blob: c7e36f5d092729f3b50c9e5020b733bb221bd334 [file] [log] [blame]
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "test/unit_spirv.h"
#include "test/val/val_fixtures.h"
namespace spvtools {
namespace val {
namespace {
using ::testing::HasSubstr;
using ::testing::Not;
using ValidateAtomics = spvtest::ValidateBase<bool>;
std::string GenerateShaderCodeImpl(
const std::string& body, const std::string& capabilities_and_extensions,
const std::string& definitions, const std::string& memory_model,
const std::string& execution) {
std::ostringstream ss;
ss << R"(
OpCapability Shader
)";
ss << capabilities_and_extensions;
ss << "OpMemoryModel Logical " << memory_model << "\n";
ss << execution;
ss << R"(
%void = OpTypeVoid
%func = OpTypeFunction %void
%bool = OpTypeBool
%f32 = OpTypeFloat 32
%u32 = OpTypeInt 32 0
%f32vec4 = OpTypeVector %f32 4
%f32_0 = OpConstant %f32 0
%f32_1 = OpConstant %f32 1
%u32_0 = OpConstant %u32 0
%u32_1 = OpConstant %u32 1
%f32vec4_0000 = OpConstantComposite %f32vec4 %f32_0 %f32_0 %f32_0 %f32_0
%cross_device = OpConstant %u32 0
%device = OpConstant %u32 1
%workgroup = OpConstant %u32 2
%subgroup = OpConstant %u32 3
%invocation = OpConstant %u32 4
%queuefamily = OpConstant %u32 5
%relaxed = OpConstant %u32 0
%acquire = OpConstant %u32 2
%release = OpConstant %u32 4
%acquire_release = OpConstant %u32 8
%acquire_and_release = OpConstant %u32 6
%sequentially_consistent = OpConstant %u32 16
%acquire_release_uniform_workgroup = OpConstant %u32 328
%f32_ptr = OpTypePointer Workgroup %f32
%f32_var = OpVariable %f32_ptr Workgroup
%u32_ptr = OpTypePointer Workgroup %u32
%u32_var = OpVariable %u32_ptr Workgroup
%f32vec4_ptr = OpTypePointer Workgroup %f32vec4
%f32vec4_var = OpVariable %f32vec4_ptr Workgroup
%f32_ptr_function = OpTypePointer Function %f32
)";
ss << definitions;
ss << R"(
%main = OpFunction %void None %func
%main_entry = OpLabel
)";
ss << body;
ss << R"(
OpReturn
OpFunctionEnd)";
return ss.str();
}
std::string GenerateShaderCode(
const std::string& body,
const std::string& capabilities_and_extensions = "",
const std::string& memory_model = "GLSL450") {
const std::string execution = R"(
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
)";
const std::string defintions = R"(
%u64 = OpTypeInt 64 0
%s64 = OpTypeInt 64 1
%u64_1 = OpConstant %u64 1
%s64_1 = OpConstant %s64 1
%u64_ptr = OpTypePointer Workgroup %u64
%s64_ptr = OpTypePointer Workgroup %s64
%u64_var = OpVariable %u64_ptr Workgroup
%s64_var = OpVariable %s64_ptr Workgroup
)";
return GenerateShaderCodeImpl(
body, "OpCapability Int64\n" + capabilities_and_extensions, defintions,
memory_model, execution);
}
std::string GenerateShaderComputeCode(
const std::string& body,
const std::string& capabilities_and_extensions = "",
const std::string& memory_model = "GLSL450") {
const std::string execution = R"(
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main LocalSize 32 1 1
)";
const std::string defintions = R"(
%u64 = OpTypeInt 64 0
%s64 = OpTypeInt 64 1
%u64_1 = OpConstant %u64 1
%s64_1 = OpConstant %s64 1
%u64_ptr = OpTypePointer Workgroup %u64
%s64_ptr = OpTypePointer Workgroup %s64
%u64_var = OpVariable %u64_ptr Workgroup
%s64_var = OpVariable %s64_ptr Workgroup
)";
return GenerateShaderCodeImpl(
body, "OpCapability Int64\n" + capabilities_and_extensions, defintions,
memory_model, execution);
}
std::string GenerateKernelCode(
const std::string& body,
const std::string& capabilities_and_extensions = "") {
std::ostringstream ss;
ss << R"(
OpCapability Addresses
OpCapability Kernel
OpCapability Linkage
OpCapability Int64
)";
ss << capabilities_and_extensions;
ss << R"(
OpMemoryModel Physical32 OpenCL
%void = OpTypeVoid
%func = OpTypeFunction %void
%bool = OpTypeBool
%f32 = OpTypeFloat 32
%u32 = OpTypeInt 32 0
%u64 = OpTypeInt 64 0
%f32vec4 = OpTypeVector %f32 4
%f32_0 = OpConstant %f32 0
%f32_1 = OpConstant %f32 1
%u32_0 = OpConstant %u32 0
%u32_1 = OpConstant %u32 1
%u64_1 = OpConstant %u64 1
%f32vec4_0000 = OpConstantComposite %f32vec4 %f32_0 %f32_0 %f32_0 %f32_0
%cross_device = OpConstant %u32 0
%device = OpConstant %u32 1
%workgroup = OpConstant %u32 2
%subgroup = OpConstant %u32 3
%invocation = OpConstant %u32 4
%relaxed = OpConstant %u32 0
%acquire = OpConstant %u32 2
%release = OpConstant %u32 4
%acquire_release = OpConstant %u32 8
%acquire_and_release = OpConstant %u32 6
%sequentially_consistent = OpConstant %u32 16
%acquire_release_uniform_workgroup = OpConstant %u32 328
%acquire_release_atomic_counter_workgroup = OpConstant %u32 1288
%f32_ptr = OpTypePointer Workgroup %f32
%f32_var = OpVariable %f32_ptr Workgroup
%u32_ptr = OpTypePointer Workgroup %u32
%u32_var = OpVariable %u32_ptr Workgroup
%u64_ptr = OpTypePointer Workgroup %u64
%u64_var = OpVariable %u64_ptr Workgroup
%f32vec4_ptr = OpTypePointer Workgroup %f32vec4
%f32vec4_var = OpVariable %f32vec4_ptr Workgroup
%f32_ptr_function = OpTypePointer Function %f32
%f32_ptr_uniformconstant = OpTypePointer UniformConstant %f32
%f32_uc_var = OpVariable %f32_ptr_uniformconstant UniformConstant
%f32_ptr_image = OpTypePointer Image %f32
%f32_im_var = OpVariable %f32_ptr_image Image
%main = OpFunction %void None %func
%main_entry = OpLabel
)";
ss << body;
ss << R"(
OpReturn
OpFunctionEnd)";
return ss.str();
}
TEST_F(ValidateAtomics, AtomicLoadShaderSuccess) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %device %relaxed
%val2 = OpAtomicLoad %u32 %u32_var %workgroup %acquire
%val3 = OpAtomicLoad %u64 %u64_var %subgroup %sequentially_consistent
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicLoadKernelSuccess) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %device %relaxed
%val2 = OpAtomicLoad %u32 %u32_var %workgroup %sequentially_consistent
%val3 = OpAtomicLoad %u64 %u64_var %subgroup %acquire
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicLoadInt32VulkanSuccess) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %device %relaxed
%val2 = OpAtomicLoad %u32 %u32_var %workgroup %acquire
