|  | /*===- X86DisassemblerDecoder.c - Disassembler decoder -------------*- C -*-==* | 
|  | * | 
|  | *                     The LLVM Compiler Infrastructure | 
|  | * | 
|  | * This file is distributed under the University of Illinois Open Source | 
|  | * License. See LICENSE.TXT for details. | 
|  | * | 
|  | *===----------------------------------------------------------------------===* | 
|  | * | 
|  | * This file is part of the X86 Disassembler. | 
|  | * It contains the implementation of the instruction decoder. | 
|  | * Documentation for the disassembler can be found in X86Disassembler.h. | 
|  | * | 
|  | *===----------------------------------------------------------------------===*/ | 
|  |  | 
|  | #include <stdarg.h>   /* for va_*()       */ | 
|  | #include <stdio.h>    /* for vsnprintf()  */ | 
|  | #include <stdlib.h>   /* for exit()       */ | 
|  | #include <string.h>   /* for memset()     */ | 
|  |  | 
|  | #include "X86DisassemblerDecoder.h" | 
|  |  | 
|  | #include "X86GenDisassemblerTables.inc" | 
|  |  | 
|  | #define TRUE  1 | 
|  | #define FALSE 0 | 
|  |  | 
|  | typedef int8_t bool; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | #define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0) | 
|  | #else | 
|  | #define debug(s) do { } while (0) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * contextForAttrs - Client for the instruction context table.  Takes a set of | 
|  | *   attributes and returns the appropriate decode context. | 
|  | * | 
|  | * @param attrMask  - Attributes, from the enumeration attributeBits. | 
|  | * @return          - The InstructionContext to use when looking up an | 
|  | *                    an instruction with these attributes. | 
|  | */ | 
|  | static InstructionContext contextForAttrs(uint8_t attrMask) { | 
|  | return CONTEXTS_SYM[attrMask]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * modRMRequired - Reads the appropriate instruction table to determine whether | 
|  | *   the ModR/M byte is required to decode a particular instruction. | 
|  | * | 
|  | * @param type        - The opcode type (i.e., how many bytes it has). | 
|  | * @param insnContext - The context for the instruction, as returned by | 
|  | *                      contextForAttrs. | 
|  | * @param opcode      - The last byte of the instruction's opcode, not counting | 
|  | *                      ModR/M extensions and escapes. | 
|  | * @return            - TRUE if the ModR/M byte is required, FALSE otherwise. | 
|  | */ | 
|  | static int modRMRequired(OpcodeType type, | 
|  | InstructionContext insnContext, | 
|  | uint8_t opcode) { | 
|  | const struct ContextDecision* decision = 0; | 
|  |  | 
|  | switch (type) { | 
|  | case ONEBYTE: | 
|  | decision = &ONEBYTE_SYM; | 
|  | break; | 
|  | case TWOBYTE: | 
|  | decision = &TWOBYTE_SYM; | 
|  | break; | 
|  | case THREEBYTE_38: | 
|  | decision = &THREEBYTE38_SYM; | 
|  | break; | 
|  | case THREEBYTE_3A: | 
|  | decision = &THREEBYTE3A_SYM; | 
|  | break; | 
|  | case THREEBYTE_A6: | 
|  | decision = &THREEBYTEA6_SYM; | 
|  | break; | 
|  | case THREEBYTE_A7: | 
|  | decision = &THREEBYTEA7_SYM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return decision->opcodeDecisions[insnContext].modRMDecisions[opcode]. | 
|  | modrm_type != MODRM_ONEENTRY; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * decode - Reads the appropriate instruction table to obtain the unique ID of | 
|  | *   an instruction. | 
|  | * | 
|  | * @param type        - See modRMRequired(). | 
|  | * @param insnContext - See modRMRequired(). | 
|  | * @param opcode      - See modRMRequired(). | 
|  | * @param modRM       - The ModR/M byte if required, or any value if not. | 
|  | * @return            - The UID of the instruction, or 0 on failure. | 
|  | */ | 
|  | static InstrUID decode(OpcodeType type, | 
|  | InstructionContext insnContext, | 
|  | uint8_t opcode, | 
|  | uint8_t modRM) { | 
|  | const struct ModRMDecision* dec; | 
|  |  | 
|  | switch (type) { | 
|  | default: | 
|  | debug("Unknown opcode type"); | 
|  | return 0; | 
|  | case ONEBYTE: | 
|  | dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case TWOBYTE: | 
|  | dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case THREEBYTE_38: | 
|  | dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case THREEBYTE_3A: | 
|  | dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case THREEBYTE_A6: | 
|  | dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case THREEBYTE_A7: | 
|  | dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (dec->modrm_type) { | 
|  | default: | 
|  | debug("Corrupt table!  Unknown modrm_type"); | 
|  | return 0; | 
|  | case MODRM_ONEENTRY: | 
|  | return dec->instructionIDs[0]; | 
|  | case MODRM_SPLITRM: | 
|  | if (modFromModRM(modRM) == 0x3) | 
|  | return dec->instructionIDs[1]; | 
|  | else | 
|  | return dec->instructionIDs[0]; | 
|  | case MODRM_FULL: | 
|  | return dec->instructionIDs[modRM]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * specifierForUID - Given a UID, returns the name and operand specification for | 
|  | *   that instruction. | 
|  | * | 
|  | * @param uid - The unique ID for the instruction.  This should be returned by | 
|  | *              decode(); specifierForUID will not check bounds. | 
|  | * @return    - A pointer to the specification for that instruction. | 
|  | */ | 
|  | static const struct InstructionSpecifier *specifierForUID(InstrUID uid) { | 
|  | return &INSTRUCTIONS_SYM[uid]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * consumeByte - Uses the reader function provided by the user to consume one | 
|  | *   byte from the instruction's memory and advance the cursor. | 
|  | * | 
|  | * @param insn  - The instruction with the reader function to use.  The cursor | 
|  | *                for this instruction is advanced. | 
|  | * @param byte  - A pointer to a pre-allocated memory buffer to be populated | 
|  | *                with the data read. | 
|  | * @return      - 0 if the read was successful; nonzero otherwise. | 
|  | */ | 
|  | static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) { | 
|  | int ret = insn->reader(insn->readerArg, byte, insn->readerCursor); | 
|  |  | 
|  | if (!ret) | 
|  | ++(insn->readerCursor); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lookAtByte - Like consumeByte, but does not advance the cursor. | 
|  | * | 
|  | * @param insn  - See consumeByte(). | 
|  | * @param byte  - See consumeByte(). | 
|  | * @return      - See consumeByte(). | 
|  | */ | 
|  | static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) { | 
|  | return insn->reader(insn->readerArg, byte, insn->readerCursor); | 
|  | } | 
|  |  | 
|  | static void unconsumeByte(struct InternalInstruction* insn) { | 
|  | insn->readerCursor--; | 
|  | } | 
|  |  | 
|  | #define CONSUME_FUNC(name, type)                                  \ | 
|  | static int name(struct InternalInstruction* insn, type* ptr) {  \ | 
|  | type combined = 0;                                            \ | 
|  | unsigned offset;                                              \ | 
|  | for (offset = 0; offset < sizeof(type); ++offset) {           \ | 
|  | uint8_t byte;                                               \ | 
|  | int ret = insn->reader(insn->readerArg,                     \ | 
|  | &byte,                               \ | 
|  | insn->readerCursor + offset);        \ | 
|  | if (ret)                                                    \ | 
|  | return ret;                                               \ | 
|  | combined = combined | ((type)byte << ((type)offset * 8));   \ | 
|  | }                                                             \ | 
|  | *ptr = combined;                                              \ | 
|  | insn->readerCursor += sizeof(type);                           \ | 
|  | return 0;                                                     \ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * consume* - Use the reader function provided by the user to consume data | 
|  | *   values of various sizes from the instruction's memory and advance the | 
|  | *   cursor appropriately.  These readers perform endian conversion. | 
|  | * | 
|  | * @param insn    - See consumeByte(). | 
|  | * @param ptr     - A pointer to a pre-allocated memory of appropriate size to | 
|  | *                  be populated with the data read. | 
|  | * @return        - See consumeByte(). | 
|  | */ | 
|  | CONSUME_FUNC(consumeInt8, int8_t) | 
|  | CONSUME_FUNC(consumeInt16, int16_t) | 
|  | CONSUME_FUNC(consumeInt32, int32_t) | 
|  | CONSUME_FUNC(consumeUInt16, uint16_t) | 
|  | CONSUME_FUNC(consumeUInt32, uint32_t) | 
|  | CONSUME_FUNC(consumeUInt64, uint64_t) | 
|  |  | 
|  | /* | 
|  | * dbgprintf - Uses the logging function provided by the user to log a single | 
|  | *   message, typically without a carriage-return. | 
|  | * | 
|  | * @param insn    - The instruction containing the logging function. | 
|  | * @param format  - See printf(). | 
|  | * @param ...     - See printf(). | 
|  | */ | 
|  | static void dbgprintf(struct InternalInstruction* insn, | 
|  | const char* format, | 
|  | ...) { | 
|  | char buffer[256]; | 
|  | va_list ap; | 
|  |  | 
|  | if (!insn->dlog) | 
|  | return; | 
|  |  | 
|  | va_start(ap, format); | 
|  | (void)vsnprintf(buffer, sizeof(buffer), format, ap); | 
|  | va_end(ap); | 
|  |  | 
|  | insn->dlog(insn->dlogArg, buffer); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setPrefixPresent - Marks that a particular prefix is present at a particular | 
|  | *   location. | 
|  | * | 
|  | * @param insn      - The instruction to be marked as having the prefix. | 
|  | * @param prefix    - The prefix that is present. | 
|  | * @param location  - The location where the prefix is located (in the address | 
|  | *                    space of the instruction's reader). | 
|  | */ | 
|  | static void setPrefixPresent(struct InternalInstruction* insn, | 
|  | uint8_t prefix, | 
|  | uint64_t location) | 
|  | { | 
|  | insn->prefixPresent[prefix] = 1; | 
|  | insn->prefixLocations[prefix] = location; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * isPrefixAtLocation - Queries an instruction to determine whether a prefix is | 
|  | *   present at a given location. | 
|  | * | 
|  | * @param insn      - The instruction to be queried. | 
|  | * @param prefix    - The prefix. | 
|  | * @param location  - The location to query. | 
|  | * @return          - Whether the prefix is at that location. | 
|  | */ | 
|  | static BOOL isPrefixAtLocation(struct InternalInstruction* insn, | 
|  | uint8_t prefix, | 
|  | uint64_t location) | 
|  | { | 
|  | if (insn->prefixPresent[prefix] == 1 && | 
|  | insn->prefixLocations[prefix] == location) | 
|  | return TRUE; | 
|  | else | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the | 
|  | *   instruction as having them.  Also sets the instruction's default operand, | 
|  | *   address, and other relevant data sizes to report operands correctly. | 
|  | * | 
|  | * @param insn  - The instruction whose prefixes are to be read. | 
|  | * @return      - 0 if the instruction could be read until the end of the prefix | 
|  | *                bytes, and no prefixes conflicted; nonzero otherwise. | 
|  | */ | 
|  | static int readPrefixes(struct InternalInstruction* insn) { | 
|  | BOOL isPrefix = TRUE; | 
|  | BOOL prefixGroups[4] = { FALSE }; | 
|  | uint64_t prefixLocation; | 
|  | uint8_t byte = 0; | 
|  |  | 
|  | BOOL hasAdSize = FALSE; | 
|  | BOOL hasOpSize = FALSE; | 
|  |  | 
|  | dbgprintf(insn, "readPrefixes()"); | 
|  |  | 
|  | while (isPrefix) { | 
|  | prefixLocation = insn->readerCursor; | 
|  |  | 
|  | if (consumeByte(insn, &byte)) | 
|  | return -1; | 
|  |  | 
|  | switch (byte) { | 
|  | case 0xf0:  /* LOCK */ | 
|  | case 0xf2:  /* REPNE/REPNZ */ | 
|  | case 0xf3:  /* REP or REPE/REPZ */ | 
|  | if (prefixGroups[0]) | 
|  | dbgprintf(insn, "Redundant Group 1 prefix"); | 
|  | prefixGroups[0] = TRUE; | 
|  | setPrefixPresent(insn, byte, prefixLocation); | 
|  | break; | 
|  | case 0x2e:  /* CS segment override -OR- Branch not taken */ | 
|  | case 0x36:  /* SS segment override -OR- Branch taken */ | 
|  | case 0x3e:  /* DS segment override */ | 
|  | case 0x26:  /* ES segment override */ | 
|  | case 0x64:  /* FS segment override */ | 
|  | case 0x65:  /* GS segment override */ | 
|  | switch (byte) { | 
|  | case 0x2e: | 
|  | insn->segmentOverride = SEG_OVERRIDE_CS; | 
|  | break; | 
|  | case 0x36: | 
|  | insn->segmentOverride = SEG_OVERRIDE_SS; | 
|  | break; | 
|  | case 0x3e: | 
|  | insn->segmentOverride = SEG_OVERRIDE_DS; | 
|  | break; | 
|  | case 0x26: | 
|  | insn->segmentOverride = SEG_OVERRIDE_ES; | 
|  | break; | 
|  | case 0x64: | 
|  | insn->segmentOverride = SEG_OVERRIDE_FS; | 
|  | break; | 
|  | case 0x65: | 
|  | insn->segmentOverride = SEG_OVERRIDE_GS; | 
|  | break; | 
|  | default: | 
|  | debug("Unhandled override"); | 
|  | return -1; | 
|  | } | 
|  | if (prefixGroups[1]) | 
|  | dbgprintf(insn, "Redundant Group 2 prefix"); | 
|  | prefixGroups[1] = TRUE; | 
|  | setPrefixPresent(insn, byte, prefixLocation); | 
|  | break; | 
|  | case 0x66:  /* Operand-size override */ | 
|  | if (prefixGroups[2]) | 
|  | dbgprintf(insn, "Redundant Group 3 prefix"); | 
|  | prefixGroups[2] = TRUE; | 
|  | hasOpSize = TRUE; | 
|  | setPrefixPresent(insn, byte, prefixLocation); | 
|  | break; | 
|  | case 0x67:  /* Address-size override */ | 
|  | if (prefixGroups[3]) | 
|  | dbgprintf(insn, "Redundant Group 4 prefix"); | 
|  | prefixGroups[3] = TRUE; | 
|  | hasAdSize = TRUE; | 
|  | setPrefixPresent(insn, byte, prefixLocation); | 
|  | break; | 
|  | default:    /* Not a prefix byte */ | 
|  | isPrefix = FALSE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (isPrefix) | 
|  | dbgprintf(insn, "Found prefix 0x%hhx", byte); | 
|  | } | 
|  |  | 
|  | insn->vexSize = 0; | 
|  |  | 
|  | if (byte == 0xc4) { | 
|  | uint8_t byte1; | 
|  |  | 
|  | if (lookAtByte(insn, &byte1)) { | 
|  | dbgprintf(insn, "Couldn't read second byte of VEX"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) { | 
|  | insn->vexSize = 3; | 
|  | insn->necessaryPrefixLocation = insn->readerCursor - 1; | 
|  | } | 
|  | else { | 
|  | unconsumeByte(insn); | 
|  | insn->necessaryPrefixLocation = insn->readerCursor - 1; | 
|  | } | 
|  |  | 
|  | if (insn->vexSize == 3) { | 
|  | insn->vexPrefix[0] = byte; | 
|  | consumeByte(insn, &insn->vexPrefix[1]); | 
|  | consumeByte(insn, &insn->vexPrefix[2]); | 
|  |  | 
|  | /* We simulate the REX prefix for simplicity's sake */ | 
|  |  | 
|  | if (insn->mode == MODE_64BIT) { | 
|  | insn->rexPrefix = 0x40 | 
|  | | (wFromVEX3of3(insn->vexPrefix[2]) << 3) | 
|  | | (rFromVEX2of3(insn->vexPrefix[1]) << 2) | 
|  | | (xFromVEX2of3(insn->vexPrefix[1]) << 1) | 
|  | | (bFromVEX2of3(insn->vexPrefix[1]) << 0); | 
|  | } | 
|  |  | 
|  | switch (ppFromVEX3of3(insn->vexPrefix[2])) | 
|  | { | 
|  | default: | 
|  | break; | 
|  | case VEX_PREFIX_66: | 
|  | hasOpSize = TRUE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1], insn->vexPrefix[2]); | 
|  | } | 
|  | } | 
|  | else if (byte == 0xc5) { | 
|  | uint8_t byte1; | 
|  |  | 
|  | if (lookAtByte(insn, &byte1)) { | 
|  | dbgprintf(insn, "Couldn't read second byte of VEX"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) { | 
|  | insn->vexSize = 2; | 
|  | } | 
|  | else { | 
|  | unconsumeByte(insn); | 
|  | } | 
|  |  | 
|  | if (insn->vexSize == 2) { | 
|  | insn->vexPrefix[0] = byte; | 
|  | consumeByte(insn, &insn->vexPrefix[1]); | 
|  |  | 
|  | if (insn->mode == MODE_64BIT) { | 
|  | insn->rexPrefix = 0x40 | 
|  | | (rFromVEX2of2(insn->vexPrefix[1]) << 2); | 
|  | } | 
|  |  | 
|  | switch (ppFromVEX2of2(insn->vexPrefix[1])) | 
|  | { | 
|  | default: | 
|  | break; | 
|  | case VEX_PREFIX_66: | 
|  | hasOpSize = TRUE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexPrefix[0], insn->vexPrefix[1]); | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (insn->mode == MODE_64BIT) { | 
|  | if ((byte & 0xf0) == 0x40) { | 
|  | uint8_t opcodeByte; | 
|  |  | 
|  | if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) { | 
|  | dbgprintf(insn, "Redundant REX prefix"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | insn->rexPrefix = byte; | 
|  | insn->necessaryPrefixLocation = insn->readerCursor - 2; | 
|  |  | 
|  | dbgprintf(insn, "Found REX prefix 0x%hhx", byte); | 
|  | } else { | 
|  | unconsumeByte(insn); | 
|  | insn->necessaryPrefixLocation = insn->readerCursor - 1; | 
|  | } | 
|  | } else { | 
|  | unconsumeByte(insn); | 
|  | insn->necessaryPrefixLocation = insn->readerCursor - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (insn->mode == MODE_16BIT) { | 
|  | insn->registerSize       = (hasOpSize ? 4 : 2); | 
|  | insn->addressSize        = (hasAdSize ? 4 : 2); | 
|  | insn->displacementSize   = (hasAdSize ? 4 : 2); | 
|  | insn->immediateSize      = (hasOpSize ? 4 : 2); | 
|  | } else if (insn->mode == MODE_32BIT) { | 
|  | insn->registerSize       = (hasOpSize ? 2 : 4); | 
|  | insn->addressSize        = (hasAdSize ? 2 : 4); | 
|  | insn->displacementSize   = (hasAdSize ? 2 : 4); | 
|  | insn->immediateSize      = (hasOpSize ? 2 : 4); | 
|  | } else if (insn->mode == MODE_64BIT) { | 
|  | if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { | 
|  | insn->registerSize       = 8; | 
|  | insn->addressSize        = (hasAdSize ? 4 : 8); | 
|  | insn->displacementSize   = 4; | 
|  | insn->immediateSize      = 4; | 
|  | } else if (insn->rexPrefix) { | 
|  | insn->registerSize       = (hasOpSize ? 2 : 4); | 
|  | insn->addressSize        = (hasAdSize ? 4 : 8); | 
|  | insn->displacementSize   = (hasOpSize ? 2 : 4); | 
|  | insn->immediateSize      = (hasOpSize ? 2 : 4); | 
|  | } else { | 
|  | insn->registerSize       = (hasOpSize ? 2 : 4); | 
|  | insn->addressSize        = (hasAdSize ? 4 : 8); | 
|  | insn->displacementSize   = (hasOpSize ? 2 : 4); | 
|  | insn->immediateSize      = (hasOpSize ? 2 : 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of | 
|  | *   extended or escape opcodes). | 
|  | * | 
|  | * @param insn  - The instruction whose opcode is to be read. | 
|  | * @return      - 0 if the opcode could be read successfully; nonzero otherwise. | 
|  | */ | 
|  | static int readOpcode(struct InternalInstruction* insn) { | 
|  | /* Determine the length of the primary opcode */ | 
|  |  | 
|  | uint8_t current; | 
|  |  | 
|  | dbgprintf(insn, "readOpcode()"); | 
|  |  | 
|  | insn->opcodeType = ONEBYTE; | 
|  |  | 
|  | if (insn->vexSize == 3) | 
|  | { | 
|  | switch (mmmmmFromVEX2of3(insn->vexPrefix[1])) | 
|  | { | 
|  | default: | 
|  | dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", mmmmmFromVEX2of3(insn->vexPrefix[1])); | 
|  | return -1; | 
|  | case 0: | 
|  | break; | 
|  | case VEX_LOB_0F: | 
|  | insn->twoByteEscape = 0x0f; | 
|  | insn->opcodeType = TWOBYTE; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | case VEX_LOB_0F38: | 
|  | insn->twoByteEscape = 0x0f; | 
|  | insn->threeByteEscape = 0x38; | 
|  | insn->opcodeType = THREEBYTE_38; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | case VEX_LOB_0F3A: | 
|  | insn->twoByteEscape = 0x0f; | 
|  | insn->threeByteEscape = 0x3a; | 
|  | insn->opcodeType = THREEBYTE_3A; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | } | 
|  | } | 
|  | else if (insn->vexSize == 2) | 
|  | { | 
|  | insn->twoByteEscape = 0x0f; | 
|  | insn->opcodeType = TWOBYTE; | 
|  | return consumeByte(insn, &insn->opcode); | 
|  | } | 
|  |  | 
|  | if (consumeByte(insn, ¤t)) | 
|  | return -1; | 
|  |  | 
|  | if (current == 0x0f) { | 
|  | dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current); | 
|  |  | 
|  | insn->twoByteEscape = current; | 
|  |  | 
|  | if (consumeByte(insn, ¤t)) | 
|  | return -1; | 
|  |  | 
|  | if (current == 0x38) { | 
|  | dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); | 
|  |  | 
|  | insn->threeByteEscape = current; | 
|  |  | 
|  | if (consumeByte(insn, ¤t)) | 
|  | return -1; | 
|  |  | 
|  | insn->opcodeType = THREEBYTE_38; | 
|  | } else if (current == 0x3a) { | 
|  | dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); | 
|  |  | 
|  | insn->threeByteEscape = current; | 
|  |  | 
|  | if (consumeByte(insn, ¤t)) | 
|  | return -1; | 
|  |  | 
|  | insn->opcodeType = THREEBYTE_3A; | 
|  | } else if (current == 0xa6) { | 
|  | dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); | 
|  |  | 
|  | insn->threeByteEscape = current; | 
|  |  | 
|  | if (consumeByte(insn, ¤t)) | 
|  | return -1; | 
|  |  | 
|  | insn->opcodeType = THREEBYTE_A6; | 
|  | } else if (current == 0xa7) { | 
|  | dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); | 
|  |  | 
|  | insn->threeByteEscape = current; | 
|  |  | 
|  | if (consumeByte(insn, ¤t)) | 
|  | return -1; | 
|  |  | 
|  | insn->opcodeType = THREEBYTE_A7; | 
|  | } else { | 
|  | dbgprintf(insn, "Didn't find a three-byte escape prefix"); | 
|  |  | 
|  | insn->opcodeType = TWOBYTE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At this point we have consumed the full opcode. | 
|  | * Anything we consume from here on must be unconsumed. | 
|  | */ | 
|  |  | 
|  | insn->opcode = current; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int readModRM(struct InternalInstruction* insn); | 
|  |  | 
|  | /* | 
|  | * getIDWithAttrMask - Determines the ID of an instruction, consuming | 
|  | *   the ModR/M byte as appropriate for extended and escape opcodes, | 
|  | *   and using a supplied attribute mask. | 
|  | * | 
|  | * @param instructionID - A pointer whose target is filled in with the ID of the | 
|  | *                        instruction. | 
|  | * @param insn          - The instruction whose ID is to be determined. | 
|  | * @param attrMask      - The attribute mask to search. | 
|  | * @return              - 0 if the ModR/M could be read when needed or was not | 
|  | *                        needed; nonzero otherwise. | 
|  | */ | 
|  | static int getIDWithAttrMask(uint16_t* instructionID, | 
|  | struct InternalInstruction* insn, | 
|  | uint8_t attrMask) { | 
|  | BOOL hasModRMExtension; | 
|  |  | 
|  | uint8_t instructionClass; | 
|  |  | 
|  | instructionClass = contextForAttrs(attrMask); | 
|  |  | 
|  | hasModRMExtension = modRMRequired(insn->opcodeType, | 
|  | instructionClass, | 
|  | insn->opcode); | 
|  |  | 
|  | if (hasModRMExtension) { | 
|  | if (readModRM(insn)) | 
|  | return -1; | 
|  |  | 
|  | *instructionID = decode(insn->opcodeType, | 
|  | instructionClass, | 
|  | insn->opcode, | 
|  | insn->modRM); | 
|  | } else { | 
|  | *instructionID = decode(insn->opcodeType, | 
|  | instructionClass, | 
|  | insn->opcode, | 
|  | 0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * is16BitEquivalent - Determines whether two instruction names refer to | 
|  | * equivalent instructions but one is 16-bit whereas the other is not. | 
|  | * | 
|  | * @param orig  - The instruction that is not 16-bit | 
|  | * @param equiv - The instruction that is 16-bit | 
|  | */ | 
|  | static BOOL is16BitEquvalent(const char* orig, const char* equiv) { | 
|  | off_t i; | 
|  |  | 
|  | for (i = 0;; i++) { | 
|  | if (orig[i] == '\0' && equiv[i] == '\0') | 
|  | return TRUE; | 
|  | if (orig[i] == '\0' || equiv[i] == '\0') | 
|  | return FALSE; | 
|  | if (orig[i] != equiv[i]) { | 
|  | if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') | 
|  | continue; | 
|  | if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') | 
|  | continue; | 
|  | if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') | 
|  | continue; | 
|  | return FALSE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * getID - Determines the ID of an instruction, consuming the ModR/M byte as | 
|  | *   appropriate for extended and escape opcodes.  Determines the attributes and | 
|  | *   context for the instruction before doing so. | 
|  | * | 
|  | * @param insn  - The instruction whose ID is to be determined. | 
|  | * @return      - 0 if the ModR/M could be read when needed or was not needed; | 
|  | *                nonzero otherwise. | 
|  | */ | 
|  | static int getID(struct InternalInstruction* insn) { | 
|  | uint8_t attrMask; | 
|  | uint16_t instructionID; | 
|  |  | 
|  | dbgprintf(insn, "getID()"); | 
|  |  | 
|  | attrMask = ATTR_NONE; | 
|  |  | 
|  | if (insn->mode == MODE_64BIT) | 
|  | attrMask |= ATTR_64BIT; | 
|  |  | 
|  | if (insn->vexSize) { | 
|  | attrMask |= ATTR_VEX; | 
|  |  | 
|  | if (insn->vexSize == 3) { | 
|  | switch (ppFromVEX3of3(insn->vexPrefix[2])) { | 
|  | case VEX_PREFIX_66: | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | break; | 
|  | case VEX_PREFIX_F3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case VEX_PREFIX_F2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (lFromVEX3of3(insn->vexPrefix[2])) | 
|  | attrMask |= ATTR_VEXL; | 
|  | } | 
|  | else if (insn->vexSize == 2) { | 
|  | switch (ppFromVEX2of2(insn->vexPrefix[1])) { | 
|  | case VEX_PREFIX_66: | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | break; | 
|  | case VEX_PREFIX_F3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case VEX_PREFIX_F2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (lFromVEX2of2(insn->vexPrefix[1])) | 
|  | attrMask |= ATTR_VEXL; | 
|  | } | 
|  | else { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation)) | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation)) | 
|  | attrMask |= ATTR_XS; | 
|  | else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation)) | 
|  | attrMask |= ATTR_XD; | 
|  | } | 
|  |  | 
|  | if (insn->rexPrefix & 0x08) | 
|  | attrMask |= ATTR_REXW; | 
|  |  | 
|  | if (getIDWithAttrMask(&instructionID, insn, attrMask)) | 
|  | return -1; | 
|  |  | 
|  | /* The following clauses compensate for limitations of the tables. */ | 
|  |  | 
|  | if ((attrMask & ATTR_VEXL) && (attrMask & ATTR_REXW)) { | 
|  | /* | 
|  | * Some VEX instructions ignore the L-bit, but use the W-bit. Normally L-bit | 
|  | * has precedence since there are no L-bit with W-bit entries in the tables. | 
|  | * So if the L-bit isn't significant we should use the W-bit instead. | 
|  | */ | 
|  |  | 
|  | const struct InstructionSpecifier *spec; | 
|  | uint16_t instructionIDWithWBit; | 
|  | const struct InstructionSpecifier *specWithWBit; | 
