| // Copyright (c) 2018 Google LLC. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASI, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #ifndef SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ | 
 | #define SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <memory> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include "source/opt/tree_iterator.h" | 
 |  | 
 | namespace spvtools { | 
 | namespace opt { | 
 |  | 
 | class Loop; | 
 | class ScalarEvolutionAnalysis; | 
 | class SEConstantNode; | 
 | class SERecurrentNode; | 
 | class SEAddNode; | 
 | class SEMultiplyNode; | 
 | class SENegative; | 
 | class SEValueUnknown; | 
 | class SECantCompute; | 
 |  | 
 | // Abstract class representing a node in the scalar evolution DAG. Each node | 
 | // contains a vector of pointers to its children and each subclass of SENode | 
 | // implements GetType and an As method to allow casting. SENodes can be hashed | 
 | // using the SENodeHash functor. The vector of children is sorted when a node is | 
 | // added. This is important as it allows the hash of X+Y to be the same as Y+X. | 
 | class SENode { | 
 |  public: | 
 |   enum SENodeType { | 
 |     Constant, | 
 |     RecurrentAddExpr, | 
 |     Add, | 
 |     Multiply, | 
 |     Negative, | 
 |     ValueUnknown, | 
 |     CanNotCompute | 
 |   }; | 
 |  | 
 |   using ChildContainerType = std::vector<SENode*>; | 
 |  | 
 |   explicit SENode(ScalarEvolutionAnalysis* parent_analysis) | 
 |       : parent_analysis_(parent_analysis), unique_id_(++NumberOfNodes) {} | 
 |  | 
 |   virtual SENodeType GetType() const = 0; | 
 |  | 
 |   virtual ~SENode() {} | 
 |  | 
 |   virtual inline void AddChild(SENode* child) { | 
 |     // If this is a constant node, assert. | 
 |     if (AsSEConstantNode()) { | 
 |       assert(false && "Trying to add a child node to a constant!"); | 
 |     } | 
 |  | 
 |     // Find the first point in the vector where |child| is greater than the node | 
 |     // currently in the vector. | 
 |     auto find_first_less_than = [child](const SENode* node) { | 
 |       return child->unique_id_ <= node->unique_id_; | 
 |     }; | 
 |  | 
 |     auto position = std::find_if_not(children_.begin(), children_.end(), | 
 |                                      find_first_less_than); | 
 |     // Children are sorted so the hashing and equality operator will be the same | 
 |     // for a node with the same children. X+Y should be the same as Y+X. | 
 |     children_.insert(position, child); | 
 |   } | 
 |  | 
 |   // Get the type as an std::string. This is used to represent the node in the | 
 |   // dot output and is used to hash the type as well. | 
 |   std::string AsString() const; | 
 |  | 
 |   // Dump the SENode and its immediate children, if |recurse| is true then it | 
 |   // will recurse through all children to print the DAG starting from this node | 
 |   // as a root. | 
 |   void DumpDot(std::ostream& out, bool recurse = false) const; | 
 |  | 
 |   // Checks if two nodes are the same by hashing them. | 
 |   bool operator==(const SENode& other) const; | 
 |  | 
 |   // Checks if two nodes are not the same by comparing the hashes. | 
 |   bool operator!=(const SENode& other) const; | 
 |  | 
 |   // Return the child node at |index|. | 
 |   inline SENode* GetChild(size_t index) { return children_[index]; } | 
 |   inline const SENode* GetChild(size_t index) const { return children_[index]; } | 
 |  | 
 |   // Iterator to iterate over the child nodes. | 
 |   using iterator = ChildContainerType::iterator; | 
 |   using const_iterator = ChildContainerType::const_iterator; | 
 |  | 
 |   // Iterate over immediate child nodes. | 
 |   iterator begin() { return children_.begin(); } | 
 |   iterator end() { return children_.end(); } | 
 |  | 
 |   // Constant overloads for iterating over immediate child nodes. | 
 |   const_iterator begin() const { return children_.cbegin(); } | 
 |   const_iterator end() const { return children_.cend(); } | 
 |   const_iterator cbegin() { return children_.cbegin(); } | 
 |   const_iterator cend() { return children_.cend(); } | 
 |  | 
 |   // Collect all the recurrent nodes in this SENode | 
 |   std::vector<SERecurrentNode*> CollectRecurrentNodes() { | 
 |     std::vector<SERecurrentNode*> recurrent_nodes{}; | 
 |  | 
 |     if (auto recurrent_node = AsSERecurrentNode()) { | 
 |       recurrent_nodes.push_back(recurrent_node); | 
 |     } | 
 |  | 
 |     for (auto child : GetChildren()) { | 
 |       auto child_recurrent_nodes = child->CollectRecurrentNodes(); | 