)";
CompileSuccessfully(GenerateShaderComputeCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0));
}
TEST_F(ValidateAtomics, AtomicAddIntVulkanWrongType1) {
const std::string body = R"(
%val1 = OpAtomicIAdd %f32 %f32_var %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicIAdd: "
"expected Result Type to be int scalar type"));
}
TEST_F(ValidateAtomics, AtomicAddIntVulkanWrongType2) {
const std::string body = R"(
%val1 = OpAtomicIAdd %f32vec4 %f32vec4_var %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicIAdd: "
"expected Result Type to be integer scalar type"));
}
TEST_F(ValidateAtomics, AtomicAddFloatVulkan) {
const std::string body = R"(
%val1 = OpAtomicFAddEXT %f32 %f32_var %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_CAPABILITY, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Opcode AtomicFAddEXT requires one of these capabilities: "
"AtomicFloat32AddEXT AtomicFloat64AddEXT"));
}
TEST_F(ValidateAtomics, AtomicAddFloatVulkanWrongType1) {
const std::string body = R"(
%val1 = OpAtomicFAddEXT %f32vec4 %f32vec4_var %device %relaxed %f32_1
)";
const std::string extra = R"(
OpCapability AtomicFloat32AddEXT
OpExtension "SPV_EXT_shader_atomic_float_add"
)";
CompileSuccessfully(GenerateShaderCode(body, extra), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFAddEXT: "
"expected Result Type to be float scalar type"));
}
TEST_F(ValidateAtomics, AtomicAddFloatVulkanWrongType2) {
const std::string body = R"(
%val1 = OpAtomicFAddEXT %u32 %u32_var %device %relaxed %u32_1
)";
const std::string extra = R"(
OpCapability AtomicFloat32AddEXT
OpExtension "SPV_EXT_shader_atomic_float_add"
)";
CompileSuccessfully(GenerateShaderCode(body, extra), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFAddEXT: "
"expected Result Type to be float scalar type"));
}
TEST_F(ValidateAtomics, AtomicAddFloatVulkanWrongType3) {
const std::string body = R"(
%val1 = OpAtomicFAddEXT %u64 %u64_var %device %relaxed %u64_1
)";
const std::string extra = R"(
OpCapability AtomicFloat32AddEXT
OpExtension "SPV_EXT_shader_atomic_float_add"
)";
CompileSuccessfully(GenerateShaderCode(body, extra), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFAddEXT: "
"expected Result Type to be float scalar type"));
}
TEST_F(ValidateAtomics, AtomicAddFloatVulkanWrongCapability) {
const std::string body = R"(
%val1 = OpAtomicFAddEXT %f32 %f32_var %device %relaxed %f32_1
)";
const std::string extra = R"(
OpCapability AtomicFloat64AddEXT
OpExtension "SPV_EXT_shader_atomic_float_add"
)";
CompileSuccessfully(GenerateShaderCode(body, extra), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFAddEXT: float add atomics "
"require the AtomicFloat32AddEXT capability"));
}
TEST_F(ValidateAtomics, AtomicAddFloatVulkanSuccess) {
const std::string body = R"(
%val1 = OpAtomicFAddEXT %f32 %f32_var %device %relaxed %f32_1
)";
const std::string extra = R"(
OpCapability AtomicFloat32AddEXT
OpExtension "SPV_EXT_shader_atomic_float_add"
)";
CompileSuccessfully(GenerateShaderCode(body, extra), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0));
}
TEST_F(ValidateAtomics, AtomicLoadFloatVulkan) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %device %relaxed
%val2 = OpAtomicLoad %f32 %f32_var %workgroup %acquire
)";
CompileSuccessfully(GenerateShaderComputeCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0));
}
TEST_F(ValidateAtomics, AtomicStoreFloatVulkan) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0));
}
TEST_F(ValidateAtomics, AtomicExchangeFloatVulkan) {
const std::string body = R"(
%val2 = OpAtomicExchange %f32 %f32_var %device %relaxed %f32_0
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0));
}
TEST_F(ValidateAtomics, AtomicLoadInt64WithCapabilityVulkanSuccess) {
const std::string body = R"(
%val1 = OpAtomicLoad %u64 %u64_var %device %relaxed
%val2 = OpAtomicLoad %u64 %u64_var %workgroup %acquire
)";
CompileSuccessfully(
GenerateShaderComputeCode(body, "OpCapability Int64Atomics\n"),
SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0));
}
TEST_F(ValidateAtomics, AtomicLoadInt64WithoutCapabilityVulkan) {
const std::string body = R"(
%val1 = OpAtomicLoad %u64 %u64_var %device %relaxed
%val2 = OpAtomicLoad %u64 %u64_var %workgroup %acquire
)";
CompileSuccessfully(GenerateShaderComputeCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("64-bit atomics require the Int64Atomics capability"));
}
TEST_F(ValidateAtomics, AtomicStoreOpenCLFunctionPointerStorageTypeSuccess) {
const std::string body = R"(
%f32_var_function = OpVariable %f32_ptr_function Function
OpAtomicStore %f32_var_function %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body), SPV_ENV_OPENCL_1_2);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_OPENCL_1_2));
}
TEST_F(ValidateAtomics, AtomicStoreVulkanFunctionPointerStorageType) {
const std::string body = R"(
%f32_var_function = OpVariable %f32_ptr_function Function
OpAtomicStore %f32_var_function %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(getDiagnosticString(),
AnyVUID("VUID-StandaloneSpirv-None-04686"));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: Vulkan spec only allows storage classes for "
"atomic to be: Uniform, Workgroup, Image, StorageBuffer, or "
"PhysicalStorageBuffer."));
}
TEST_F(ValidateAtomics, AtomicStoreFunctionPointerStorageType) {
const std::string body = R"(
%f32_var_function = OpVariable %f32_ptr_function Function
OpAtomicStore %f32_var_function %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicStore: Function storage class forbidden when "
"the Shader capability is declared."));
}
// TODO(atgoo@github.com): the corresponding check fails Vulkan CTS,
// reenable once fixed.
TEST_F(ValidateAtomics, DISABLED_AtomicLoadVulkanSubgroup) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %subgroup %acquire
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicLoad: in Vulkan environment memory scope is "
"limited to Device, Workgroup and Invocation"));
}
TEST_F(ValidateAtomics, AtomicLoadVulkanRelease) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %workgroup %release
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicLoad with Memory Semantics "
"Release, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicLoadVulkanAcquireRelease) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %workgroup %acquire_release
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicLoad with Memory Semantics "
"Release, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicLoadVulkanSequentiallyConsistent) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %u32_var %workgroup %sequentially_consistent
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicLoad with Memory Semantics "
"Release, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicLoadShaderFloat) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %device %relaxed
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicLoadVulkanInt64) {
const std::string body = R"(
%val1 = OpAtomicLoad %u64 %u64_var %device %relaxed
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicLoad: 64-bit atomics require the Int64Atomics capability"));
}
TEST_F(ValidateAtomics, VK_KHR_shader_atomic_int64Success) {
const std::string body = R"(
%val1 = OpAtomicUMin %u64 %u64_var %device %relaxed %u64_1
%val2 = OpAtomicUMax %u64 %u64_var %device %relaxed %u64_1
%val3 = OpAtomicSMin %u64 %u64_var %device %relaxed %u64_1
%val4 = OpAtomicSMax %u64 %u64_var %device %relaxed %u64_1
%val5 = OpAtomicAnd %u64 %u64_var %device %relaxed %u64_1
%val6 = OpAtomicOr %u64 %u64_var %device %relaxed %u64_1
%val7 = OpAtomicXor %u64 %u64_var %device %relaxed %u64_1
%val8 = OpAtomicIAdd %u64 %u64_var %device %relaxed %u64_1
%val9 = OpAtomicExchange %u64 %u64_var %device %relaxed %u64_1
%val10 = OpAtomicCompareExchange %u64 %u64_var %device %relaxed %relaxed %u64_1 %u64_1
%val11 = OpAtomicUMin %s64 %s64_var %device %relaxed %s64_1
%val12 = OpAtomicUMax %s64 %s64_var %device %relaxed %s64_1
%val13 = OpAtomicSMin %s64 %s64_var %device %relaxed %s64_1
%val14 = OpAtomicSMax %s64 %s64_var %device %relaxed %s64_1
%val15 = OpAtomicAnd %s64 %s64_var %device %relaxed %s64_1
%val16 = OpAtomicOr %s64 %s64_var %device %relaxed %s64_1
%val17 = OpAtomicXor %s64 %s64_var %device %relaxed %s64_1
%val18 = OpAtomicIAdd %s64 %s64_var %device %relaxed %s64_1
%val19 = OpAtomicExchange %s64 %s64_var %device %relaxed %s64_1
%val20 = OpAtomicCompareExchange %s64 %s64_var %device %relaxed %relaxed %s64_1 %s64_1
%val21 = OpAtomicLoad %u64 %u64_var %device %relaxed
%val22 = OpAtomicLoad %s64 %s64_var %device %relaxed
OpAtomicStore %u64_var %device %relaxed %u64_1
OpAtomicStore %s64_var %device %relaxed %s64_1
)";
CompileSuccessfully(GenerateShaderCode(body, "OpCapability Int64Atomics\n"),
SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0));
}
TEST_F(ValidateAtomics, VK_KHR_shader_atomic_int64MissingCapability) {
const std::string body = R"(
%val1 = OpAtomicUMin %u64 %u64_var %device %relaxed %u64_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicUMin: 64-bit atomics require the Int64Atomics capability"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongResultType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32vec4 %f32vec4_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicLoad: "
"expected Result Type to be int or float scalar type"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongPointerType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_ptr %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Operand 27[%_ptr_Workgroup_float] cannot be a type"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongPointerDataType) {
const std::string body = R"(
%val1 = OpAtomicLoad %u32 %f32_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicLoad: "
"expected Pointer to point to a value of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongScopeType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %f32_1 %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicLoad: expected scope to be a 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicLoadWrongMemorySemanticsType) {
const std::string body = R"(
%val1 = OpAtomicLoad %f32 %f32_var %device %u64_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicLoad: expected Memory Semantics to be a 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicStoreKernelSuccess) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
OpAtomicStore %u32_var %subgroup %release %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicStoreShaderSuccess) {
const std::string body = R"(
OpAtomicStore %u32_var %device %release %u32_1
OpAtomicStore %u32_var %subgroup %sequentially_consistent %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicStoreVulkanSuccess) {
const std::string body = R"(
OpAtomicStore %u32_var %device %release %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_0));
}
TEST_F(ValidateAtomics, AtomicStoreVulkanAcquire) {
const std::string body = R"(
OpAtomicStore %u32_var %device %acquire %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicStore with Memory Semantics "
"Acquire, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicStoreVulkanAcquireRelease) {
const std::string body = R"(
OpAtomicStore %u32_var %device %acquire_release %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicStore with Memory Semantics "
"Acquire, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicStoreVulkanSequentiallyConsistent) {
const std::string body = R"(
OpAtomicStore %u32_var %device %sequentially_consistent %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_0);
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Vulkan spec disallows OpAtomicStore with Memory Semantics "
"Acquire, AcquireRelease and SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongPointerType) {
const std::string body = R"(
OpAtomicStore %f32_1 %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongPointerDataType) {
const std::string body = R"(
OpAtomicStore %f32vec4_var %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: "
"expected Pointer to be a pointer to int or float scalar "
"type"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongPointerStorageTypeForOpenCL) {
const std::string body = R"(
OpAtomicStore %f32_im_var %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_OPENCL_1_2));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: storage class must be Function, Workgroup, "
"CrossWorkGroup or Generic in the OpenCL environment."));
}
TEST_F(ValidateAtomics, AtomicStoreWrongPointerStorageType) {
const std::string body = R"(
OpAtomicStore %f32_uc_var %device %relaxed %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicStore: storage class forbidden by universal "
"validation rules."));
}
TEST_F(ValidateAtomics, AtomicStoreWrongScopeType) {
const std::string body = R"(
OpAtomicStore %f32_var %f32_1 %relaxed %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicStore: expected scope to be a 32-bit int\n "
"OpAtomicStore %28 %float_1 %uint_0_1 %float_1\n"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongMemorySemanticsType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %f32_1 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: expected Memory Semantics to be a 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicStoreWrongValueType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: "
"expected Value type and the type pointed to by Pointer to "
"be the same"));
}
TEST_F(ValidateAtomics, AtomicExchangeShaderSuccess) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val2 = OpAtomicExchange %u32 %u32_var %device %relaxed %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicExchangeKernelSuccess) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %device %relaxed %f32_0
OpAtomicStore %u32_var %device %relaxed %u32_1
%val4 = OpAtomicExchange %u32 %u32_var %device %relaxed %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicExchangeShaderFloat) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %device %relaxed %f32_0
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicExchangeWrongResultType) {
const std::string body = R"(
OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicExchange %f32vec4 %f32vec4_var %device %relaxed %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicExchange: "
"expected Result Type to be int or float scalar type"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongPointerType) {
const std::string body = R"(
%val2 = OpAtomicExchange %f32 %f32vec4_ptr %device %relaxed %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Operand 33[%_ptr_Workgroup_v4float] cannot be a "
"type"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongPointerDataType) {
const std::string body = R"(
OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicExchange %f32 %f32vec4_var %device %relaxed %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicExchange: "
"expected Pointer to point to a value of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongScopeType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %f32_1 %relaxed %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicExchange: expected scope to be a 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongMemorySemanticsType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %device %f32_1 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicExchange: expected Memory Semantics to be a 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicExchangeWrongValueType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicExchange %f32 %f32_var %device %relaxed %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicExchange: "
"expected Value to be of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeShaderSuccess) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val2 = OpAtomicCompareExchange %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicCompareExchangeKernelSuccess) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %f32_0 %f32_1
OpAtomicStore %u32_var %device %relaxed %u32_1
%val4 = OpAtomicCompareExchange %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicCompareExchangeShaderFloat) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val1 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %f32_0 %f32_1
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Result Type to be int scalar type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongResultType) {
const std::string body = R"(
OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicCompareExchange %f32vec4 %f32vec4_var %device %relaxed %relaxed %f32vec4_0000 %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Result Type to be int or float scalar type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongPointerType) {
const std::string body = R"(
%val2 = OpAtomicCompareExchange %f32 %f32vec4_ptr %device %relaxed %relaxed %f32vec4_0000 %f32vec4_0000
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Operand 33[%_ptr_Workgroup_v4float] cannot be a "
"type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongPointerDataType) {
const std::string body = R"(
OpStore %f32vec4_var %f32vec4_0000
%val2 = OpAtomicCompareExchange %f32 %f32vec4_var %device %relaxed %relaxed %f32_0 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Pointer to point to a value of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongScopeType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %f32_1 %relaxed %relaxed %f32_0 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: expected scope to be a 32-bit "
"int"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongMemorySemanticsType1) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %f32_1 %relaxed %f32_0 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: expected Memory Semantics to "
"be a 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongMemorySemanticsType2) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %f32_1 %f32_0 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: expected Memory Semantics to "
"be a 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeUnequalRelease) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %release %f32_0 %f32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: Memory Semantics Release and "
"AcquireRelease cannot be used for operand Unequal"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongValueType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %u32_0 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Value to be of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWrongComparatorType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchange %f32 %f32_var %device %relaxed %relaxed %f32_0 %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchange: "
"expected Comparator to be of type Result Type"));
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWeakSuccess) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val4 = OpAtomicCompareExchangeWeak %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicCompareExchangeWeakWrongResultType) {
const std::string body = R"(
OpAtomicStore %f32_var %device %relaxed %f32_1
%val2 = OpAtomicCompareExchangeWeak %f32 %f32_var %device %relaxed %relaxed %f32_0 %f32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicCompareExchangeWeak: "
"expected Result Type to be int scalar type"));
}
TEST_F(ValidateAtomics, AtomicArithmeticsSuccess) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release
%val2 = OpAtomicIDecrement %u32 %u32_var %device %acquire_release
%val3 = OpAtomicIAdd %u32 %u32_var %device %acquire_release %u32_1
%val4 = OpAtomicISub %u32 %u32_var %device %acquire_release %u32_1
%val5 = OpAtomicUMin %u32 %u32_var %device %acquire_release %u32_1
%val6 = OpAtomicUMax %u32 %u32_var %device %acquire_release %u32_1
%val7 = OpAtomicSMin %u32 %u32_var %device %sequentially_consistent %u32_1
%val8 = OpAtomicSMax %u32 %u32_var %device %sequentially_consistent %u32_1
%val9 = OpAtomicAnd %u32 %u32_var %device %sequentially_consistent %u32_1
%val10 = OpAtomicOr %u32 %u32_var %device %sequentially_consistent %u32_1
%val11 = OpAtomicXor %u32 %u32_var %device %sequentially_consistent %u32_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicFlagsSuccess) {
const std::string body = R"(
OpAtomicFlagClear %u32_var %device %release
%val1 = OpAtomicFlagTestAndSet %bool %u32_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongResultType) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %u32 %u32_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Result Type to be bool scalar type"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotPointer) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u32_1 %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotIntPointer) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %f32_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetNotInt32Pointer) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u64_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongScopeType) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u32_var %u64_1 %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: expected scope to be a 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicFlagTestAndSetWrongMemorySemanticsType) {
const std::string body = R"(
%val1 = OpAtomicFlagTestAndSet %bool %u32_var %device %u64_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagTestAndSet: "
"expected Memory Semantics to be a 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicFlagClearAcquire) {
const std::string body = R"(
OpAtomicFlagClear %u32_var %device %acquire
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Memory Semantics Acquire and AcquireRelease cannot be "
"used with AtomicFlagClear"));
}
TEST_F(ValidateAtomics, AtomicFlagClearNotPointer) {
const std::string body = R"(
OpAtomicFlagClear %u32_1 %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagClear: "
"expected Pointer to be of type OpTypePointer"));
}
TEST_F(ValidateAtomics, AtomicFlagClearNotIntPointer) {
const std::string body = R"(
OpAtomicFlagClear %f32_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagClear: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagClearNotInt32Pointer) {
const std::string body = R"(
OpAtomicFlagClear %u64_var %device %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicFlagClear: "
"expected Pointer to point to a value of 32-bit int type"));
}
TEST_F(ValidateAtomics, AtomicFlagClearWrongScopeType) {
const std::string body = R"(
OpAtomicFlagClear %u32_var %u64_1 %relaxed
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicFlagClear: expected scope to be a 32-bit "
"int\n OpAtomicFlagClear %30 %ulong_1 %uint_0_1\n"));
}
TEST_F(ValidateAtomics, AtomicFlagClearWrongMemorySemanticsType) {
const std::string body = R"(
OpAtomicFlagClear %u32_var %device %u64_1
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicFlagClear: expected Memory Semantics to be a 32-bit int"));
}
TEST_F(ValidateAtomics, AtomicIIncrementAcquireAndRelease) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_and_release
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicIIncrement: Memory Semantics can have at most "
"one of the following bits set: Acquire, Release, "
"AcquireRelease or SequentiallyConsistent"));
}
TEST_F(ValidateAtomics, AtomicUniformMemorySemanticsShader) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release_uniform_workgroup
)";
CompileSuccessfully(GenerateShaderCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicUniformMemorySemanticsKernel) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release_uniform_workgroup
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicIIncrement: Memory Semantics UniformMemory "
"requires capability Shader"));
}
// Lack of the AtomicStorage capability is intentionally ignored, see
// https://github.com/KhronosGroup/glslang/issues/1618 for the reasoning why.
