPLEMENTED();}
void RADAPIENTRY radColorMask (RADcolorState color, RADuint index, RADboolean r, RADboolean g, RADboolean b, RADboolean a) {UNIMPLEMENTED();}
void RADAPIENTRY radColorNumTargets (RADcolorState color, RADuint numTargets) {UNIMPLEMENTED();}
void RADAPIENTRY radColorLogicOpEnable (RADcolorState color, RADboolean enable) {UNIMPLEMENTED();}
void RADAPIENTRY radColorLogicOp (RADcolorState color, RADlogicOp logicOp) {UNIMPLEMENTED();}
void RADAPIENTRY radColorAlphaToCoverageEnable (RADcolorState color, RADboolean enable) {UNIMPLEMENTED();}
void RADAPIENTRY radColorBlendColor (RADcolorState color, const RADfloat *blendColor) {UNIMPLEMENTED();}
void RADAPIENTRY radColorDynamic (RADcolorState color, RADcolorDynamic dynamic, RADboolean enable) {UNIMPLEMENTED();}
RADrasterState RADAPIENTRY radCreateRasterState (RADdevice device) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceRasterState (RADrasterState raster) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseRasterState (RADrasterState raster) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterDefault (RADrasterState raster) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterPointSize (RADrasterState raster, RADfloat pointSize) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterLineWidth (RADrasterState raster, RADfloat lineWidth) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterCullFace (RADrasterState raster, RADfaceBitfield face) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterFrontFace (RADrasterState raster, RADfrontFace face) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterPolygonMode (RADrasterState raster, RADpolygonMode polygonMode) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterPolygonOffsetClamp (RADrasterState raster, RADfloat factor, RADfloat units, RADfloat clamp) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterPolygonOffsetEnables (RADrasterState raster, RADpolygonOffsetEnables enables) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterDiscardEnable (RADrasterState raster, RADboolean enable) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterMultisampleEnable (RADrasterState raster, RADboolean enable) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterSamples (RADrasterState raster, RADuint samples) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterSampleMask (RADrasterState raster, RADuint mask) {UNIMPLEMENTED();}
void RADAPIENTRY radRasterDynamic (RADrasterState raster, RADrasterDynamic dynamic, RADboolean enable) {UNIMPLEMENTED();}
RADdepthStencilState RADAPIENTRY radCreateDepthStencilState (RADdevice device) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceDepthStencilState (RADdepthStencilState depthStencil) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseDepthStencilState (RADdepthStencilState depthStencil) {UNIMPLEMENTED();}
void RADAPIENTRY radDepthStencilDefault (RADdepthStencilState depthStencil) {UNIMPLEMENTED();}
void RADAPIENTRY radDepthStencilDepthTestEnable (RADdepthStencilState depthStencil, RADboolean enable) {UNIMPLEMENTED();}
void RADAPIENTRY radDepthStencilDepthWriteEnable (RADdepthStencilState depthStencil, RADboolean enable) {UNIMPLEMENTED();}