|  |  | 
|  | spec = specifierForUID(instructionID); | 
|  |  | 
|  | if (getIDWithAttrMask(&instructionIDWithWBit, | 
|  | insn, | 
|  | (attrMask & (~ATTR_VEXL)) | ATTR_REXW)) { | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = spec; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | specWithWBit = specifierForUID(instructionIDWithWBit); | 
|  |  | 
|  | if (instructionID != instructionIDWithWBit) { | 
|  | insn->instructionID = instructionIDWithWBit; | 
|  | insn->spec = specWithWBit; | 
|  | } else { | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = spec; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) { | 
|  | /* | 
|  | * The instruction tables make no distinction between instructions that | 
|  | * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a | 
|  | * particular spot (i.e., many MMX operations).  In general we're | 
|  | * conservative, but in the specific case where OpSize is present but not | 
|  | * in the right place we check if there's a 16-bit operation. | 
|  | */ | 
|  |  | 
|  | const struct InstructionSpecifier *spec; | 
|  | uint16_t instructionIDWithOpsize; | 
|  | const struct InstructionSpecifier *specWithOpsize; | 
|  |  | 
|  | spec = specifierForUID(instructionID); | 
|  |  | 
|  | if (getIDWithAttrMask(&instructionIDWithOpsize, | 
|  | insn, | 
|  | attrMask | ATTR_OPSIZE)) { | 
|  | /* | 
|  | * ModRM required with OpSize but not present; give up and return version | 
|  | * without OpSize set | 
|  | */ | 
|  |  | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = spec; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | specWithOpsize = specifierForUID(instructionIDWithOpsize); | 
|  |  | 
|  | if (is16BitEquvalent(spec->name, specWithOpsize->name)) { | 
|  | insn->instructionID = instructionIDWithOpsize; | 
|  | insn->spec = specWithOpsize; | 
|  | } else { | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = spec; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && | 
|  | insn->rexPrefix & 0x01) { | 
|  | /* | 
|  | * NOOP shouldn't decode as NOOP if REX.b is set. Instead | 
|  | * it should decode as XCHG %r8, %eax. | 
|  | */ | 
|  |  | 
|  | const struct InstructionSpecifier *spec; | 
|  | uint16_t instructionIDWithNewOpcode; | 
|  | const struct InstructionSpecifier *specWithNewOpcode; | 
|  |  | 
|  | spec = specifierForUID(instructionID); | 
|  |  | 
|  | /* Borrow opcode from one of the other XCHGar opcodes */ | 
|  | insn->opcode = 0x91; | 
|  |  | 
|  | if (getIDWithAttrMask(&instructionIDWithNewOpcode, | 
|  | insn, | 
|  | attrMask)) { | 
|  | insn->opcode = 0x90; | 
|  |  | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = spec; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode); | 
|  |  | 
|  | /* Change back */ | 
|  | insn->opcode = 0x90; | 
|  |  | 
|  | insn->instructionID = instructionIDWithNewOpcode; | 
|  | insn->spec = specWithNewOpcode; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = specifierForUID(insn->instructionID); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readSIB - Consumes the SIB byte to determine addressing information for an | 
|  | *   instruction. | 
|  | * | 
|  | * @param insn  - The instruction whose SIB byte is to be read. | 
|  | * @return      - 0 if the SIB byte was successfully read; nonzero otherwise. | 
|  | */ | 
|  | static int readSIB(struct InternalInstruction* insn) { | 
|  | SIBIndex sibIndexBase = 0; | 
|  | SIBBase sibBaseBase = 0; | 
|  | uint8_t index, base; | 
|  |  | 
|  | dbgprintf(insn, "readSIB()"); | 
|  |  | 
|  | if (insn->consumedSIB) | 
|  | return 0; | 
|  |  | 
|  | insn->consumedSIB = TRUE; | 
|  |  | 
|  | switch (insn->addressSize) { | 
|  | case 2: | 
|  | dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode"); | 
|  | return -1; | 
|  | break; | 
|  | case 4: | 
|  | sibIndexBase = SIB_INDEX_EAX; | 
|  | sibBaseBase = SIB_BASE_EAX; | 
|  | break; | 
|  | case 8: | 
|  | sibIndexBase = SIB_INDEX_RAX; | 
|  | sibBaseBase = SIB_BASE_RAX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (consumeByte(insn, &insn->sib)) | 
|  | return -1; | 
|  |  | 
|  | index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); | 
|  |  | 
|  | switch (index) { | 
|  | case 0x4: | 
|  | insn->sibIndex = SIB_INDEX_NONE; | 
|  | break; | 
|  | default: | 
|  | insn->sibIndex = (SIBIndex)(sibIndexBase + index); | 
|  | if (insn->sibIndex == SIB_INDEX_sib || | 
|  | insn->sibIndex == SIB_INDEX_sib64) | 
|  | insn->sibIndex = SIB_INDEX_NONE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (scaleFromSIB(insn->sib)) { | 
|  | case 0: | 
|  | insn->sibScale = 1; | 
|  | break; | 
|  | case 1: | 
|  | insn->sibScale = 2; | 
|  | break; | 
|  | case 2: | 
|  | insn->sibScale = 4; | 
|  | break; | 
|  | case 3: | 
|  | insn->sibScale = 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); | 
|  |  | 
|  | switch (base) { | 
|  | case 0x5: | 
|  | switch (modFromModRM(insn->modRM)) { | 
|  | case 0x0: | 
|  | insn->eaDisplacement = EA_DISP_32; | 
|  | insn->sibBase = SIB_BASE_NONE; | 
|  | break; | 
|  | case 0x1: | 
|  | insn->eaDisplacement = EA_DISP_8; | 
|  | insn->sibBase = (insn->addressSize == 4 ? | 
|  | SIB_BASE_EBP : SIB_BASE_RBP); | 
|  | break; | 
|  | case 0x2: | 
|  | insn->eaDisplacement = EA_DISP_32; | 
|  | insn->sibBase = (insn->addressSize == 4 ? | 
|  | SIB_BASE_EBP : SIB_BASE_RBP); | 
|  | break; | 
|  | case 0x3: | 
|  | debug("Cannot have Mod = 0b11 and a SIB byte"); | 
|  | return -1; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | insn->sibBase = (SIBBase)(sibBaseBase + base); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readDisplacement - Consumes the displacement of an instruction. | 
|  | * | 
|  | * @param insn  - The instruction whose displacement is to be read. | 
|  | * @return      - 0 if the displacement byte was successfully read; nonzero | 
|  | *                otherwise. | 
|  | */ | 
|  | static int readDisplacement(struct InternalInstruction* insn) { | 
|  | int8_t d8; | 
|  | int16_t d16; | 
|  | int32_t d32; | 
|  |  | 
|  | dbgprintf(insn, "readDisplacement()"); | 
|  |  | 
|  | if (insn->consumedDisplacement) | 
|  | return 0; | 
|  |  | 
|  | insn->consumedDisplacement = TRUE; | 
|  |  | 
|  | switch (insn->eaDisplacement) { | 
|  | case EA_DISP_NONE: | 
|  | insn->consumedDisplacement = FALSE; | 
|  | break; | 
|  | case EA_DISP_8: | 
|  | if (consumeInt8(insn, &d8)) | 
|  | return -1; | 
|  | insn->displacement = d8; | 
|  | break; | 
|  | case EA_DISP_16: | 
|  | if (consumeInt16(insn, &d16)) | 
|  | return -1; | 
|  | insn->displacement = d16; | 
|  | break; | 
|  | case EA_DISP_32: | 
|  | if (consumeInt32(insn, &d32)) | 
|  | return -1; | 
|  | insn->displacement = d32; | 
|  | break; | 
|  | } | 
|  |  | 
|  | insn->consumedDisplacement = TRUE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and | 
|  | *   displacement) for an instruction and interprets it. | 
|  | * | 
|  | * @param insn  - The instruction whose addressing information is to be read. | 
|  | * @return      - 0 if the information was successfully read; nonzero otherwise. | 
|  | */ | 
|  | static int readModRM(struct InternalInstruction* insn) { | 
|  | uint8_t mod, rm, reg; | 
|  |  | 
|  | dbgprintf(insn, "readModRM()"); | 
|  |  | 
|  | if (insn->consumedModRM) | 
|  | return 0; | 
|  |  | 
|  | if (consumeByte(insn, &insn->modRM)) | 
|  | return -1; | 
|  | insn->consumedModRM = TRUE; | 
|  |  | 
|  | mod     = modFromModRM(insn->modRM); | 
|  | rm      = rmFromModRM(insn->modRM); | 
|  | reg     = regFromModRM(insn->modRM); | 
|  |  | 
|  | /* | 
|  | * This goes by insn->registerSize to pick the correct register, which messes | 
|  | * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in | 
|  | * fixupReg(). | 
|  | */ | 
|  | switch (insn->registerSize) { | 
|  | case 2: | 
|  | insn->regBase = MODRM_REG_AX; | 
|  | insn->eaRegBase = EA_REG_AX; | 
|  | break; | 
|  | case 4: | 
|  | insn->regBase = MODRM_REG_EAX; | 
|  | insn->eaRegBase = EA_REG_EAX; | 
|  | break; | 
|  | case 8: | 
|  | insn->regBase = MODRM_REG_RAX; | 
|  | insn->eaRegBase = EA_REG_RAX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | reg |= rFromREX(insn->rexPrefix) << 3; | 
|  | rm  |= bFromREX(insn->rexPrefix) << 3; | 
|  |  | 
|  | insn->reg = (Reg)(insn->regBase + reg); | 
|  |  | 
|  | switch (insn->addressSize) { | 
|  | case 2: | 
|  | insn->eaBaseBase = EA_BASE_BX_SI; | 
|  |  | 
|  | switch (mod) { | 
|  | case 0x0: | 
|  | if (rm == 0x6) { | 
|  | insn->eaBase = EA_BASE_NONE; | 
|  | insn->eaDisplacement = EA_DISP_16; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | } else { | 
|  | insn->eaBase = (EABase)(insn->eaBaseBase + rm); | 
|  | insn->eaDisplacement = EA_DISP_NONE; | 
|  | } | 
|  | break; | 
|  | case 0x1: | 
|  | insn->eaBase = (EABase)(insn->eaBaseBase + rm); | 
|  | insn->eaDisplacement = EA_DISP_8; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case 0x2: | 
|  | insn->eaBase = (EABase)(insn->eaBaseBase + rm); | 
|  | insn->eaDisplacement = EA_DISP_16; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case 0x3: | 
|  | insn->eaBase = (EABase)(insn->eaRegBase + rm); | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 4: | 
|  | case 8: | 
|  | insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); | 
|  |  | 
|  | switch (mod) { | 
|  | case 0x0: | 
|  | insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */ | 
|  | switch (rm) { | 
|  | case 0x4: | 
|  | case 0xc:   /* in case REXW.b is set */ | 
|  | insn->eaBase = (insn->addressSize == 4 ? | 
|  | EA_BASE_sib : EA_BASE_sib64); | 
|  | readSIB(insn); | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case 0x5: | 
|  | insn->eaBase = EA_BASE_NONE; | 
|  | insn->eaDisplacement = EA_DISP_32; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | default: | 
|  | insn->eaBase = (EABase)(insn->eaBaseBase + rm); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0x1: | 
|  | case 0x2: | 
|  | insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); | 
|  | switch (rm) { | 
|  | case 0x4: | 
|  | case 0xc:   /* in case REXW.b is set */ | 
|  | insn->eaBase = EA_BASE_sib; | 
|  | readSIB(insn); | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | default: | 
|  | insn->eaBase = (EABase)(insn->eaBaseBase + rm); | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0x3: | 
|  | insn->eaDisplacement = EA_DISP_NONE; | 
|  | insn->eaBase = (EABase)(insn->eaRegBase + rm); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } /* switch (insn->addressSize) */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define GENERIC_FIXUP_FUNC(name, base, prefix)            \ | 
|  | static uint8_t name(struct InternalInstruction *insn,   \ | 
|  | OperandType type,                   \ | 
|  | uint8_t index,                      \ | 
|  | uint8_t *valid) {                   \ | 
|  | *valid = 1;                                           \ | 
|  | switch (type) {                                       \ | 
|  | default:                                              \ | 
|  | debug("Unhandled register type");                   \ | 
|  | *valid = 0;                                         \ | 
|  | return 0;                                           \ | 
|  | case TYPE_Rv:                                         \ | 
|  | return base + index;                                \ | 
|  | case TYPE_R8:                                         \ | 
|  | if (insn->rexPrefix &&                              \ | 
|  | index >= 4 && index <= 7) {                      \ | 
|  | return prefix##_SPL + (index - 4);                \ | 
|  | } else {                                            \ | 
|  | return prefix##_AL + index;                       \ | 
|  | }                                                   \ | 
|  | case TYPE_R16:                                        \ | 
|  | return prefix##_AX + index;                         \ | 
|  | case TYPE_R32:                                        \ | 
|  | return prefix##_EAX + index;                        \ | 
|  | case TYPE_R64:                                        \ | 
|  | return prefix##_RAX + index;                        \ | 
|  | case TYPE_XMM256:                                     \ | 
|  | return prefix##_YMM0 + index;                       \ | 
|  | case TYPE_XMM128:                                     \ | 
|  | case TYPE_XMM64:                                      \ | 
|  | case TYPE_XMM32:                                      \ | 
|  | case TYPE_XMM:                                        \ | 
|  | return prefix##_XMM0 + index;                       \ | 
|  | case TYPE_MM64:                                       \ | 
|  | case TYPE_MM32:                                       \ | 
|  | case TYPE_MM:                                         \ | 
|  | if (index > 7)                                      \ | 
|  | *valid = 0;                                       \ | 
|  | return prefix##_MM0 + index;                        \ | 
|  | case TYPE_SEGMENTREG:                                 \ | 
|  | if (index > 5)                                      \ | 
|  | *valid = 0;                                       \ | 
|  | return prefix##_ES + index;                         \ | 
|  | case TYPE_DEBUGREG:                                   \ | 
|  | if (index > 7)                                      \ | 
|  | *valid = 0;                                       \ | 
|  | return prefix##_DR0 + index;                        \ | 
|  | case TYPE_CONTROLREG:                                 \ | 
|  | if (index > 8)                                      \ | 
|  | *valid = 0;                                       \ | 
|  | return prefix##_CR0 + index;                        \ | 
|  | }                                                     \ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fixup*Value - Consults an operand type to determine the meaning of the | 
|  | *   reg or R/M field.  If the operand is an XMM operand, for example, an | 
|  | *   operand would be XMM0 instead of AX, which readModRM() would otherwise | 
|  | *   misinterpret it as. | 
|  | * | 
|  | * @param insn  - The instruction containing the operand. | 
|  | * @param type  - The operand type. | 
|  | * @param index - The existing value of the field as reported by readModRM(). | 
|  | * @param valid - The address of a uint8_t.  The target is set to 1 if the | 
|  | *                field is valid for the register class; 0 if not. | 
|  | * @return      - The proper value. | 
|  | */ | 
|  | GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG) | 
|  | GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG) | 
|  |  | 
|  | /* | 
|  | * fixupReg - Consults an operand specifier to determine which of the | 
|  | *   fixup*Value functions to use in correcting readModRM()'ss interpretation. | 
|  | * | 
|  | * @param insn  - See fixup*Value(). | 
|  | * @param op    - The operand specifier. | 
|  | * @return      - 0 if fixup was successful; -1 if the register returned was | 
|  | *                invalid for its class. | 
|  | */ | 
|  | static int fixupReg(struct InternalInstruction *insn, | 
|  | const struct OperandSpecifier *op) { | 
|  | uint8_t valid; | 
|  |  | 
|  | dbgprintf(insn, "fixupReg()"); | 
|  |  | 
|  | switch ((OperandEncoding)op->encoding) { | 
|  | default: | 
|  | debug("Expected a REG or R/M encoding in fixupReg"); | 
|  | return -1; | 
|  | case ENCODING_VVVV: | 
|  | insn->vvvv = (Reg)fixupRegValue(insn, | 
|  | (OperandType)op->type, | 
|  | insn->vvvv, | 
|  | &valid); | 
|  | if (!valid) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_REG: | 
|  | insn->reg = (Reg)fixupRegValue(insn, | 
|  | (OperandType)op->type, | 
|  | insn->reg - insn->regBase, | 
|  | &valid); | 
|  | if (!valid) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_RM: | 
|  | if (insn->eaBase >= insn->eaRegBase) { | 
|  | insn->eaBase = (EABase)fixupRMValue(insn, | 
|  | (OperandType)op->type, | 
|  | insn->eaBase - insn->eaRegBase, | 
|  | &valid); | 
|  | if (!valid) | 
|  | return -1; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readOpcodeModifier - Reads an operand from the opcode field of an | 
|  | *   instruction.  Handles AddRegFrm instructions. | 
|  | * | 
|  | * @param insn    - The instruction whose opcode field is to be read. | 
|  | * @param inModRM - Indicates that the opcode field is to be read from the | 
|  | *                  ModR/M extension; useful for escape opcodes | 
|  | * @return        - 0 on success; nonzero otherwise. | 
|  | */ | 
|  | static int readOpcodeModifier(struct InternalInstruction* insn) { | 
|  | dbgprintf(insn, "readOpcodeModifier()"); | 
|  |  | 
|  | if (insn->consumedOpcodeModifier) | 
|  | return 0; | 
|  |  | 
|  | insn->consumedOpcodeModifier = TRUE; | 
|  |  | 
|  | switch (insn->spec->modifierType) { | 
|  | default: | 
|  | debug("Unknown modifier type."); | 
|  | return -1; | 
|  | case MODIFIER_NONE: | 
|  | debug("No modifier but an operand expects one."); | 
|  | return -1; | 
|  | case MODIFIER_OPCODE: | 
|  | insn->opcodeModifier = insn->opcode - insn->spec->modifierBase; | 
|  | return 0; | 
|  | case MODIFIER_MODRM: | 
|  | insn->opcodeModifier = insn->modRM - insn->spec->modifierBase; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readOpcodeRegister - Reads an operand from the opcode field of an | 
|  | *   instruction and interprets it appropriately given the operand width. | 
|  | *   Handles AddRegFrm instructions. | 
|  | * | 
|  | * @param insn  - See readOpcodeModifier(). | 
|  | * @param size  - The width (in bytes) of the register being specified. | 
|  | *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means | 
|  | *                RAX. | 
|  | * @return      - 0 on success; nonzero otherwise. | 
|  | */ | 
|  | static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) { | 
|  | dbgprintf(insn, "readOpcodeRegister()"); | 
|  |  | 
|  | if (readOpcodeModifier(insn)) | 
|  | return -1; | 
|  |  | 
|  | if (size == 0) | 
|  | size = insn->registerSize; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | 
|  | | insn->opcodeModifier)); | 
|  | if (insn->rexPrefix && | 
|  | insn->opcodeRegister >= MODRM_REG_AL + 0x4 && | 
|  | insn->opcodeRegister < MODRM_REG_AL + 0x8) { | 
|  | insn->opcodeRegister = (Reg)(MODRM_REG_SPL | 
|  | + (insn->opcodeRegister - MODRM_REG_AL - 4)); | 
|  | } | 
|  |  | 
|  | break; | 
|  | case 2: | 
|  | insn->opcodeRegister = (Reg)(MODRM_REG_AX | 
|  | + ((bFromREX(insn->rexPrefix) << 3) | 
|  | | insn->opcodeModifier)); | 
|  | break; | 
|  | case 4: | 
|  | insn->opcodeRegister = (Reg)(MODRM_REG_EAX | 
|  | + ((bFromREX(insn->rexPrefix) << 3) | 
|  | | insn->opcodeModifier)); | 
|  | break; | 
|  | case 8: | 
|  | insn->opcodeRegister = (Reg)(MODRM_REG_RAX | 
|  | + ((bFromREX(insn->rexPrefix) << 3) | 
|  | | insn->opcodeModifier)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readImmediate - Consumes an immediate operand from an instruction, given the | 
|  | *   desired operand size. | 
|  | * | 
|  | * @param insn  - The instruction whose operand is to be read. | 
|  | * @param size  - The width (in bytes) of the operand. | 
|  | * @return      - 0 if the immediate was successfully consumed; nonzero | 
|  | *                otherwise. | 
|  | */ | 
|  | static int readImmediate(struct InternalInstruction* insn, uint8_t size) { | 
|  | uint8_t imm8; | 
|  | uint16_t imm16; | 
|  | uint32_t imm32; | 
|  | uint64_t imm64; | 
|  |  | 
|  | dbgprintf(insn, "readImmediate()"); | 
|  |  | 
|  | if (insn->numImmediatesConsumed == 2) { | 
|  | debug("Already consumed two immediates"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (size == 0) | 
|  | size = insn->immediateSize; | 
|  | else | 
|  | insn->immediateSize = size; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | if (consumeByte(insn, &imm8)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm8; | 
|  | break; | 
|  | case 2: | 
|  | if (consumeUInt16(insn, &imm16)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm16; | 
|  | break; | 
|  | case 4: | 
|  | if (consumeUInt32(insn, &imm32)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm32; | 
|  | break; | 
|  | case 8: | 
|  | if (consumeUInt64(insn, &imm64)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm64; | 
|  | break; | 
|  | } | 
|  |  | 
|  | insn->numImmediatesConsumed++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix. | 
|  | * | 
|  | * @param insn  - The instruction whose operand is to be read. | 
|  | * @return      - 0 if the vvvv was successfully consumed; nonzero | 
|  | *                otherwise. | 
|  | */ | 
|  | static int readVVVV(struct InternalInstruction* insn) { | 
|  | dbgprintf(insn, "readVVVV()"); | 
|  |  | 
|  | if (insn->vexSize == 3) | 
|  | insn->vvvv = vvvvFromVEX3of3(insn->vexPrefix[2]); | 
|  | else if (insn->vexSize == 2) | 
|  | insn->vvvv = vvvvFromVEX2of2(insn->vexPrefix[1]); | 
|  | else | 
|  | return -1; | 
|  |  | 
|  | if (insn->mode != MODE_64BIT) | 
|  | insn->vvvv &= 0x7; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * readOperands - Consults the specifier for an instruction and consumes all | 
|  | *   operands for that instruction, interpreting them as it goes. | 
|  | * | 
|  | * @param insn  - The instruction whose operands are to be read and interpreted. | 
|  | * @return      - 0 if all operands could be read; nonzero otherwise. | 
|  | */ | 
|  | static int readOperands(struct InternalInstruction* insn) { | 
|  | int index; | 
|  | int hasVVVV, needVVVV; | 
|  |  | 
|  | dbgprintf(insn, "readOperands()"); | 
|  |  | 
|  | /* If non-zero vvvv specified, need to make sure one of the operands | 
|  | uses it. */ | 
|  | hasVVVV = !readVVVV(insn); | 
|  | needVVVV = hasVVVV && (insn->vvvv != 0); | 
|  |  | 
|  | for (index = 0; index < X86_MAX_OPERANDS; ++index) { | 
|  | switch (insn->spec->operands[index].encoding) { | 
|  | case ENCODING_NONE: | 
|  | break; | 
|  | case ENCODING_REG: | 
|  | case ENCODING_RM: | 
|  | if (readModRM(insn)) | 
|  | return -1; | 
|  | if (fixupReg(insn, &insn->spec->operands[index])) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_CB: | 
|  | case ENCODING_CW: | 
|  | case ENCODING_CD: | 
|  | case ENCODING_CP: | 
|  | case ENCODING_CO: | 
|  | case ENCODING_CT: | 
|  | dbgprintf(insn, "We currently don't hande code-offset encodings"); | 
|  | return -1; | 
|  | case ENCODING_IB: | 
|  | if (readImmediate(insn, 1)) | 
|  | return -1; | 
|  | if (insn->spec->operands[index].type == TYPE_IMM3 && | 
|  | insn->immediates[insn->numImmediatesConsumed - 1] > 7) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_IW: | 
|  | if (readImmediate(insn, 2)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_ID: | 
|  | if (readImmediate(insn, 4)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_IO: | 
|  | if (readImmediate(insn, 8)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_Iv: | 
|  | if (readImmediate(insn, insn->immediateSize)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_Ia: | 
|  | if (readImmediate(insn, insn->addressSize)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_RB: | 
|  | if (readOpcodeRegister(insn, 1)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_RW: | 
|  | if (readOpcodeRegister(insn, 2)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_RD: | 
|  | if (readOpcodeRegister(insn, 4)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_RO: | 
|  | if (readOpcodeRegister(insn, 8)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_Rv: | 
|  | if (readOpcodeRegister(insn, 0)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_I: | 
|  | if (readOpcodeModifier(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_VVVV: | 
|  | needVVVV = 0; /* Mark that we have found a VVVV operand. */ | 
|  | if (!hasVVVV) | 
|  | return -1; | 
|  | if (fixupReg(insn, &insn->spec->operands[index])) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_DUP: | 
|  | break; | 
|  | default: | 
|  | dbgprintf(insn, "Encountered an operand with an unknown encoding."); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */ | 
|  | if (needVVVV) return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * decodeInstruction - Reads and interprets a full instruction provided by the | 
|  | *   user. | 
|  | * | 
|  | * @param insn      - A pointer to the instruction to be populated.  Must be | 
|  | *                    pre-allocated. | 
|  | * @param reader    - The function to be used to read the instruction's bytes. | 
|  | * @param readerArg - A generic argument to be passed to the reader to store | 
|  | *                    any internal state. | 
|  | * @param logger    - If non-NULL, the function to be used to write log messages | 
|  | *                    and warnings. | 
|  | * @param loggerArg - A generic argument to be passed to the logger to store | 
|  | *                    any internal state. | 
|  | * @param startLoc  - The address (in the reader's address space) of the first | 
|  | *                    byte in the instruction. | 
|  | * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to | 
|  | *                    decode the instruction in. | 
|  | * @return          - 0 if the instruction's memory could be read; nonzero if | 
|  | *                    not. | 
|  | */ | 
|  | int decodeInstruction(struct InternalInstruction* insn, | 
|  | byteReader_t reader, | 
|  | void* readerArg, | 
|  | dlog_t logger, | 
|  | void* loggerArg, | 
|  | uint64_t startLoc, | 
|  | DisassemblerMode mode) { | 
|  | memset(insn, 0, sizeof(struct InternalInstruction)); | 
|  |  | 
|  | insn->reader = reader; | 
|  | insn->readerArg = readerArg; | 
|  | insn->dlog = logger; | 
|  | insn->dlogArg = loggerArg; | 
|  | insn->startLocation = startLoc; | 
|  | insn->readerCursor = startLoc; | 
|  | insn->mode = mode; | 
|  | insn->numImmediatesConsumed = 0; | 
|  |  | 
|  | if (readPrefixes(insn)       || | 
|  | readOpcode(insn)         || | 
|  | getID(insn)              || | 
|  | insn->instructionID == 0 || | 
|  | readOperands(insn)) | 
|  | return -1; | 
|  |  | 
|  | insn->length = insn->readerCursor - insn->startLocation; | 
|  |  | 
|  | dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu", | 
|  | startLoc, insn->readerCursor, insn->length); | 
|  |  | 
|  | if (insn->length > 15) | 
|  | dbgprintf(insn, "Instruction exceeds 15-byte limit"); | 
|  |  | 
|  | return 0; | 
|  | } |