 |       recurrent_nodes.insert(recurrent_nodes.end(), | 
 |                              child_recurrent_nodes.begin(), | 
 |                              child_recurrent_nodes.end()); | 
 |     } | 
 |  | 
 |     return recurrent_nodes; | 
 |   } | 
 |  | 
 |   // Collect all the value unknown nodes in this SENode | 
 |   std::vector<SEValueUnknown*> CollectValueUnknownNodes() { | 
 |     std::vector<SEValueUnknown*> value_unknown_nodes{}; | 
 |  | 
 |     if (auto value_unknown_node = AsSEValueUnknown()) { | 
 |       value_unknown_nodes.push_back(value_unknown_node); | 
 |     } | 
 |  | 
 |     for (auto child : GetChildren()) { | 
 |       auto child_value_unknown_nodes = child->CollectValueUnknownNodes(); | 
 |       value_unknown_nodes.insert(value_unknown_nodes.end(), | 
 |                                  child_value_unknown_nodes.begin(), | 
 |                                  child_value_unknown_nodes.end()); | 
 |     } | 
 |  | 
 |     return value_unknown_nodes; | 
 |   } | 
 |  | 
 |   // Iterator to iterate over the entire DAG. Even though we are using the tree | 
 |   // iterator it should still be safe to iterate over. However, nodes with | 
 |   // multiple parents will be visited multiple times, unlike in a tree. | 
 |   using dag_iterator = TreeDFIterator<SENode>; | 
 |   using const_dag_iterator = TreeDFIterator<const SENode>; | 
 |  | 
 |   // Iterate over all child nodes in the graph. | 
 |   dag_iterator graph_begin() { return dag_iterator(this); } | 
 |   dag_iterator graph_end() { return dag_iterator(); } | 
 |   const_dag_iterator graph_begin() const { return graph_cbegin(); } | 
 |   const_dag_iterator graph_end() const { return graph_cend(); } | 
 |   const_dag_iterator graph_cbegin() const { return const_dag_iterator(this); } | 
 |   const_dag_iterator graph_cend() const { return const_dag_iterator(); } | 
 |  | 
 |   // Return the vector of immediate children. | 
 |   const ChildContainerType& GetChildren() const { return children_; } | 
 |   ChildContainerType& GetChildren() { return children_; } | 
 |  | 
 |   // Return true if this node is a cant compute node. | 
 |   bool IsCantCompute() const { return GetType() == CanNotCompute; } | 
 |  | 
 | // Implements a casting method for each type. | 
 | #define DeclareCastMethod(target)                  \ | 
 |   virtual target* As##target() { return nullptr; } \ | 
 |   virtual const target* As##target() const { return nullptr; } | 
 |   DeclareCastMethod(SEConstantNode); | 
 |   DeclareCastMethod(SERecurrentNode); | 
 |   DeclareCastMethod(SEAddNode); | 
 |   DeclareCastMethod(SEMultiplyNode); | 
 |   DeclareCastMethod(SENegative); | 
 |   DeclareCastMethod(SEValueUnknown); | 
 |   DeclareCastMethod(SECantCompute); | 
 | #undef DeclareCastMethod | 
 |  | 
 |   // Get the analysis which has this node in its cache. | 
 |   inline ScalarEvolutionAnalysis* GetParentAnalysis() const { | 
 |     return parent_analysis_; | 
 |   } | 
 |  | 
 |  protected: | 
 |   ChildContainerType children_; | 
 |  | 
 |   ScalarEvolutionAnalysis* parent_analysis_; | 
 |  | 
 |   // The unique id of this node, assigned on creation by incrementing the static | 
 |   // node count. | 
 |   uint32_t unique_id_; | 
 |  | 
 |   // The number of nodes created. | 
 |   static uint32_t NumberOfNodes; | 
 | }; | 
 |  | 
 | // Function object to handle the hashing of SENodes. Hashing algorithm hashes | 
 | // the type (as a string), the literal value of any constants, and the child | 
 | // pointers which are assumed to be unique. | 
 | struct SENodeHash { | 
 |   size_t operator()(const std::unique_ptr<SENode>& node) const; | 
 |   size_t operator()(const SENode* node) const; | 
 | }; | 
 |  | 
 | // A node representing a constant integer. | 
 | class SEConstantNode : public SENode { | 
 |  public: | 
 |   SEConstantNode(ScalarEvolutionAnalysis* parent_analysis, int64_t value) | 
 |       : SENode(parent_analysis), literal_value_(value) {} | 
 |  | 
 |   SENodeType GetType() const final { return Constant; } | 
 |  | 
 |   int64_t FoldToSingleValue() const { return literal_value_; } | 
 |  | 
 |   SEConstantNode* AsSEConstantNode() override { return this; } | 
 |   const SEConstantNode* AsSEConstantNode() const override { return this; } | 
 |  | 
 |   inline void AddChild(SENode*) final { | 
 |     assert(false && "Attempting to add a child to a constant node!"); | 
 |   } | 
 |  | 
 |  protected: | 
 |   int64_t literal_value_; | 
 | }; | 
 |  | 
 | // A node representing a recurrent expression in the code. A recurrent | 