TEST_F(ValidateAtomics, AtomicCounterMemorySemanticsNoCapability) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device
%acquire_release_atomic_counter_workgroup
)";
CompileSuccessfully(GenerateKernelCode(body));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, AtomicCounterMemorySemanticsWithCapability) {
const std::string body = R"(
OpAtomicStore %u32_var %device %relaxed %u32_1
%val1 = OpAtomicIIncrement %u32 %u32_var %device %acquire_release_atomic_counter_workgroup
)";
CompileSuccessfully(GenerateKernelCode(body, "OpCapability AtomicStorage\n"));
ASSERT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicLoad) {
const std::string body = R"(
%ld = OpAtomicLoad %u32 %u32_var %workgroup %sequentially_consistent
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicStore) {
const std::string body = R"(
OpAtomicStore %u32_var %workgroup %sequentially_consistent %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics,
VulkanMemoryModelBanSequentiallyConsistentAtomicExchange) {
const std::string body = R"(
%ex = OpAtomicExchange %u32 %u32_var %workgroup %sequentially_consistent %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics,
VulkanMemoryModelBanSequentiallyConsistentAtomicCompareExchangeEqual) {
const std::string body = R"(
%ex = OpAtomicCompareExchange %u32 %u32_var %workgroup %sequentially_consistent %relaxed %u32_0 %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics,
VulkanMemoryModelBanSequentiallyConsistentAtomicCompareExchangeUnequal) {
const std::string body = R"(
%ex = OpAtomicCompareExchange %u32 %u32_var %workgroup %relaxed %sequentially_consistent %u32_0 %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics,
VulkanMemoryModelBanSequentiallyConsistentAtomicIIncrement) {
const std::string body = R"(
%inc = OpAtomicIIncrement %u32 %u32_var %workgroup %sequentially_consistent
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics,
VulkanMemoryModelBanSequentiallyConsistentAtomicIDecrement) {
const std::string body = R"(
%dec = OpAtomicIDecrement %u32 %u32_var %workgroup %sequentially_consistent
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicIAdd) {
const std::string body = R"(
%add = OpAtomicIAdd %u32 %u32_var %workgroup %sequentially_consistent %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicISub) {
const std::string body = R"(
%sub = OpAtomicISub %u32 %u32_var %workgroup %sequentially_consistent %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicSMin) {
const std::string body = R"(
%min = OpAtomicSMin %u32 %u32_var %workgroup %sequentially_consistent %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicUMin) {
const std::string body = R"(
%min = OpAtomicUMin %u32 %u32_var %workgroup %sequentially_consistent %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicSMax) {
const std::string body = R"(
%max = OpAtomicSMax %u32 %u32_var %workgroup %sequentially_consistent %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicUMax) {
const std::string body = R"(
%max = OpAtomicUMax %u32 %u32_var %workgroup %sequentially_consistent %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicAnd) {
const std::string body = R"(
%and = OpAtomicAnd %u32 %u32_var %workgroup %sequentially_consistent %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicOr) {
const std::string body = R"(
%or = OpAtomicOr %u32 %u32_var %workgroup %sequentially_consistent %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics, VulkanMemoryModelBanSequentiallyConsistentAtomicXor) {
const std::string body = R"(
%xor = OpAtomicXor %u32 %u32_var %workgroup %sequentially_consistent %u32_0
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("SequentiallyConsistent memory semantics cannot be "
"used with the VulkanKHR memory model."));
}
TEST_F(ValidateAtomics, OutputMemoryKHRRequiresVulkanMemoryModelKHR) {
const std::string text = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %1 "func"
OpExecutionMode %1 OriginUpperLeft
%2 = OpTypeVoid
%3 = OpTypeInt 32 0
%semantics = OpConstant %3 4100
%5 = OpTypeFunction %2
%workgroup = OpConstant %3 2
%ptr = OpTypePointer Workgroup %3
%var = OpVariable %ptr Workgroup
%1 = OpFunction %2 None %5
%7 = OpLabel
OpAtomicStore %var %workgroup %semantics %workgroup
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(text);
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicStore: Memory Semantics OutputMemoryKHR "
"requires capability VulkanMemoryModelKHR"));
}
TEST_F(ValidateAtomics, MakeAvailableKHRRequiresVulkanMemoryModelKHR) {
const std::string text = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %1 "func"
OpExecutionMode %1 OriginUpperLeft
%2 = OpTypeVoid
%3 = OpTypeInt 32 0
%semantics = OpConstant %3 8196
%5 = OpTypeFunction %2
%workgroup = OpConstant %3 2
%ptr = OpTypePointer Workgroup %3
%var = OpVariable %ptr Workgroup
%1 = OpFunction %2 None %5
%7 = OpLabel
OpAtomicStore %var %workgroup %semantics %workgroup
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(text);
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicStore: Memory Semantics MakeAvailableKHR "
"requires capability VulkanMemoryModelKHR"));
}
TEST_F(ValidateAtomics, MakeVisibleKHRRequiresVulkanMemoryModelKHR) {
const std::string text = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %1 "func"
OpExecutionMode %1 OriginUpperLeft
%2 = OpTypeVoid
%3 = OpTypeInt 32 0
%semantics = OpConstant %3 16386
%5 = OpTypeFunction %2
%workgroup = OpConstant %3 2
%ptr = OpTypePointer Workgroup %3
%var = OpVariable %ptr Workgroup
%1 = OpFunction %2 None %5
%7 = OpLabel
%ld = OpAtomicLoad %3 %var %workgroup %semantics
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(text);
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicLoad: Memory Semantics MakeVisibleKHR requires "
"capability VulkanMemoryModelKHR"));
}
TEST_F(ValidateAtomics, MakeAvailableKHRRequiresReleaseSemantics) {
const std::string text = R"(
OpCapability Shader
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
OpMemoryModel Logical VulkanKHR
OpEntryPoint Fragment %1 "func"
OpExecutionMode %1 OriginUpperLeft
%2 = OpTypeVoid
%3 = OpTypeInt 32 0
%semantics = OpConstant %3 8448
%5 = OpTypeFunction %2
%workgroup = OpConstant %3 2
%ptr = OpTypePointer Workgroup %3
%var = OpVariable %ptr Workgroup
%1 = OpFunction %2 None %5
%7 = OpLabel
OpAtomicStore %var %workgroup %semantics %workgroup
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(text, SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicStore: MakeAvailableKHR Memory Semantics also requires "
"either Release or AcquireRelease Memory Semantics"));
}
TEST_F(ValidateAtomics, MakeVisibleKHRRequiresAcquireSemantics) {
const std::string text = R"(
OpCapability Shader
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
OpMemoryModel Logical VulkanKHR
OpEntryPoint Fragment %1 "func"
OpExecutionMode %1 OriginUpperLeft
%2 = OpTypeVoid
%3 = OpTypeInt 32 0
%semantics = OpConstant %3 16640
%5 = OpTypeFunction %2
%workgroup = OpConstant %3 2
%ptr = OpTypePointer Workgroup %3
%var = OpVariable %ptr Workgroup
%1 = OpFunction %2 None %5
%7 = OpLabel
%ld = OpAtomicLoad %3 %var %workgroup %semantics
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(text, SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("AtomicLoad: MakeVisibleKHR Memory Semantics also requires "
"either Acquire or AcquireRelease Memory Semantics"));
}
TEST_F(ValidateAtomics, MakeAvailableKHRRequiresStorageSemantics) {
const std::string text = R"(
OpCapability Shader
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
OpMemoryModel Logical VulkanKHR
OpEntryPoint Fragment %1 "func"
OpExecutionMode %1 OriginUpperLeft
%2 = OpTypeVoid
%3 = OpTypeInt 32 0
%semantics = OpConstant %3 8196
%5 = OpTypeFunction %2
%workgroup = OpConstant %3 2
%ptr = OpTypePointer Workgroup %3
%var = OpVariable %ptr Workgroup
%1 = OpFunction %2 None %5
%7 = OpLabel
OpAtomicStore %var %workgroup %semantics %workgroup
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(text, SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicStore: expected Memory Semantics to include a storage class"));
}
TEST_F(ValidateAtomics, MakeVisibleKHRRequiresStorageSemantics) {
const std::string text = R"(
OpCapability Shader
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
OpMemoryModel Logical VulkanKHR
OpEntryPoint Fragment %1 "func"
OpExecutionMode %1 OriginUpperLeft
%2 = OpTypeVoid
%3 = OpTypeInt 32 0
%semantics = OpConstant %3 16386
%5 = OpTypeFunction %2
%workgroup = OpConstant %3 2
%ptr = OpTypePointer Workgroup %3
%var = OpVariable %ptr Workgroup
%1 = OpFunction %2 None %5
%7 = OpLabel
%ld = OpAtomicLoad %3 %var %workgroup %semantics
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(text, SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicLoad: expected Memory Semantics to include a storage class"));
}
TEST_F(ValidateAtomics, VulkanMemoryModelAllowsQueueFamilyKHR) {
const std::string body = R"(
%val = OpAtomicAnd %u32 %u32_var %queuefamily %relaxed %u32_1
)";
const std::string extra = R"(
OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_VULKAN_1_1);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_VULKAN_1_1));
}
TEST_F(ValidateAtomics, NonVulkanMemoryModelDisallowsQueueFamilyKHR) {
const std::string body = R"(
%val = OpAtomicAnd %u32 %u32_var %queuefamily %relaxed %u32_1
)";
CompileSuccessfully(GenerateShaderCode(body), SPV_ENV_VULKAN_1_1);
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_1));
EXPECT_THAT(getDiagnosticString(),
HasSubstr("AtomicAnd: Memory Scope QueueFamilyKHR requires "
"capability VulkanMemoryModelKHR\n %42 = OpAtomicAnd "
"%uint %29 %uint_5 %uint_0_1 %uint_1\n"));
}
TEST_F(ValidateAtomics, SemanticsSpecConstantShader) {
const std::string spirv = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %func "func"
OpExecutionMode %func OriginUpperLeft
%void = OpTypeVoid
%int = OpTypeInt 32 0
%spec_const = OpSpecConstant %int 0
%workgroup = OpConstant %int 2
%ptr_int_workgroup = OpTypePointer Workgroup %int
%var = OpVariable %ptr_int_workgroup Workgroup
%voidfn = OpTypeFunction %void
%func = OpFunction %void None %voidfn
%entry = OpLabel
%ld = OpAtomicLoad %int %var %workgroup %spec_const
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Memory Semantics ids must be OpConstant when Shader "
"capability is present"));
}
TEST_F(ValidateAtomics, SemanticsSpecConstantKernel) {
const std::string spirv = R"(
OpCapability Kernel
OpCapability Linkage
OpMemoryModel Logical OpenCL
%void = OpTypeVoid
%int = OpTypeInt 32 0
%spec_const = OpSpecConstant %int 0
%workgroup = OpConstant %int 2
%ptr_int_workgroup = OpTypePointer Workgroup %int
%var = OpVariable %ptr_int_workgroup Workgroup
%voidfn = OpTypeFunction %void
%func = OpFunction %void None %voidfn
%entry = OpLabel
%ld = OpAtomicLoad %int %var %workgroup %spec_const
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, ScopeSpecConstantShader) {
const std::string spirv = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %func "func"
OpExecutionMode %func OriginUpperLeft
%void = OpTypeVoid
%int = OpTypeInt 32 0
%spec_const = OpSpecConstant %int 0
%relaxed = OpConstant %int 0
%ptr_int_workgroup = OpTypePointer Workgroup %int
%var = OpVariable %ptr_int_workgroup Workgroup
%voidfn = OpTypeFunction %void
%func = OpFunction %void None %voidfn
%entry = OpLabel
%ld = OpAtomicLoad %int %var %spec_const %relaxed
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"Scope ids must be OpConstant when Shader capability is present"));
}
TEST_F(ValidateAtomics, ScopeSpecConstantKernel) {
const std::string spirv = R"(
OpCapability Kernel
OpCapability Linkage
OpMemoryModel Logical OpenCL
%void = OpTypeVoid
%int = OpTypeInt 32 0
%spec_const = OpSpecConstant %int 0
%relaxed = OpConstant %int 0
%ptr_int_workgroup = OpTypePointer Workgroup %int
%var = OpVariable %ptr_int_workgroup Workgroup
%voidfn = OpTypeFunction %void
%func = OpFunction %void None %voidfn
%entry = OpLabel
%ld = OpAtomicLoad %int %var %spec_const %relaxed
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, VulkanMemoryModelDeviceScopeBad) {
const std::string body = R"(
%val = OpAtomicAnd %u32 %u32_var %device %relaxed %u32_1
)";
const std::string extra = R"(OpCapability VulkanMemoryModelKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_ERROR_INVALID_DATA,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr("Use of device scope with VulkanKHR memory model requires the "
"VulkanMemoryModelDeviceScopeKHR capability"));
}
TEST_F(ValidateAtomics, VulkanMemoryModelDeviceScopeGood) {
const std::string body = R"(
%val = OpAtomicAnd %u32 %u32_var %device %relaxed %u32_1
)";
const std::string extra = R"(OpCapability VulkanMemoryModelKHR
OpCapability VulkanMemoryModelDeviceScopeKHR
OpExtension "SPV_KHR_vulkan_memory_model"
)";
CompileSuccessfully(GenerateShaderCode(body, extra, "VulkanKHR"),
SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3));
}
TEST_F(ValidateAtomics, CompareExchangeWeakV13ValV14Good) {
const std::string body = R"(
%val1 = OpAtomicCompareExchangeWeak %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body), SPV_ENV_UNIVERSAL_1_3);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_UNIVERSAL_1_4));
}
TEST_F(ValidateAtomics, CompareExchangeWeakV14Bad) {
const std::string body = R"(
%val1 = OpAtomicCompareExchangeWeak %u32 %u32_var %device %relaxed %relaxed %u32_0 %u32_0
)";
CompileSuccessfully(GenerateKernelCode(body), SPV_ENV_UNIVERSAL_1_4);
EXPECT_EQ(SPV_ERROR_WRONG_VERSION,
ValidateInstructions(SPV_ENV_UNIVERSAL_1_4));
EXPECT_THAT(
getDiagnosticString(),
HasSubstr(
"AtomicCompareExchangeWeak requires SPIR-V version 1.3 or earlier"));
}
TEST_F(ValidateAtomics, CompareExchangeVolatileMatch) {
const std::string spirv = R"(
OpCapability Shader
OpCapability VulkanMemoryModelKHR
OpCapability Linkage
OpExtension "SPV_KHR_vulkan_memory_model"
OpMemoryModel Logical VulkanKHR
%void = OpTypeVoid
%int = OpTypeInt 32 0
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%workgroup = OpConstant %int 2
%volatile = OpConstant %int 32768
%ptr_wg_int = OpTypePointer Workgroup %int
%wg_var = OpVariable %ptr_wg_int Workgroup
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%entry = OpLabel
%cmp_ex = OpAtomicCompareExchange %int %wg_var %workgroup %volatile %volatile %int_0 %int_1
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, CompareExchangeVolatileMismatch) {
const std::string spirv = R"(
OpCapability Shader
OpCapability VulkanMemoryModelKHR
OpCapability Linkage
OpExtension "SPV_KHR_vulkan_memory_model"
OpMemoryModel Logical VulkanKHR
%void = OpTypeVoid
%int = OpTypeInt 32 0
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%workgroup = OpConstant %int 2
%volatile = OpConstant %int 32768
%non_volatile = OpConstant %int 0
%ptr_wg_int = OpTypePointer Workgroup %int
%wg_var = OpVariable %ptr_wg_int Workgroup
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%entry = OpLabel
%cmp_ex = OpAtomicCompareExchange %int %wg_var %workgroup %non_volatile %volatile %int_0 %int_1
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Volatile mask setting must match for Equal and "
"Unequal memory semantics"));
}
TEST_F(ValidateAtomics, CompareExchangeVolatileMismatchCooperativeMatrix) {
const std::string spirv = R"(
OpCapability Shader
OpCapability VulkanMemoryModelKHR
OpCapability Linkage
OpCapability CooperativeMatrixNV
OpExtension "SPV_KHR_vulkan_memory_model"
OpExtension "SPV_NV_cooperative_matrix"
OpMemoryModel Logical VulkanKHR
%void = OpTypeVoid
%int = OpTypeInt 32 0
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%workgroup = OpConstant %int 2
%volatile = OpSpecConstant %int 32768
%non_volatile = OpSpecConstant %int 32768
%ptr_wg_int = OpTypePointer Workgroup %int
%wg_var = OpVariable %ptr_wg_int Workgroup
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%entry = OpLabel
%cmp_ex = OpAtomicCompareExchange %int %wg_var %workgroup %volatile %non_volatile %int_0 %int_1
OpReturn
OpFunctionEnd
)";
// This is ok because we cannot evaluate the spec constant defaults.
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_SUCCESS, ValidateInstructions());
}
TEST_F(ValidateAtomics, VolatileRequiresVulkanMemoryModel) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%int = OpTypeInt 32 0
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%workgroup = OpConstant %int 2
%volatile = OpConstant %int 32768
%ptr_wg_int = OpTypePointer Workgroup %int
%wg_var = OpVariable %ptr_wg_int Workgroup
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%entry = OpLabel
%ld = OpAtomicLoad %int %wg_var %workgroup %volatile
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Memory Semantics Volatile requires capability "
"VulkanMemoryModelKHR"));
}
TEST_F(ValidateAtomics, CooperativeMatrixSemanticsMustBeConstant) {
const std::string spirv = R"(
OpCapability Shader
OpCapability Linkage
OpCapability CooperativeMatrixNV
OpExtension "SPV_NV_cooperative_matrix"
OpMemoryModel Logical GLSL450
%void = OpTypeVoid
%int = OpTypeInt 32 0
%int_0 = OpConstant %int 0
%int_1 = OpConstant %int 1
%workgroup = OpConstant %int 2
%undef = OpUndef %int
%ptr_wg_int = OpTypePointer Workgroup %int
%wg_var = OpVariable %ptr_wg_int Workgroup
%void_fn = OpTypeFunction %void
%func = OpFunction %void None %void_fn
%entry = OpLabel
%ld = OpAtomicLoad %int %wg_var %workgroup %undef
OpReturn
OpFunctionEnd
)";
CompileSuccessfully(spirv);
EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions());
EXPECT_THAT(getDiagnosticString(),
HasSubstr("Memory Semantics must be a constant instruction when "
"CooperativeMatrixNV capability is present"));
}
} // namespace
} // namespace val
} // namespace spvtools