void RADAPIENTRY radDepthStencilDepthFunc (RADdepthStencilState depthStencil, RADdepthFunc func) {UNIMPLEMENTED();}
void RADAPIENTRY radDepthStencilStencilTestEnable (RADdepthStencilState depthStencil, RADboolean enable) {UNIMPLEMENTED();}
void RADAPIENTRY radDepthStencilStencilFunc (RADdepthStencilState depthStencil, RADfaceBitfield faces, RADstencilFunc func, RADint ref, RADuint mask) {UNIMPLEMENTED();}
void RADAPIENTRY radDepthStencilStencilOp (RADdepthStencilState depthStencil, RADfaceBitfield faces, RADstencilOp fail, RADstencilOp depthFail, RADstencilOp depthPass) {UNIMPLEMENTED();}
void RADAPIENTRY radDepthStencilStencilMask (RADdepthStencilState depthStencil, RADfaceBitfield faces, RADuint mask) {UNIMPLEMENTED();}
void RADAPIENTRY radDepthStencilDynamic (RADdepthStencilState depthStencil, RADdepthStencilDynamic dynamic, RADboolean enable) {UNIMPLEMENTED();}
RADvertexState RADAPIENTRY radCreateVertexState (RADdevice device) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceVertexState (RADvertexState vertex) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseVertexState (RADvertexState vertex) {UNIMPLEMENTED();}
void RADAPIENTRY radVertexDefault (RADvertexState vertex) {UNIMPLEMENTED();}
void RADAPIENTRY radVertexAttribFormat (RADvertexState vertex, RADint attribIndex, RADint numComponents, RADint bytesPerComponent, RADattribType type, RADuint relativeOffset) {UNIMPLEMENTED();}
void RADAPIENTRY radVertexAttribBinding (RADvertexState vertex, RADint attribIndex, RADint bindingIndex) {UNIMPLEMENTED();}
void RADAPIENTRY radVertexBindingGroup (RADvertexState vertex, RADint bindingIndex, RADint group, RADint index) {UNIMPLEMENTED();}
void RADAPIENTRY radVertexAttribEnable (RADvertexState vertex, RADint attribIndex, RADboolean enable) {UNIMPLEMENTED();}
void RADAPIENTRY radVertexBindingStride (RADvertexState vertex, RADint bindingIndex, RADuint stride) {UNIMPLEMENTED();}
RADrtFormatState RADAPIENTRY radCreateRtFormatState (RADdevice device) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceRtFormatState (RADrtFormatState rtFormat) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseRtFormatState (RADrtFormatState rtFormat) {UNIMPLEMENTED();}
void RADAPIENTRY radRtFormatDefault (RADrtFormatState rtFormat) {UNIMPLEMENTED();}
void RADAPIENTRY radRtFormatColorFormat (RADrtFormatState rtFormat, RADuint index, RADinternalFormat format) {UNIMPLEMENTED();}
void RADAPIENTRY radRtFormatDepthFormat (RADrtFormatState rtFormat, RADinternalFormat format) {UNIMPLEMENTED();}
void RADAPIENTRY radRtFormatStencilFormat (RADrtFormatState rtFormat, RADinternalFormat format) {UNIMPLEMENTED();}
void RADAPIENTRY radRtFormatColorSamples (RADrtFormatState rtFormat, RADuint samples) {UNIMPLEMENTED();}
void RADAPIENTRY radRtFormatDepthStencilSamples (RADrtFormatState rtFormat, RADuint samples) {UNIMPLEMENTED();}
RADpipeline RADAPIENTRY radCreatePipeline (RADdevice device, RADpipelineType pipelineType) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferencePipeline (RADpipeline pipeline) {UNIMPLEMENTED();}
void RADAPIENTRY radReleasePipeline (RADpipeline pipeline) {UNIMPLEMENTED();}
void RADAPIENTRY radPipelineProgramStages (RADpipeline pipeline, RADbitfield stages, RADprogram program) {UNIMPLEMENTED();}
void RADAPIENTRY radPipelineVertexState (RADpipeline pipeline, RADvertexState vertex) {UNIMPLEMENTED();}
void RADAPIENTRY radPipelineColorState (RADpipeline pipeline, RADcolorState color) {UNIMPLEMENTED();}
void RADAPIENTRY radPipelineRasterState (RADpipeline pipeline, RADrasterState raster) {UNIMPLEMENTED();}
void RADAPIENTRY radPipelineDepthStencilState (RADpipeline pipeline, RADdepthStencilState depthStencil) {UNIMPLEMENTED();}
void RADAPIENTRY radPipelineRtFormatState (RADpipeline pipeline, RADrtFormatState rtFormat) {UNIMPLEMENTED();}
void RADAPIENTRY radPipelinePrimitiveType (RADpipeline pipeline, RADprimitiveType mode) {UNIMPLEMENTED();}
void RADAPIENTRY radCompilePipeline (RADpipeline pipeline) {UNIMPLEMENTED();}
RADpipelineHandle RADAPIENTRY radGetPipelineHandle (RADpipeline pipeline) {UNIMPLEMENTED(); return 0;}
RADcommandBuffer RADAPIENTRY radCreateCommandBuffer (RADdevice device, RADqueueType queueType) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceCommandBuffer (RADcommandBuffer cmdBuf) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseCommandBuffer (RADcommandBuffer cmdBuf) {UNIMPLEMENTED();}
void RADAPIENTRY radCmdBindPipeline (RADcommandBuffer cmdBuf, RADpipelineType pipelineType, RADpipelineHandle pipelineHandle) {UNIMPLEMENTED();}
void RADAPIENTRY radCmdBindGroup (RADcommandBuffer cmdBuf, RADbitfield stages, RADuint group, RADuint count, RADbindGroupHandle groupHandle, RADuint offset) {UNIMPLEMENTED();}
void RADAPIENTRY radCmdDrawArrays (RADcommandBuffer cmdBuf, RADprimitiveType mode, RADint first, RADsizei count) {UNIMPLEMENTED();}
void RADAPIENTRY radCmdDrawElements (RADcommandBuffer cmdBuf, RADprimitiveType mode, RADindexType type, RADsizei count, RADindexHandle indexHandle, RADuint offset) {UNIMPLEMENTED();}
RADboolean RADAPIENTRY radCompileCommandBuffer (RADcommandBuffer cmdBuf) {UNIMPLEMENTED(); return 0;}
RADcommandHandle RADAPIENTRY radGetCommandHandle (RADcommandBuffer cmdBuf) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radCmdStencilValueMask (RADcommandBuffer cmdBuf, RADfaceBitfield faces, RADuint mask) {UNIMPLEMENTED();}
void RADAPIENTRY radCmdStencilMask (RADcommandBuffer cmdBuf, RADfaceBitfield faces, RADuint mask) {UNIMPLEMENTED();}
void RADAPIENTRY radCmdStencilRef (RADcommandBuffer cmdBuf, RADfaceBitfield faces, RADint ref) {UNIMPLEMENTED();}
void RADAPIENTRY radCmdBlendColor (RADcommandBuffer cmdBuf, const RADfloat *blendColor) {UNIMPLEMENTED();}
void RADAPIENTRY radCmdPointSize (RADcommandBuffer cmdBuf, RADfloat pointSize) {UNIMPLEMENTED();}
void RADAPIENTRY radCmdLineWidth (RADcommandBuffer cmdBuf, RADfloat lineWidth) {UNIMPLEMENTED();}
void RADAPIENTRY radCmdPolygonOffsetClamp (RADcommandBuffer cmdBuf, RADfloat factor, RADfloat units, RADfloat clamp) {UNIMPLEMENTED();}
void RADAPIENTRY radCmdSampleMask (RADcommandBuffer cmdBuf, RADuint mask) {UNIMPLEMENTED();}
RADpass RADAPIENTRY radCreatePass (RADdevice device) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferencePass (RADpass pass) {UNIMPLEMENTED();}
void RADAPIENTRY radReleasePass (RADpass pass) {UNIMPLEMENTED();}
void RADAPIENTRY radPassDefault (RADpass pass) {UNIMPLEMENTED();}
void RADAPIENTRY radCompilePass (RADpass pass) {UNIMPLEMENTED();}
void RADAPIENTRY radPassRenderTargets (RADpass pass, RADuint numColors, const RADrenderTargetHandle *colors, RADrenderTargetHandle depth, RADrenderTargetHandle stencil) {UNIMPLEMENTED();}
void RADAPIENTRY radPassPreserveEnable (RADpass pass, RADrtAttachment attachment, RADboolean enable) {UNIMPLEMENTED();}
void RADAPIENTRY radPassDiscard (RADpass pass, RADuint numTextures, const RADtexture *textures, const RADoffset2D *offsets) {UNIMPLEMENTED();}
void RADAPIENTRY radPassResolve (RADpass pass, RADrtAttachment attachment, RADtexture texture) {UNIMPLEMENTED();}
void RADAPIENTRY radPassStore (RADpass pass, RADuint numTextures, const RADtexture *textures, const RADoffset2D *offsets) {UNIMPLEMENTED();}
void RADAPIENTRY radPassClip (RADpass pass, const RADrect2D *rect) {UNIMPLEMENTED();}
void RADAPIENTRY radPassDependencies (RADpass pass, RADuint numPasses, const RADpass *otherPasses, const RADbitfield *srcMask, const RADbitfield *dstMask, const RADbitfield *flushMask, const RADbitfield *invalidateMask) {UNIMPLEMENTED();}
void RADAPIENTRY radPassTilingBoundary (RADpass pass, RADboolean boundary) {UNIMPLEMENTED();}
void RADAPIENTRY radPassTileFilterWidth (RADpass pass, RADuint filterWidth, RADuint filterHeight) {UNIMPLEMENTED();}
void RADAPIENTRY radPassTileFootprint (RADpass pass, RADuint bytesPerPixel, RADuint maxFilterWidth, RADuint maxFilterHeight) {UNIMPLEMENTED();}
RADsync RADAPIENTRY radCreateSync (RADdevice device) {UNIMPLEMENTED(); return 0;}
void RADAPIENTRY radReferenceSync (RADsync sync) {UNIMPLEMENTED();}
void RADAPIENTRY radReleaseSync (RADsync sync) {UNIMPLEMENTED();}
void RADAPIENTRY radQueueFenceSync (RADqueue queue, RADsync sync, RADsyncCondition condition, RADbitfield flags) {UNIMPLEMENTED();}
RADwaitSyncResult RADAPIENTRY radWaitSync (RADsync sync, RADuint64 timeout) {UNIMPLEMENTED(); return RAD_WAIT_SYNC_FAILED;}
RADboolean RADAPIENTRY radQueueWaitSync (RADqueue queue, RADsync sync) {UNIMPLEMENTED(); return 0;}
RADPROC RADAPIENTRY radGetProcAddress(const RADchar *procname)
{
struct Extension
{
const char *name;
RADPROC address;
};
static const Extension glExtensions[] =
{
#define EXTENSION(name) {#name, (RADPROC)name}
EXTENSION(radGetProcAddress),
EXTENSION(radCreateDevice),
EXTENSION(radReferenceDevice),
EXTENSION(radReleaseDevice),
EXTENSION(radGetTokenHeader),
EXTENSION(radCreateQueue),
EXTENSION(radReferenceQueue),
EXTENSION(radReleaseQueue),
EXTENSION(radQueueTagBuffer),
EXTENSION(radQueueTagTexture),
EXTENSION(radQueueSubmitCommands),
EXTENSION(radFlushQueue),
EXTENSION(radFinishQueue),
EXTENSION(radQueueViewport),
EXTENSION(radQueueScissor),
EXTENSION(radQueueCopyBufferToImage),
EXTENSION(radQueueCopyImageToBuffer),
EXTENSION(radQueueCopyBuffer),
EXTENSION(radQueueClearColor),
EXTENSION(radQueueClearDepth),
EXTENSION(radQueueClearStencil),
EXTENSION(radQueuePresent),
EXTENSION(radQueueDrawArrays),
EXTENSION(radQueueDrawElements),
EXTENSION(radQueueBindPipeline),
EXTENSION(radQueueBindGroup),
EXTENSION(radQueueBeginPass),
EXTENSION(radQueueEndPass),
EXTENSION(radQueueSubmitDynamic),
EXTENSION(radQueueStencilValueMask),
EXTENSION(radQueueStencilMask),
EXTENSION(radQueueStencilRef),
EXTENSION(radQueueBlendColor),
EXTENSION(radQueuePointSize),
EXTENSION(radQueueLineWidth),
EXTENSION(radQueuePolygonOffsetClamp),
EXTENSION(radQueueSampleMask),
EXTENSION(radCreateProgram),
EXTENSION(radReferenceProgram),
EXTENSION(radReleaseProgram),
EXTENSION(radProgramSource),
EXTENSION(radCreateBuffer),
EXTENSION(radReferenceBuffer),
EXTENSION(radReleaseBuffer),
EXTENSION(radBufferAccess),
EXTENSION(radBufferMapAccess),
EXTENSION(radBufferStorage),
EXTENSION(radMapBuffer),
EXTENSION(radGetVertexHandle),
EXTENSION(radGetIndexHandle),
EXTENSION(radGetUniformHandle),
EXTENSION(radGetBindGroupHandle),
EXTENSION(radCreateTexture),
EXTENSION(radReferenceTexture),
EXTENSION(radReleaseTexture),
EXTENSION(radTextureAccess),
EXTENSION(radTextureStorage),
EXTENSION(radGetTextureSamplerHandle),
EXTENSION(radGetTextureRenderTargetHandle),
EXTENSION(radCreateSampler),
EXTENSION(radReferenceSampler),
EXTENSION(radReleaseSampler),
EXTENSION(radSamplerDefault),
EXTENSION(radSamplerMinMagFilter),
EXTENSION(radSamplerWrapMode),
EXTENSION(radSamplerLodClamp),
EXTENSION(radSamplerLodBias),
EXTENSION(radSamplerCompare),
EXTENSION(radSamplerBorderColorFloat),
EXTENSION(radSamplerBorderColorInt),
EXTENSION(radCreateColorState),
EXTENSION(radReferenceColorState),
EXTENSION(radReleaseColorState),
EXTENSION(radColorDefault),
EXTENSION(radColorBlendEnable),
EXTENSION(radColorBlendFunc),
EXTENSION(radColorBlendEquation),
EXTENSION(radColorMask),
EXTENSION(radColorNumTargets),
EXTENSION(radColorLogicOpEnable),
EXTENSION(radColorLogicOp),
EXTENSION(radColorAlphaToCoverageEnable),
EXTENSION(radColorBlendColor),
EXTENSION(radColorDynamic),
EXTENSION(radCreateRasterState),
EXTENSION(radReferenceRasterState),
EXTENSION(radReleaseRasterState),
EXTENSION(radRasterDefault),
EXTENSION(radRasterPointSize),
EXTENSION(radRasterLineWidth),
EXTENSION(radRasterCullFace),
EXTENSION(radRasterFrontFace),
EXTENSION(radRasterPolygonMode),
EXTENSION(radRasterPolygonOffsetClamp),
EXTENSION(radRasterPolygonOffsetEnables),
EXTENSION(radRasterDiscardEnable),
EXTENSION(radRasterMultisampleEnable),
EXTENSION(radRasterSamples),
EXTENSION(radRasterSampleMask),
EXTENSION(radRasterDynamic),
EXTENSION(radCreateDepthStencilState),
EXTENSION(radReferenceDepthStencilState),
EXTENSION(radReleaseDepthStencilState),
EXTENSION(radDepthStencilDefault),
EXTENSION(radDepthStencilDepthTestEnable),
EXTENSION(radDepthStencilDepthWriteEnable),
EXTENSION(radDepthStencilDepthFunc),
EXTENSION(radDepthStencilStencilTestEnable),
EXTENSION(radDepthStencilStencilFunc),
EXTENSION(radDepthStencilStencilOp),
EXTENSION(radDepthStencilStencilMask),
EXTENSION(radDepthStencilDynamic),
EXTENSION(radCreateVertexState),
EXTENSION(radReferenceVertexState),
EXTENSION(radReleaseVertexState),
EXTENSION(radVertexDefault),
EXTENSION(radVertexAttribFormat),
EXTENSION(radVertexAttribBinding),
EXTENSION(radVertexBindingGroup),
EXTENSION(radVertexAttribEnable),
EXTENSION(radVertexBindingStride),
EXTENSION(radCreateRtFormatState),
EXTENSION(radReferenceRtFormatState),
EXTENSION(radReleaseRtFormatState),
EXTENSION(radRtFormatDefault),
EXTENSION(radRtFormatColorFormat),
EXTENSION(radRtFormatDepthFormat),
EXTENSION(radRtFormatStencilFormat),
EXTENSION(radRtFormatColorSamples),
EXTENSION(radRtFormatDepthStencilSamples),
EXTENSION(radCreatePipeline),
EXTENSION(radReferencePipeline),
EXTENSION(radReleasePipeline),
EXTENSION(radPipelineProgramStages),
EXTENSION(radPipelineVertexState),
EXTENSION(radPipelineColorState),
EXTENSION(radPipelineRasterState),
EXTENSION(radPipelineDepthStencilState),
EXTENSION(radPipelineRtFormatState),
EXTENSION(radPipelinePrimitiveType),
EXTENSION(radCompilePipeline),
EXTENSION(radGetPipelineHandle),
EXTENSION(radCreateCommandBuffer),
EXTENSION(radReferenceCommandBuffer),
EXTENSION(radReleaseCommandBuffer),
EXTENSION(radCmdBindPipeline),
EXTENSION(radCmdBindGroup),
EXTENSION(radCmdDrawArrays),
EXTENSION(radCmdDrawElements),
EXTENSION(radCompileCommandBuffer),
EXTENSION(radGetCommandHandle),
EXTENSION(radCmdStencilValueMask),
EXTENSION(radCmdStencilMask),
EXTENSION(radCmdStencilRef),
EXTENSION(radCmdBlendColor),
EXTENSION(radCmdPointSize),
EXTENSION(radCmdLineWidth),
EXTENSION(radCmdPolygonOffsetClamp),
EXTENSION(radCmdSampleMask),
EXTENSION(radCreatePass),
EXTENSION(radReferencePass),
EXTENSION(radReleasePass),
EXTENSION(radPassDefault),
EXTENSION(radCompilePass),
EXTENSION(radPassRenderTargets),
EXTENSION(radPassPreserveEnable),
EXTENSION(radPassDiscard),
EXTENSION(radPassResolve),
EXTENSION(radPassStore),
EXTENSION(radPassClip),
EXTENSION(radPassDependencies),
EXTENSION(radPassTilingBoundary),
EXTENSION(radPassTileFilterWidth),
EXTENSION(radPassTileFootprint),
EXTENSION(radCreateSync),
EXTENSION(radReferenceSync),
EXTENSION(radReleaseSync),
EXTENSION(radQueueFenceSync),
EXTENSION(radWaitSync),
EXTENSION(radQueueWaitSync),
#undef EXTENSION
};
for(int ext = 0; ext < sizeof(glExtensions) / sizeof(Extension); ext++)
{
if(strcmp(procname, glExtensions[ext].name) == 0)
{
return (RADPROC)glExtensions[ext].address;
}
}
return NULL;
}
__eglMustCastToProperFunctionPointerType glGetProcAddress(const char *procname)
{
struct Extension
{
const char *name;
__eglMustCastToProperFunctionPointerType address;
};
static const Extension glExtensions[] =
{
#define EXTENSION(name) {#name, (__eglMustCastToProperFunctionPointerType)name}
EXTENSION(glTexImage3DOES),
EXTENSION(glBlitFramebufferANGLE),
EXTENSION(glRenderbufferStorageMultisampleANGLE),
EXTENSION(glDeleteFencesNV),
EXTENSION(glGenFencesNV),
EXTENSION(glIsFenceNV),
EXTENSION(glTestFenceNV),
EXTENSION(glGetFenceivNV),
EXTENSION(glFinishFenceNV),
EXTENSION(glSetFenceNV),
EXTENSION(glGetGraphicsResetStatusEXT),
EXTENSION(glReadnPixelsEXT),
EXTENSION(glGetnUniformfvEXT),
EXTENSION(glGetnUniformivEXT),
EXTENSION(glGenQueriesEXT),
EXTENSION(glDeleteQueriesEXT),
EXTENSION(glIsQueryEXT),
EXTENSION(glBeginQueryEXT),
EXTENSION(glEndQueryEXT),
EXTENSION(glGetQueryivEXT),
EXTENSION(glGetQueryObjectuivEXT),
EXTENSION(glEGLImageTargetTexture2DOES),
EXTENSION(radGetProcAddress),
#undef EXTENSION
};
for(int ext = 0; ext < sizeof(glExtensions) / sizeof(Extension); ext++)
{
if(strcmp(procname, glExtensions[ext].name) == 0)
{
return (__eglMustCastToProperFunctionPointerType)glExtensions[ext].address;
}
}
return NULL;
}
void GL_APIENTRY Register(const char *licenseKey)
{
RegisterLicenseKey(licenseKey);
}
}