 | // expression is an expression whose value can be expressed as a linear | 
 | // expression of the loop iterations. Such as an induction variable. The actual | 
 | // value of a recurrent expression is coefficent_ * iteration + offset_, hence | 
 | // an induction variable i=0, i++ becomes a recurrent expression with an offset | 
 | // of zero and a coefficient of one. | 
 | class SERecurrentNode : public SENode { | 
 |  public: | 
 |   SERecurrentNode(ScalarEvolutionAnalysis* parent_analysis, const Loop* loop) | 
 |       : SENode(parent_analysis), loop_(loop) {} | 
 |  | 
 |   SENodeType GetType() const final { return RecurrentAddExpr; } | 
 |  | 
 |   inline void AddCoefficient(SENode* child) { | 
 |     coefficient_ = child; | 
 |     SENode::AddChild(child); | 
 |   } | 
 |  | 
 |   inline void AddOffset(SENode* child) { | 
 |     offset_ = child; | 
 |     SENode::AddChild(child); | 
 |   } | 
 |  | 
 |   inline const SENode* GetCoefficient() const { return coefficient_; } | 
 |   inline SENode* GetCoefficient() { return coefficient_; } | 
 |  | 
 |   inline const SENode* GetOffset() const { return offset_; } | 
 |   inline SENode* GetOffset() { return offset_; } | 
 |  | 
 |   // Return the loop which this recurrent expression is recurring within. | 
 |   const Loop* GetLoop() const { return loop_; } | 
 |  | 
 |   SERecurrentNode* AsSERecurrentNode() override { return this; } | 
 |   const SERecurrentNode* AsSERecurrentNode() const override { return this; } | 
 |  | 
 |  private: | 
 |   SENode* coefficient_; | 
 |   SENode* offset_; | 
 |   const Loop* loop_; | 
 | }; | 
 |  | 
 | // A node representing an addition operation between child nodes. | 
 | class SEAddNode : public SENode { | 
 |  public: | 
 |   explicit SEAddNode(ScalarEvolutionAnalysis* parent_analysis) | 
 |       : SENode(parent_analysis) {} | 
 |  | 
 |   SENodeType GetType() const final { return Add; } | 
 |  | 
 |   SEAddNode* AsSEAddNode() override { return this; } | 
 |   const SEAddNode* AsSEAddNode() const override { return this; } | 
 | }; | 
 |  | 
 | // A node representing a multiply operation between child nodes. | 
 | class SEMultiplyNode : public SENode { | 
 |  public: | 
 |   explicit SEMultiplyNode(ScalarEvolutionAnalysis* parent_analysis) | 
 |       : SENode(parent_analysis) {} | 
 |  | 
 |   SENodeType GetType() const final { return Multiply; } | 
 |  | 
 |   SEMultiplyNode* AsSEMultiplyNode() override { return this; } | 
 |   const SEMultiplyNode* AsSEMultiplyNode() const override { return this; } | 
 | }; | 
 |  | 
 | // A node representing a unary negative operation. | 
 | class SENegative : public SENode { | 
 |  public: | 
 |   explicit SENegative(ScalarEvolutionAnalysis* parent_analysis) | 
 |       : SENode(parent_analysis) {} | 
 |  | 
 |   SENodeType GetType() const final { return Negative; } | 
 |  | 
 |   SENegative* AsSENegative() override { return this; } | 
 |   const SENegative* AsSENegative() const override { return this; } | 
 | }; | 
 |  | 
 | // A node representing a value which we do not know the value of, such as a load | 
 | // instruction. | 
 | class SEValueUnknown : public SENode { | 
 |  public: | 
 |   // SEValueUnknowns must come from an instruction |unique_id| is the unique id | 
 |   // of that instruction. This is so we cancompare value unknowns and have a | 
 |   // unique value unknown for each instruction. | 
 |   SEValueUnknown(ScalarEvolutionAnalysis* parent_analysis, uint32_t result_id) | 
 |       : SENode(parent_analysis), result_id_(result_id) {} | 
 |  | 
 |   SENodeType GetType() const final { return ValueUnknown; } | 
 |  | 
 |   SEValueUnknown* AsSEValueUnknown() override { return this; } | 
 |   const SEValueUnknown* AsSEValueUnknown() const override { return this; } | 
 |  | 
 |   inline uint32_t ResultId() const { return result_id_; } | 
 |  | 
 |  private: | 
 |   uint32_t result_id_; | 
 | }; | 
 |  | 
 | // A node which we cannot reason about at all. | 
 | class SECantCompute : public SENode { | 
 |  public: | 
 |   explicit SECantCompute(ScalarEvolutionAnalysis* parent_analysis) | 
 |       : SENode(parent_analysis) {} | 
 |  | 
 |   SENodeType GetType() const final { return CanNotCompute; } | 
 |  | 
 |   SECantCompute* AsSECantCompute() override { return this; } | 
 |   const SECantCompute* AsSECantCompute() const override { return this; } | 
 | }; | 
 |  | 
 | }  // namespace opt | 
 | }  // namespace spvtools | 
 | #endif  // SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ |