blob: 927845aa23d1f0e2a209997a2d28bf7e0997c3fb [file] [log] [blame]
//===-- RISCVRegisterInfo.cpp - RISCV Register Information ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISCV implementation of the TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//
#include "RISCVRegisterInfo.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/Support/ErrorHandling.h"
#define GET_REGINFO_TARGET_DESC
#include "RISCVGenRegisterInfo.inc"
using namespace llvm;
static cl::opt<bool>
DisableRegAllocHints("riscv-disable-regalloc-hints", cl::Hidden,
cl::init(false),
cl::desc("Disable two address hints for register "
"allocation"));
static_assert(RISCV::X1 == RISCV::X0 + 1, "Register list not consecutive");
static_assert(RISCV::X31 == RISCV::X0 + 31, "Register list not consecutive");
static_assert(RISCV::F1_H == RISCV::F0_H + 1, "Register list not consecutive");
static_assert(RISCV::F31_H == RISCV::F0_H + 31,
"Register list not consecutive");
static_assert(RISCV::F1_F == RISCV::F0_F + 1, "Register list not consecutive");
static_assert(RISCV::F31_F == RISCV::F0_F + 31,
"Register list not consecutive");
static_assert(RISCV::F1_D == RISCV::F0_D + 1, "Register list not consecutive");
static_assert(RISCV::F31_D == RISCV::F0_D + 31,
"Register list not consecutive");
static_assert(RISCV::V1 == RISCV::V0 + 1, "Register list not consecutive");
static_assert(RISCV::V31 == RISCV::V0 + 31, "Register list not consecutive");
RISCVRegisterInfo::RISCVRegisterInfo(unsigned HwMode)
: RISCVGenRegisterInfo(RISCV::X1, /*DwarfFlavour*/0, /*EHFlavor*/0,
/*PC*/0, HwMode) {}
const MCPhysReg *
RISCVRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
auto &Subtarget = MF->getSubtarget<RISCVSubtarget>();
if (MF->getFunction().getCallingConv() == CallingConv::GHC)
return CSR_NoRegs_SaveList;
if (MF->getFunction().hasFnAttribute("interrupt")) {
if (Subtarget.hasStdExtD())
return CSR_XLEN_F64_Interrupt_SaveList;
if (Subtarget.hasStdExtF())
return CSR_XLEN_F32_Interrupt_SaveList;
return CSR_Interrupt_SaveList;
}
switch (Subtarget.getTargetABI()) {
default:
llvm_unreachable("Unrecognized ABI");
case RISCVABI::ABI_ILP32:
case RISCVABI::ABI_LP64:
return CSR_ILP32_LP64_SaveList;
case RISCVABI::ABI_ILP32F:
case RISCVABI::ABI_LP64F:
return CSR_ILP32F_LP64F_SaveList;
case RISCVABI::ABI_ILP32D:
case RISCVABI::ABI_LP64D:
return CSR_ILP32D_LP64D_SaveList;
}
}
BitVector RISCVRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
const RISCVFrameLowering *TFI = getFrameLowering(MF);
BitVector Reserved(getNumRegs());
// Mark any registers requested to be reserved as such
for (size_t Reg = 0; Reg < getNumRegs(); Reg++) {
if (MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(Reg))
markSuperRegs(Reserved, Reg);
}
// Use markSuperRegs to ensure any register aliases are also reserved
markSuperRegs(Reserved, RISCV::X0); // zero
markSuperRegs(Reserved, RISCV::X2); // sp
markSuperRegs(Reserved, RISCV::X3); // gp
markSuperRegs(Reserved, RISCV::X4); // tp
if (TFI->hasFP(MF))
markSuperRegs(Reserved, RISCV::X8); // fp
// Reserve the base register if we need to realign the stack and allocate
// variable-sized objects at runtime.
if (TFI->hasBP(MF))
markSuperRegs(Reserved, RISCVABI::getBPReg()); // bp
// V registers for code generation. We handle them manually.
markSuperRegs(Reserved, RISCV::VL);
markSuperRegs(Reserved, RISCV::VTYPE);
markSuperRegs(Reserved, RISCV::VXSAT);
markSuperRegs(Reserved, RISCV::VXRM);
markSuperRegs(Reserved, RISCV::VLENB); // vlenb (constant)
// Floating point environment registers.
markSuperRegs(Reserved, RISCV::FRM);
markSuperRegs(Reserved, RISCV::FFLAGS);
assert(checkAllSuperRegsMarked(Reserved));
return Reserved;
}
bool RISCVRegisterInfo::isAsmClobberable(const MachineFunction &MF,
MCRegister PhysReg) const {
return !MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(PhysReg);
}
const uint32_t *RISCVRegisterInfo::getNoPreservedMask() const {
return CSR_NoRegs_RegMask;
}
// Frame indexes representing locations of CSRs which are given a fixed location
// by save/restore libcalls.
static const std::pair<unsigned, int> FixedCSRFIMap[] = {
{/*ra*/ RISCV::X1, -1},
{/*s0*/ RISCV::X8, -2},
{/*s1*/ RISCV::X9, -3},
{/*s2*/ RISCV::X18, -4},
{/*s3*/ RISCV::X19, -5},
{/*s4*/ RISCV::X20, -6},
{/*s5*/ RISCV::X21, -7},
{/*s6*/ RISCV::X22, -8},
{/*s7*/ RISCV::X23, -9},
{/*s8*/ RISCV::X24, -10},
{/*s9*/ RISCV::X25, -11},
{/*s10*/ RISCV::X26, -12},
{/*s11*/ RISCV::X27, -13}
};
bool RISCVRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
Register Reg,
int &FrameIdx) const {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->useSaveRestoreLibCalls(MF))
return false;
const auto *FII =
llvm::find_if(FixedCSRFIMap, [&](auto P) { return P.first == Reg; });
if (FII == std::end(FixedCSRFIMap))
return false;
FrameIdx = FII->second;
return true;
}
void RISCVRegisterInfo::adjustReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator II,
const DebugLoc &DL, Register DestReg,
Register SrcReg, StackOffset Offset,
MachineInstr::MIFlag Flag,
MaybeAlign RequiredAlign) const {
if (DestReg == SrcReg && !Offset.getFixed() && !Offset.getScalable())
return;
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo *TII = ST.getInstrInfo();
bool KillSrcReg = false;
if (Offset.getScalable()) {
unsigned ScalableAdjOpc = RISCV::ADD;
int64_t ScalableValue = Offset.getScalable();
if (ScalableValue < 0) {
ScalableValue = -ScalableValue;
ScalableAdjOpc = RISCV::SUB;
}
// Get vlenb and multiply vlen with the number of vector registers.
Register ScratchReg = DestReg;
if (DestReg == SrcReg)
ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
TII->getVLENFactoredAmount(MF, MBB, II, DL, ScratchReg, ScalableValue, Flag);
BuildMI(MBB, II, DL, TII->get(ScalableAdjOpc), DestReg)
.addReg(SrcReg).addReg(ScratchReg, RegState::Kill)
.setMIFlag(Flag);
SrcReg = DestReg;
KillSrcReg = true;
}
int64_t Val = Offset.getFixed();
if (DestReg == SrcReg && Val == 0)
return;
const uint64_t Align = RequiredAlign.valueOrOne().value();
if (isInt<12>(Val)) {
BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), DestReg)
.addReg(SrcReg, getKillRegState(KillSrcReg))
.addImm(Val)
.setMIFlag(Flag);
return;
}
// Try to split the offset across two ADDIs. We need to keep the intermediate
// result aligned after each ADDI. We need to determine the maximum value we
// can put in each ADDI. In the negative direction, we can use -2048 which is
// always sufficiently aligned. In the positive direction, we need to find the
// largest 12-bit immediate that is aligned. Exclude -4096 since it can be
// created with LUI.
assert(Align < 2048 && "Required alignment too large");
int64_t MaxPosAdjStep = 2048 - Align;
if (Val > -4096 && Val <= (2 * MaxPosAdjStep)) {
int64_t FirstAdj = Val < 0 ? -2048 : MaxPosAdjStep;
Val -= FirstAdj;
BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), DestReg)
.addReg(SrcReg, getKillRegState(KillSrcReg))
.addImm(FirstAdj)
.setMIFlag(Flag);
BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), DestReg)
.addReg(DestReg, RegState::Kill)
.addImm(Val)
.setMIFlag(Flag);
return;
}
unsigned Opc = RISCV::ADD;
if (Val < 0) {
Val = -Val;
Opc = RISCV::SUB;
}
Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
TII->movImm(MBB, II, DL, ScratchReg, Val, Flag);
BuildMI(MBB, II, DL, TII->get(Opc), DestReg)
.addReg(SrcReg, getKillRegState(KillSrcReg))
.addReg(ScratchReg, RegState::Kill)
.setMIFlag(Flag);
}
// Split a VSPILLx_Mx pseudo into multiple whole register stores separated by
// LMUL*VLENB bytes.
void RISCVRegisterInfo::lowerVSPILL(MachineBasicBlock::iterator II) const {
DebugLoc DL = II->getDebugLoc();
MachineBasicBlock &MBB = *II->getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
auto ZvlssegInfo = RISCV::isRVVSpillForZvlsseg(II->getOpcode());
unsigned NF = ZvlssegInfo->first;
unsigned LMUL = ZvlssegInfo->second;
assert(NF * LMUL <= 8 && "Invalid NF/LMUL combinations.");
unsigned Opcode, SubRegIdx;
switch (LMUL) {
default:
llvm_unreachable("LMUL must be 1, 2, or 4.");
case 1:
Opcode = RISCV::VS1R_V;
SubRegIdx = RISCV::sub_vrm1_0;
break;
case 2:
Opcode = RISCV::VS2R_V;
SubRegIdx = RISCV::sub_vrm2_0;
break;
case 4:
Opcode = RISCV::VS4R_V;
SubRegIdx = RISCV::sub_vrm4_0;
break;
}
static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
"Unexpected subreg numbering");
static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
"Unexpected subreg numbering");
static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
"Unexpected subreg numbering");
Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), VL);
uint32_t ShiftAmount = Log2_32(LMUL);
if (ShiftAmount != 0)
BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), VL)
.addReg(VL)
.addImm(ShiftAmount);
Register SrcReg = II->getOperand(0).getReg();
Register Base = II->getOperand(1).getReg();
bool IsBaseKill = II->getOperand(1).isKill();
Register NewBase = MRI.createVirtualRegister(&RISCV::GPRRegClass);
for (unsigned I = 0; I < NF; ++I) {
// Adding implicit-use of super register to describe we are using part of
// super register, that prevents machine verifier complaining when part of
// subreg is undef, see comment in MachineVerifier::checkLiveness for more
// detail.
BuildMI(MBB, II, DL, TII->get(Opcode))
.addReg(TRI->getSubReg(SrcReg, SubRegIdx + I))
.addReg(Base, getKillRegState(I == NF - 1))
.addMemOperand(*(II->memoperands_begin()))
.addReg(SrcReg, RegState::Implicit);
if (I != NF - 1)
BuildMI(MBB, II, DL, TII->get(RISCV::ADD), NewBase)
.addReg(Base, getKillRegState(I != 0 || IsBaseKill))
.addReg(VL, getKillRegState(I == NF - 2));
Base = NewBase;
}
II->eraseFromParent();
}
// Split a VSPILLx_Mx pseudo into multiple whole register loads separated by
// LMUL*VLENB bytes.
void RISCVRegisterInfo::lowerVRELOAD(MachineBasicBlock::iterator II) const {
DebugLoc DL = II->getDebugLoc();
MachineBasicBlock &MBB = *II->getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
auto ZvlssegInfo = RISCV::isRVVSpillForZvlsseg(II->getOpcode());
unsigned NF = ZvlssegInfo->first;
unsigned LMUL = ZvlssegInfo->second;
assert(NF * LMUL <= 8 && "Invalid NF/LMUL combinations.");
unsigned Opcode, SubRegIdx;
switch (LMUL) {
default:
llvm_unreachable("LMUL must be 1, 2, or 4.");
case 1:
Opcode = RISCV::VL1RE8_V;
SubRegIdx = RISCV::sub_vrm1_0;
break;
case 2:
Opcode = RISCV::VL2RE8_V;
SubRegIdx = RISCV::sub_vrm2_0;
break;
case 4:
Opcode = RISCV::VL4RE8_V;
SubRegIdx = RISCV::sub_vrm4_0;
break;
}
static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
"Unexpected subreg numbering");
static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
"Unexpected subreg numbering");
static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
"Unexpected subreg numbering");
Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), VL);
uint32_t ShiftAmount = Log2_32(LMUL);
if (ShiftAmount != 0)
BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), VL)
.addReg(VL)
.addImm(ShiftAmount);
Register DestReg = II->getOperand(0).getReg();
Register Base = II->getOperand(1).getReg();
bool IsBaseKill = II->getOperand(1).isKill();
Register NewBase = MRI.createVirtualRegister(&RISCV::GPRRegClass);
for (unsigned I = 0; I < NF; ++I) {
BuildMI(MBB, II, DL, TII->get(Opcode),
TRI->getSubReg(DestReg, SubRegIdx + I))
.addReg(Base, getKillRegState(I == NF - 1))
.addMemOperand(*(II->memoperands_begin()));
if (I != NF - 1)
BuildMI(MBB, II, DL, TII->get(RISCV::ADD), NewBase)
.addReg(Base, getKillRegState(I != 0 || IsBaseKill))
.addReg(VL, getKillRegState(I == NF - 2));
Base = NewBase;
}
II->eraseFromParent();
}
bool RISCVRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected non-zero SPAdj value");
MachineInstr &MI = *II;
MachineFunction &MF = *MI.getParent()->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
const RISCVSubtarget &ST = MF.getSubtarget<RISCVSubtarget>();
DebugLoc DL = MI.getDebugLoc();
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
Register FrameReg;
StackOffset Offset =
getFrameLowering(MF)->getFrameIndexReference(MF, FrameIndex, FrameReg);
bool IsRVVSpill = RISCV::isRVVSpill(MI);
if (!IsRVVSpill)
Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm());
if (Offset.getScalable() &&
ST.getRealMinVLen() == ST.getRealMaxVLen()) {
// For an exact VLEN value, scalable offsets become constant and thus
// can be converted entirely into fixed offsets.
int64_t FixedValue = Offset.getFixed();
int64_t ScalableValue = Offset.getScalable();
assert(ScalableValue % 8 == 0 &&
"Scalable offset is not a multiple of a single vector size.");
int64_t NumOfVReg = ScalableValue / 8;
int64_t VLENB = ST.getRealMinVLen() / 8;
Offset = StackOffset::getFixed(FixedValue + NumOfVReg * VLENB);
}
if (!isInt<32>(Offset.getFixed())) {
report_fatal_error(
"Frame offsets outside of the signed 32-bit range not supported");
}
if (!IsRVVSpill) {
if (MI.getOpcode() == RISCV::ADDI && !isInt<12>(Offset.getFixed())) {
// We chose to emit the canonical immediate sequence rather than folding
// the offset into the using add under the theory that doing so doesn't
// save dynamic instruction count and some target may fuse the canonical
// 32 bit immediate sequence. We still need to clear the portion of the
// offset encoded in the immediate.
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(0);
} else {
// We can encode an add with 12 bit signed immediate in the immediate
// operand of our user instruction. As a result, the remaining
// offset can by construction, at worst, a LUI and a ADD.
int64_t Val = Offset.getFixed();
int64_t Lo12 = SignExtend64<12>(Val);
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Lo12);
Offset = StackOffset::get((uint64_t)Val - (uint64_t)Lo12,
Offset.getScalable());
}
}
if (Offset.getScalable() || Offset.getFixed()) {
Register DestReg;
if (MI.getOpcode() == RISCV::ADDI)
DestReg = MI.getOperand(0).getReg();
else
DestReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
adjustReg(*II->getParent(), II, DL, DestReg, FrameReg, Offset,
MachineInstr::NoFlags, std::nullopt);
MI.getOperand(FIOperandNum).ChangeToRegister(DestReg, /*IsDef*/false,
/*IsImp*/false,
/*IsKill*/true);
} else {
MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, /*IsDef*/false,
/*IsImp*/false,
/*IsKill*/false);
}
// If after materializing the adjustment, we have a pointless ADDI, remove it
if (MI.getOpcode() == RISCV::ADDI &&
MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
MI.getOperand(2).getImm() == 0) {
MI.eraseFromParent();
return true;
}
// Handle spill/fill of synthetic register classes for segment operations to
// ensure correctness in the edge case one gets spilled. There are many
// possible optimizations here, but given the extreme rarity of such spills,
// we prefer simplicity of implementation for now.
switch (MI.getOpcode()) {
case RISCV::PseudoVSPILL2_M1:
case RISCV::PseudoVSPILL2_M2:
case RISCV::PseudoVSPILL2_M4:
case RISCV::PseudoVSPILL3_M1:
case RISCV::PseudoVSPILL3_M2:
case RISCV::PseudoVSPILL4_M1:
case RISCV::PseudoVSPILL4_M2:
case RISCV::PseudoVSPILL5_M1:
case RISCV::PseudoVSPILL6_M1:
case RISCV::PseudoVSPILL7_M1:
case RISCV::PseudoVSPILL8_M1:
lowerVSPILL(II);
return true;
case RISCV::PseudoVRELOAD2_M1:
case RISCV::PseudoVRELOAD2_M2:
case RISCV::PseudoVRELOAD2_M4:
case RISCV::PseudoVRELOAD3_M1:
case RISCV::PseudoVRELOAD3_M2:
case RISCV::PseudoVRELOAD4_M1:
case RISCV::PseudoVRELOAD4_M2:
case RISCV::PseudoVRELOAD5_M1:
case RISCV::PseudoVRELOAD6_M1:
case RISCV::PseudoVRELOAD7_M1:
case RISCV::PseudoVRELOAD8_M1:
lowerVRELOAD(II);
return true;
}
return false;
}
bool RISCVRegisterInfo::requiresVirtualBaseRegisters(
const MachineFunction &MF) const {
return true;
}
// Returns true if the instruction's frame index reference would be better
// served by a base register other than FP or SP.
// Used by LocalStackSlotAllocation pass to determine which frame index
// references it should create new base registers for.
bool RISCVRegisterInfo::needsFrameBaseReg(MachineInstr *MI,
int64_t Offset) const {
unsigned FIOperandNum = 0;
for (; !MI->getOperand(FIOperandNum).isFI(); FIOperandNum++)
assert(FIOperandNum < MI->getNumOperands() &&
"Instr doesn't have FrameIndex operand");
// For RISC-V, The machine instructions that include a FrameIndex operand
// are load/store, ADDI instructions.
unsigned MIFrm = RISCVII::getFormat(MI->getDesc().TSFlags);
if (MIFrm != RISCVII::InstFormatI && MIFrm != RISCVII::InstFormatS)
return false;
// We only generate virtual base registers for loads and stores, so
// return false for everything else.
if (!MI->mayLoad() && !MI->mayStore())
return false;
const MachineFunction &MF = *MI->getMF();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const RISCVFrameLowering *TFI = getFrameLowering(MF);
const MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned CalleeSavedSize = 0;
Offset += getFrameIndexInstrOffset(MI, FIOperandNum);
// Estimate the stack size used to store callee saved registers(
// excludes reserved registers).
BitVector ReservedRegs = getReservedRegs(MF);
for (const MCPhysReg *R = MRI.getCalleeSavedRegs(); MCPhysReg Reg = *R; ++R) {
if (!ReservedRegs.test(Reg))
CalleeSavedSize += getSpillSize(*getMinimalPhysRegClass(Reg));
}
int64_t MaxFPOffset = Offset - CalleeSavedSize;
if (TFI->hasFP(MF) && !shouldRealignStack(MF))
return !isFrameOffsetLegal(MI, RISCV::X8, MaxFPOffset);
// Assume 128 bytes spill slots size to estimate the maximum possible
// offset relative to the stack pointer.
// FIXME: The 128 is copied from ARM. We should run some statistics and pick a
// real one for RISC-V.
int64_t MaxSPOffset = Offset + 128;
MaxSPOffset += MFI.getLocalFrameSize();
return !isFrameOffsetLegal(MI, RISCV::X2, MaxSPOffset);
}
// Determine whether a given base register plus offset immediate is
// encodable to resolve a frame index.
bool RISCVRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
Register BaseReg,
int64_t Offset) const {
unsigned FIOperandNum = 0;
while (!MI->getOperand(FIOperandNum).isFI()) {
FIOperandNum++;
assert(FIOperandNum < MI->getNumOperands() &&
"Instr does not have a FrameIndex operand!");
}
Offset += getFrameIndexInstrOffset(MI, FIOperandNum);
return isInt<12>(Offset);
}
// Insert defining instruction(s) for a pointer to FrameIdx before
// insertion point I.
// Return materialized frame pointer.
Register RISCVRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
int FrameIdx,
int64_t Offset) const {
MachineBasicBlock::iterator MBBI = MBB->begin();
DebugLoc DL;
if (MBBI != MBB->end())
DL = MBBI->getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo &MFI = MF->getRegInfo();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
Register BaseReg = MFI.createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(*MBB, MBBI, DL, TII->get(RISCV::ADDI), BaseReg)
.addFrameIndex(FrameIdx)
.addImm(Offset);
return BaseReg;
}
// Resolve a frame index operand of an instruction to reference the
// indicated base register plus offset instead.
void RISCVRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
int64_t Offset) const {
unsigned FIOperandNum = 0;
while (!MI.getOperand(FIOperandNum).isFI()) {
FIOperandNum++;
assert(FIOperandNum < MI.getNumOperands() &&
"Instr does not have a FrameIndex operand!");
}
Offset += getFrameIndexInstrOffset(&MI, FIOperandNum);
// FrameIndex Operands are always represented as a
// register followed by an immediate.
MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
}
// Get the offset from the referenced frame index in the instruction,
// if there is one.
int64_t RISCVRegisterInfo::getFrameIndexInstrOffset(const MachineInstr *MI,
int Idx) const {
assert((RISCVII::getFormat(MI->getDesc().TSFlags) == RISCVII::InstFormatI ||
RISCVII::getFormat(MI->getDesc().TSFlags) == RISCVII::InstFormatS) &&
"The MI must be I or S format.");
assert(MI->getOperand(Idx).isFI() && "The Idx'th operand of MI is not a "
"FrameIndex operand");
return MI->getOperand(Idx + 1).getImm();
}
Register RISCVRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = getFrameLowering(MF);
return TFI->hasFP(MF) ? RISCV::X8 : RISCV::X2;
}
const uint32_t *
RISCVRegisterInfo::getCallPreservedMask(const MachineFunction & MF,
CallingConv::ID CC) const {
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
if (CC == CallingConv::GHC)
return CSR_NoRegs_RegMask;
switch (Subtarget.getTargetABI()) {
default:
llvm_unreachable("Unrecognized ABI");
case RISCVABI::ABI_ILP32:
case RISCVABI::ABI_LP64:
return CSR_ILP32_LP64_RegMask;
case RISCVABI::ABI_ILP32F:
case RISCVABI::ABI_LP64F:
return CSR_ILP32F_LP64F_RegMask;
case RISCVABI::ABI_ILP32D:
case RISCVABI::ABI_LP64D:
return CSR_ILP32D_LP64D_RegMask;
}
}
const TargetRegisterClass *
RISCVRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
const MachineFunction &) const {
if (RC == &RISCV::VMV0RegClass)
return &RISCV::VRRegClass;
return RC;
}
void RISCVRegisterInfo::getOffsetOpcodes(const StackOffset &Offset,
SmallVectorImpl<uint64_t> &Ops) const {
// VLENB is the length of a vector register in bytes. We use <vscale x 8 x i8>
// to represent one vector register. The dwarf offset is
// VLENB * scalable_offset / 8.
assert(Offset.getScalable() % 8 == 0 && "Invalid frame offset");
// Add fixed-sized offset using existing DIExpression interface.
DIExpression::appendOffset(Ops, Offset.getFixed());
unsigned VLENB = getDwarfRegNum(RISCV::VLENB, true);
int64_t VLENBSized = Offset.getScalable() / 8;
if (VLENBSized > 0) {
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(VLENBSized);
Ops.append({dwarf::DW_OP_bregx, VLENB, 0ULL});
Ops.push_back(dwarf::DW_OP_mul);
Ops.push_back(dwarf::DW_OP_plus);
} else if (VLENBSized < 0) {
Ops.push_back(dwarf::DW_OP_constu);
Ops.push_back(-VLENBSized);
Ops.append({dwarf::DW_OP_bregx, VLENB, 0ULL});
Ops.push_back(dwarf::DW_OP_mul);
Ops.push_back(dwarf::DW_OP_minus);
}
}
unsigned
RISCVRegisterInfo::getRegisterCostTableIndex(const MachineFunction &MF) const {
return MF.getSubtarget<RISCVSubtarget>().hasStdExtCOrZca() ? 1 : 0;
}
// Add two address hints to improve chances of being able to use a compressed
// instruction.
bool RISCVRegisterInfo::getRegAllocationHints(
Register VirtReg, ArrayRef<MCPhysReg> Order,
SmallVectorImpl<MCPhysReg> &Hints, const MachineFunction &MF,
const VirtRegMap *VRM, const LiveRegMatrix *Matrix) const {
const MachineRegisterInfo *MRI = &MF.getRegInfo();
bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
VirtReg, Order, Hints, MF, VRM, Matrix);
if (!VRM || DisableRegAllocHints)
return BaseImplRetVal;
// Add any two address hints after any copy hints.
SmallSet<Register, 4> TwoAddrHints;
auto tryAddHint = [&](const MachineOperand &VRRegMO, const MachineOperand &MO,
bool NeedGPRC) -> void {
Register Reg = MO.getReg();
Register PhysReg = Reg.isPhysical() ? Reg : Register(VRM->getPhys(Reg));
if (PhysReg && (!NeedGPRC || RISCV::GPRCRegClass.contains(PhysReg))) {
assert(!MO.getSubReg() && !VRRegMO.getSubReg() && "Unexpected subreg!");
if (!MRI->isReserved(PhysReg) && !is_contained(Hints, PhysReg))
TwoAddrHints.insert(PhysReg);
}
};
// This is all of the compressible binary instructions. If an instruction
// needs GPRC register class operands \p NeedGPRC will be set to true.
auto isCompressible = [](const MachineInstr &MI, bool &NeedGPRC) {
NeedGPRC = false;
switch (MI.getOpcode()) {
default:
return false;
case RISCV::AND:
case RISCV::OR:
case RISCV::XOR:
case RISCV::SUB:
case RISCV::ADDW:
case RISCV::SUBW:
NeedGPRC = true;
return true;
case RISCV::ANDI:
NeedGPRC = true;
return MI.getOperand(2).isImm() && isInt<6>(MI.getOperand(2).getImm());
case RISCV::SRAI:
case RISCV::SRLI:
NeedGPRC = true;
return true;
case RISCV::ADD:
case RISCV::SLLI:
return true;
case RISCV::ADDI:
case RISCV::ADDIW:
return MI.getOperand(2).isImm() && isInt<6>(MI.getOperand(2).getImm());
}
};
// Returns true if this operand is compressible. For non-registers it always
// returns true. Immediate range was already checked in isCompressible.
// For registers, it checks if the register is a GPRC register. reg-reg
// instructions that require GPRC need all register operands to be GPRC.
auto isCompressibleOpnd = [&](const MachineOperand &MO) {
if (!MO.isReg())
return true;
Register Reg = MO.getReg();
Register PhysReg = Reg.isPhysical() ? Reg : Register(VRM->getPhys(Reg));
return PhysReg && RISCV::GPRCRegClass.contains(PhysReg);
};
for (auto &MO : MRI->reg_nodbg_operands(VirtReg)) {
const MachineInstr &MI = *MO.getParent();
unsigned OpIdx = MI.getOperandNo(&MO);
bool NeedGPRC;
if (isCompressible(MI, NeedGPRC)) {
if (OpIdx == 0 && MI.getOperand(1).isReg()) {
if (!NeedGPRC || isCompressibleOpnd(MI.getOperand(2)))
tryAddHint(MO, MI.getOperand(1), NeedGPRC);
if (MI.isCommutable() && MI.getOperand(2).isReg() &&
(!NeedGPRC || isCompressibleOpnd(MI.getOperand(1))))
tryAddHint(MO, MI.getOperand(2), NeedGPRC);
} else if (OpIdx == 1 &&
(!NeedGPRC || isCompressibleOpnd(MI.getOperand(2)))) {
tryAddHint(MO, MI.getOperand(0), NeedGPRC);
} else if (MI.isCommutable() && OpIdx == 2 &&
(!NeedGPRC || isCompressibleOpnd(MI.getOperand(1)))) {
tryAddHint(MO, MI.getOperand(0), NeedGPRC);
}
}
}
for (MCPhysReg OrderReg : Order)
if (TwoAddrHints.count(OrderReg))
Hints.push_back(OrderReg);
return BaseImplRetVal;
}