| //===-- RISCVInstrInfoZb.td - RISC-V Bitmanip instructions -*- tablegen -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the RISC-V instructions from the standard Bitmanip |
| // extensions, versions: |
| // Zba - 1.0 |
| // Zbb - 1.0 |
| // Zbc - 1.0 |
| // Zbs - 1.0 |
| // |
| // The experimental extensions appeared in an earlier draft of the Bitmanip |
| // extensions. They are not ratified and subject to change. |
| // |
| // This file also describes RISC-V instructions from the Zbk* extensions in |
| // Cryptography Extensions Volume I: Scalar & Entropy Source Instructions, |
| // versions: |
| // Zbkb - 1.0 |
| // Zbkc - 1.0 |
| // Zbkx - 1.0 |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Operand and SDNode transformation definitions. |
| //===----------------------------------------------------------------------===// |
| |
| def riscv_clzw : SDNode<"RISCVISD::CLZW", SDT_RISCVIntUnaryOpW>; |
| def riscv_ctzw : SDNode<"RISCVISD::CTZW", SDT_RISCVIntUnaryOpW>; |
| def riscv_rolw : SDNode<"RISCVISD::ROLW", SDT_RISCVIntBinOpW>; |
| def riscv_rorw : SDNode<"RISCVISD::RORW", SDT_RISCVIntBinOpW>; |
| def riscv_brev8 : SDNode<"RISCVISD::BREV8", SDTIntUnaryOp>; |
| def riscv_orc_b : SDNode<"RISCVISD::ORC_B", SDTIntUnaryOp>; |
| def riscv_zip : SDNode<"RISCVISD::ZIP", SDTIntUnaryOp>; |
| def riscv_unzip : SDNode<"RISCVISD::UNZIP", SDTIntUnaryOp>; |
| def riscv_absw : SDNode<"RISCVISD::ABSW", SDTIntUnaryOp>; |
| |
| def UImmLog2XLenHalfAsmOperand : AsmOperandClass { |
| let Name = "UImmLog2XLenHalf"; |
| let RenderMethod = "addImmOperands"; |
| let DiagnosticType = "InvalidUImmLog2XLenHalf"; |
| } |
| |
| def shfl_uimm : Operand<XLenVT>, ImmLeaf<XLenVT, [{ |
| if (Subtarget->is64Bit()) |
| return isUInt<5>(Imm); |
| return isUInt<4>(Imm); |
| }]> { |
| let ParserMatchClass = UImmLog2XLenHalfAsmOperand; |
| let DecoderMethod = "decodeUImmOperand<5>"; |
| let OperandType = "OPERAND_UIMM_SHFL"; |
| let OperandNamespace = "RISCVOp"; |
| let MCOperandPredicate = [{ |
| int64_t Imm; |
| if (!MCOp.evaluateAsConstantImm(Imm)) |
| return false; |
| if (STI.getTargetTriple().isArch64Bit()) |
| return isUInt<5>(Imm); |
| return isUInt<4>(Imm); |
| }]; |
| } |
| |
| def BCLRXForm : SDNodeXForm<imm, [{ |
| // Find the lowest 0. |
| return CurDAG->getTargetConstant(countTrailingOnes(N->getZExtValue()), |
| SDLoc(N), N->getValueType(0)); |
| }]>; |
| |
| def SingleBitSetMaskToIndex : SDNodeXForm<imm, [{ |
| // Find the lowest 1. |
| return CurDAG->getTargetConstant(countTrailingZeros(N->getZExtValue()), |
| SDLoc(N), N->getValueType(0)); |
| }]>; |
| |
| // Checks if this mask has a single 0 bit and cannot be used with ANDI. |
| def BCLRMask : ImmLeaf<XLenVT, [{ |
| if (Subtarget->is64Bit()) |
| return !isInt<12>(Imm) && isPowerOf2_64(~Imm); |
| return !isInt<12>(Imm) && isPowerOf2_32(~Imm); |
| }], BCLRXForm>; |
| |
| // Checks if this mask has a single 1 bit and cannot be used with ORI/XORI. |
| def SingleBitSetMask : ImmLeaf<XLenVT, [{ |
| if (Subtarget->is64Bit()) |
| return !isInt<12>(Imm) && isPowerOf2_64(Imm); |
| return !isInt<12>(Imm) && isPowerOf2_32(Imm); |
| }], SingleBitSetMaskToIndex>; |
| |
| // Check if (or r, i) can be optimized to (BSETI (BSETI r, i0), i1), |
| // in which i = (1 << i0) | (1 << i1). |
| def BSETINVTwoBitsMask : PatLeaf<(imm), [{ |
| if (!N->hasOneUse()) |
| return false; |
| // The immediate should not be a simm12. |
| if (isInt<12>(N->getSExtValue())) |
| return false; |
| // The immediate must have exactly two bits set. |
| return llvm::popcount(N->getZExtValue()) == 2; |
| }]>; |
| |
| def BSETINVTwoBitsMaskHigh : SDNodeXForm<imm, [{ |
| uint64_t I = N->getZExtValue(); |
| return CurDAG->getTargetConstant(63 - countLeadingZeros(I), SDLoc(N), |
| N->getValueType(0)); |
| }]>; |
| |
| // Check if (or r, imm) can be optimized to (BSETI (ORI r, i0), i1), |
| // in which imm = i0 | (1 << i1). |
| def BSETINVORIMask : PatLeaf<(imm), [{ |
| if (!N->hasOneUse()) |
| return false; |
| // The immediate should not be a simm12. |
| if (isInt<12>(N->getSExtValue())) |
| return false; |
| // There should be only one set bit from bit 11 to the top. |
| return isPowerOf2_64(N->getZExtValue() & ~0x7ff); |
| }]>; |
| |
| def BSETINVORIMaskLow : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getZExtValue() & 0x7ff, |
| SDLoc(N), N->getValueType(0)); |
| }]>; |
| |
| // Check if (and r, i) can be optimized to (BCLRI (BCLRI r, i0), i1), |
| // in which i = ~((1<<i0) | (1<<i1)). |
| def BCLRITwoBitsMask : PatLeaf<(imm), [{ |
| if (!N->hasOneUse()) |
| return false; |
| // The immediate should not be a simm12. |
| if (isInt<12>(N->getSExtValue())) |
| return false; |
| // The immediate must have exactly two bits clear. |
| return (unsigned)llvm::popcount(N->getZExtValue()) == Subtarget->getXLen() - 2; |
| }]>; |
| |
| def BCLRITwoBitsMaskLow : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(countTrailingZeros(~N->getZExtValue()), |
| SDLoc(N), N->getValueType(0)); |
| }]>; |
| |
| def BCLRITwoBitsMaskHigh : SDNodeXForm<imm, [{ |
| uint64_t I = N->getSExtValue(); |
| if (!Subtarget->is64Bit()) |
| I |= 0xffffffffull << 32; |
| return CurDAG->getTargetConstant(63 - countLeadingZeros(~I), SDLoc(N), |
| N->getValueType(0)); |
| }]>; |
| |
| // Check if (and r, i) can be optimized to (BCLRI (ANDI r, i0), i1), |
| // in which i = i0 & ~(1<<i1). |
| def BCLRIANDIMask : PatLeaf<(imm), [{ |
| if (!N->hasOneUse()) |
| return false; |
| // The immediate should not be a simm12. |
| if (isInt<12>(N->getSExtValue())) |
| return false; |
| // There should be only one clear bit from bit 11 to the top. |
| uint64_t I = N->getZExtValue() | 0x7ff; |
| return Subtarget->is64Bit() ? isPowerOf2_64(~I) : isPowerOf2_32(~I); |
| }]>; |
| |
| def BCLRIANDIMaskLow : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant((N->getZExtValue() & 0x7ff) | ~0x7ffull, |
| SDLoc(N), N->getValueType(0)); |
| }]>; |
| |
| def C3LeftShift : PatLeaf<(imm), [{ |
| uint64_t C = N->getZExtValue(); |
| return C > 3 && ((C % 3) == 0) && isPowerOf2_64(C / 3); |
| }]>; |
| |
| def C5LeftShift : PatLeaf<(imm), [{ |
| uint64_t C = N->getZExtValue(); |
| return C > 5 && ((C % 5) == 0) && isPowerOf2_64(C / 5); |
| }]>; |
| |
| def C9LeftShift : PatLeaf<(imm), [{ |
| uint64_t C = N->getZExtValue(); |
| return C > 9 && ((C % 9) == 0) && isPowerOf2_64(C / 9); |
| }]>; |
| |
| // Constant of the form (3 << C) where C is less than 32. |
| def C3LeftShiftUW : PatLeaf<(imm), [{ |
| uint64_t C = N->getZExtValue(); |
| if (C <= 3 || (C % 3) != 0) |
| return false; |
| C /= 3; |
| return isPowerOf2_64(C) && C < (1ULL << 32); |
| }]>; |
| |
| // Constant of the form (5 << C) where C is less than 32. |
| def C5LeftShiftUW : PatLeaf<(imm), [{ |
| uint64_t C = N->getZExtValue(); |
| if (C <= 5 || (C % 5) != 0) |
| return false; |
| C /= 5; |
| return isPowerOf2_64(C) && C < (1ULL << 32); |
| }]>; |
| |
| // Constant of the form (9 << C) where C is less than 32. |
| def C9LeftShiftUW : PatLeaf<(imm), [{ |
| uint64_t C = N->getZExtValue(); |
| if (C <= 9 || (C % 9) != 0) |
| return false; |
| C /= 9; |
| return isPowerOf2_64(C) && C < (1ULL << 32); |
| }]>; |
| |
| def CSImm12MulBy4 : PatLeaf<(imm), [{ |
| if (!N->hasOneUse()) |
| return false; |
| int64_t C = N->getSExtValue(); |
| // Skip if C is simm12, an lui, or can be optimized by the PatLeaf AddiPair. |
| return !isInt<13>(C) && !isShiftedInt<20, 12>(C) && isShiftedInt<12, 2>(C); |
| }]>; |
| |
| def CSImm12MulBy8 : PatLeaf<(imm), [{ |
| if (!N->hasOneUse()) |
| return false; |
| int64_t C = N->getSExtValue(); |
| // Skip if C is simm12, an lui or can be optimized by the PatLeaf AddiPair or |
| // CSImm12MulBy4. |
| return !isInt<14>(C) && !isShiftedInt<20, 12>(C) && isShiftedInt<12, 3>(C); |
| }]>; |
| |
| def SimmShiftRightBy2XForm : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getSExtValue() >> 2, SDLoc(N), |
| N->getValueType(0)); |
| }]>; |
| |
| def SimmShiftRightBy3XForm : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getSExtValue() >> 3, SDLoc(N), |
| N->getValueType(0)); |
| }]>; |
| |
| // Pattern to exclude simm12 immediates from matching. |
| def non_imm12 : PatLeaf<(XLenVT GPR:$a), [{ |
| auto *C = dyn_cast<ConstantSDNode>(N); |
| return !C || !isInt<12>(C->getSExtValue()); |
| }]>; |
| |
| def Shifted32OnesMask : PatLeaf<(imm), [{ |
| uint64_t Imm = N->getZExtValue(); |
| if (!isShiftedMask_64(Imm)) |
| return false; |
| |
| unsigned TrailingZeros = countTrailingZeros(Imm); |
| return TrailingZeros > 0 && TrailingZeros < 32 && |
| Imm == UINT64_C(0xFFFFFFFF) << TrailingZeros; |
| }], TrailingZeros>; |
| |
| def sh1add_op : ComplexPattern<XLenVT, 1, "selectSHXADDOp<1>", [], [], 6>; |
| def sh2add_op : ComplexPattern<XLenVT, 1, "selectSHXADDOp<2>", [], [], 6>; |
| def sh3add_op : ComplexPattern<XLenVT, 1, "selectSHXADDOp<3>", [], [], 6>; |
| |
| def sh1add_uw_op : ComplexPattern<XLenVT, 1, "selectSHXADD_UWOp<1>", [], [], 6>; |
| def sh2add_uw_op : ComplexPattern<XLenVT, 1, "selectSHXADD_UWOp<2>", [], [], 6>; |
| def sh3add_uw_op : ComplexPattern<XLenVT, 1, "selectSHXADD_UWOp<3>", [], [], 6>; |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction class templates |
| //===----------------------------------------------------------------------===// |
| |
| // Some of these templates should be moved to RISCVInstrFormats.td once the B |
| // extension has been ratified. |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| class RVBUnary<bits<7> funct7, bits<5> funct5, bits<3> funct3, |
| RISCVOpcode opcode, string opcodestr> |
| : RVInstR<funct7, funct3, opcode, (outs GPR:$rd), (ins GPR:$rs1), |
| opcodestr, "$rd, $rs1"> { |
| let rs2 = funct5; |
| } |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| class RVBShift_ri<bits<5> imm11_7, bits<3> funct3, RISCVOpcode opcode, |
| string opcodestr> |
| : RVInstIShift<imm11_7, funct3, opcode, (outs GPR:$rd), |
| (ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr, |
| "$rd, $rs1, $shamt">; |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| class RVBShiftW_ri<bits<7> imm11_5, bits<3> funct3, RISCVOpcode opcode, |
| string opcodestr> |
| : RVInstIShiftW<imm11_5, funct3, opcode, (outs GPR:$rd), |
| (ins GPR:$rs1, uimm5:$shamt), opcodestr, |
| "$rd, $rs1, $shamt">; |
| |
| // Using RVInstIShiftW since it allocates 5 bits instead of 6 to shamt. |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| class RVBShfl_ri<bits<7> imm11_5, bits<3> funct3, RISCVOpcode opcode, |
| string opcodestr> |
| : RVInstIShiftW<imm11_5, funct3, opcode, (outs GPR:$rd), |
| (ins GPR:$rs1, shfl_uimm:$shamt), opcodestr, |
| "$rd, $rs1, $shamt">; |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in |
| class RVBTernaryR<bits<2> funct2, bits<3> funct3, RISCVOpcode opcode, |
| string opcodestr, string argstr> |
| : RVInstR4<funct2, funct3, opcode, (outs GPR:$rd), |
| (ins GPR:$rs1, GPR:$rs2, GPR:$rs3), opcodestr, argstr>; |
| |
| //===----------------------------------------------------------------------===// |
| // Instructions |
| //===----------------------------------------------------------------------===// |
| |
| let Predicates = [HasStdExtZbbOrZbkb] in { |
| def ANDN : ALU_rr<0b0100000, 0b111, "andn">, |
| Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| def ORN : ALU_rr<0b0100000, 0b110, "orn">, |
| Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| def XNOR : ALU_rr<0b0100000, 0b100, "xnor">, |
| Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| } // Predicates = [HasStdExtZbbOrZbkb] |
| |
| let Predicates = [HasStdExtZba] in { |
| def SH1ADD : ALU_rr<0b0010000, 0b010, "sh1add">, |
| Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>; |
| def SH2ADD : ALU_rr<0b0010000, 0b100, "sh2add">, |
| Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>; |
| def SH3ADD : ALU_rr<0b0010000, 0b110, "sh3add">, |
| Sched<[WriteSHXADD, ReadSHXADD, ReadSHXADD]>; |
| } // Predicates = [HasStdExtZba] |
| |
| let Predicates = [HasStdExtZba, IsRV64] in { |
| def SLLI_UW : RVBShift_ri<0b00001, 0b001, OPC_OP_IMM_32, "slli.uw">, |
| Sched<[WriteShiftImm32, ReadShiftImm32]>; |
| def ADD_UW : ALUW_rr<0b0000100, 0b000, "add.uw">, |
| Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>; |
| def SH1ADD_UW : ALUW_rr<0b0010000, 0b010, "sh1add.uw">, |
| Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>; |
| def SH2ADD_UW : ALUW_rr<0b0010000, 0b100, "sh2add.uw">, |
| Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>; |
| def SH3ADD_UW : ALUW_rr<0b0010000, 0b110, "sh3add.uw">, |
| Sched<[WriteSHXADD32, ReadSHXADD32, ReadSHXADD32]>; |
| } // Predicates = [HasStdExtZba, IsRV64] |
| |
| let Predicates = [HasStdExtZbbOrZbkb] in { |
| def ROL : ALU_rr<0b0110000, 0b001, "rol">, |
| Sched<[WriteRotateReg, ReadRotateReg, ReadRotateReg]>; |
| def ROR : ALU_rr<0b0110000, 0b101, "ror">, |
| Sched<[WriteRotateReg, ReadRotateReg, ReadRotateReg]>; |
| |
| def RORI : RVBShift_ri<0b01100, 0b101, OPC_OP_IMM, "rori">, |
| Sched<[WriteRotateImm, ReadRotateImm]>; |
| } // Predicates = [HasStdExtZbbOrZbkb] |
| |
| let Predicates = [HasStdExtZbbOrZbkb, IsRV64], IsSignExtendingOpW = 1 in { |
| def ROLW : ALUW_rr<0b0110000, 0b001, "rolw">, |
| Sched<[WriteRotateReg32, ReadRotateReg32, ReadRotateReg32]>; |
| def RORW : ALUW_rr<0b0110000, 0b101, "rorw">, |
| Sched<[WriteRotateReg32, ReadRotateReg32, ReadRotateReg32]>; |
| |
| def RORIW : RVBShiftW_ri<0b0110000, 0b101, OPC_OP_IMM_32, "roriw">, |
| Sched<[WriteRotateImm32, ReadRotateImm32]>; |
| } // Predicates = [HasStdExtZbbOrZbkb, IsRV64] |
| |
| let Predicates = [HasStdExtZbs] in { |
| def BCLR : ALU_rr<0b0100100, 0b001, "bclr">, |
| Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>; |
| def BSET : ALU_rr<0b0010100, 0b001, "bset">, |
| Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>; |
| def BINV : ALU_rr<0b0110100, 0b001, "binv">, |
| Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>; |
| let IsSignExtendingOpW = 1 in |
| def BEXT : ALU_rr<0b0100100, 0b101, "bext">, |
| Sched<[WriteSingleBit, ReadSingleBit, ReadSingleBit]>; |
| |
| def BCLRI : RVBShift_ri<0b01001, 0b001, OPC_OP_IMM, "bclri">, |
| Sched<[WriteSingleBitImm, ReadSingleBitImm]>; |
| def BSETI : RVBShift_ri<0b00101, 0b001, OPC_OP_IMM, "bseti">, |
| Sched<[WriteSingleBitImm, ReadSingleBitImm]>; |
| def BINVI : RVBShift_ri<0b01101, 0b001, OPC_OP_IMM, "binvi">, |
| Sched<[WriteSingleBitImm, ReadSingleBitImm]>; |
| let IsSignExtendingOpW = 1 in |
| def BEXTI : RVBShift_ri<0b01001, 0b101, OPC_OP_IMM, "bexti">, |
| Sched<[WriteSingleBitImm, ReadSingleBitImm]>; |
| } // Predicates = [HasStdExtZbs] |
| |
| // These instructions were named xperm.n and xperm.b in the last version of |
| // the draft bit manipulation specification they were included in. However, we |
| // use the mnemonics given to them in the ratified Zbkx extension. |
| let Predicates = [HasStdExtZbkx] in { |
| def XPERM4 : ALU_rr<0b0010100, 0b010, "xperm4">, |
| Sched<[WriteXPERM, ReadXPERM, ReadXPERM]>; |
| def XPERM8 : ALU_rr<0b0010100, 0b100, "xperm8">, |
| Sched<[WriteXPERM, ReadXPERM, ReadXPERM]>; |
| } // Predicates = [HasStdExtZbkx] |
| |
| let Predicates = [HasStdExtZbb], IsSignExtendingOpW = 1 in { |
| def CLZ : RVBUnary<0b0110000, 0b00000, 0b001, OPC_OP_IMM, "clz">, |
| Sched<[WriteCLZ, ReadCLZ]>; |
| def CTZ : RVBUnary<0b0110000, 0b00001, 0b001, OPC_OP_IMM, "ctz">, |
| Sched<[WriteCTZ, ReadCTZ]>; |
| def CPOP : RVBUnary<0b0110000, 0b00010, 0b001, OPC_OP_IMM, "cpop">, |
| Sched<[WriteCPOP, ReadCPOP]>; |
| } // Predicates = [HasStdExtZbb] |
| |
| let Predicates = [HasStdExtZbb, IsRV64], IsSignExtendingOpW = 1 in { |
| def CLZW : RVBUnary<0b0110000, 0b00000, 0b001, OPC_OP_IMM_32, "clzw">, |
| Sched<[WriteCLZ32, ReadCLZ32]>; |
| def CTZW : RVBUnary<0b0110000, 0b00001, 0b001, OPC_OP_IMM_32, "ctzw">, |
| Sched<[WriteCTZ32, ReadCTZ32]>; |
| def CPOPW : RVBUnary<0b0110000, 0b00010, 0b001, OPC_OP_IMM_32, "cpopw">, |
| Sched<[WriteCPOP32, ReadCPOP32]>; |
| } // Predicates = [HasStdExtZbb, IsRV64] |
| |
| let Predicates = [HasStdExtZbb], IsSignExtendingOpW = 1 in { |
| def SEXT_B : RVBUnary<0b0110000, 0b00100, 0b001, OPC_OP_IMM, "sext.b">, |
| Sched<[WriteIALU, ReadIALU]>; |
| def SEXT_H : RVBUnary<0b0110000, 0b00101, 0b001, OPC_OP_IMM, "sext.h">, |
| Sched<[WriteIALU, ReadIALU]>; |
| } // Predicates = [HasStdExtZbb] |
| |
| let Predicates = [HasStdExtZbc] in { |
| def CLMULR : ALU_rr<0b0000101, 0b010, "clmulr", /*Commutable*/1>, |
| Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>; |
| } // Predicates = [HasStdExtZbc] |
| |
| let Predicates = [HasStdExtZbcOrZbkc] in { |
| def CLMUL : ALU_rr<0b0000101, 0b001, "clmul", /*Commutable*/1>, |
| Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>; |
| def CLMULH : ALU_rr<0b0000101, 0b011, "clmulh", /*Commutable*/1>, |
| Sched<[WriteCLMUL, ReadCLMUL, ReadCLMUL]>; |
| } // Predicates = [HasStdExtZbcOrZbkc] |
| |
| let Predicates = [HasStdExtZbb] in { |
| def MIN : ALU_rr<0b0000101, 0b100, "min", /*Commutable*/1>, |
| Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| def MINU : ALU_rr<0b0000101, 0b101, "minu", /*Commutable*/1>, |
| Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| def MAX : ALU_rr<0b0000101, 0b110, "max", /*Commutable*/1>, |
| Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| def MAXU : ALU_rr<0b0000101, 0b111, "maxu", /*Commutable*/1>, |
| Sched<[WriteIALU, ReadIALU, ReadIALU]>; |
| } // Predicates = [HasStdExtZbb] |
| |
| let Predicates = [HasStdExtZbkb] in { |
| def PACK : ALU_rr<0b0000100, 0b100, "pack">, |
| Sched<[WritePACK, ReadPACK, ReadPACK]>; |
| let IsSignExtendingOpW = 1 in |
| def PACKH : ALU_rr<0b0000100, 0b111, "packh">, |
| Sched<[WritePACK, ReadPACK, ReadPACK]>; |
| } // Predicates = [HasStdExtZbkb] |
| |
| let Predicates = [HasStdExtZbkb, IsRV64], IsSignExtendingOpW = 1 in |
| def PACKW : ALUW_rr<0b0000100, 0b100, "packw">, |
| Sched<[WritePACK32, ReadPACK32, ReadPACK32]>; |
| |
| let Predicates = [HasStdExtZbb, IsRV32] in { |
| def ZEXT_H_RV32 : RVBUnary<0b0000100, 0b00000, 0b100, OPC_OP, "zext.h">, |
| Sched<[WriteIALU, ReadIALU]>; |
| } // Predicates = [HasStdExtZbb, IsRV32] |
| |
| let Predicates = [HasStdExtZbb, IsRV64], IsSignExtendingOpW = 1 in { |
| def ZEXT_H_RV64 : RVBUnary<0b0000100, 0b00000, 0b100, OPC_OP_32, "zext.h">, |
| Sched<[WriteIALU, ReadIALU]>; |
| } // Predicates = [HasStdExtZbb, IsRV64] |
| |
| let Predicates = [HasStdExtZbbOrZbkb, IsRV32] in { |
| def REV8_RV32 : RVBUnary<0b0110100, 0b11000, 0b101, OPC_OP_IMM, "rev8">, |
| Sched<[WriteREV8, ReadREV8]>; |
| } // Predicates = [HasStdExtZbbOrZbkb, IsRV32] |
| |
| let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in { |
| def REV8_RV64 : RVBUnary<0b0110101, 0b11000, 0b101, OPC_OP_IMM, "rev8">, |
| Sched<[WriteREV8, ReadREV8]>; |
| } // Predicates = [HasStdExtZbbOrZbkb, IsRV64] |
| |
| let Predicates = [HasStdExtZbb] in { |
| def ORC_B : RVBUnary<0b0010100, 0b00111, 0b101, OPC_OP_IMM, "orc.b">, |
| Sched<[WriteORCB, ReadORCB]>; |
| } // Predicates = [HasStdExtZbb] |
| |
| let Predicates = [HasStdExtZbkb] in |
| def BREV8 : RVBUnary<0b0110100, 0b00111, 0b101, OPC_OP_IMM, "brev8">, |
| Sched<[WriteBREV8, ReadBREV8]>; |
| |
| let Predicates = [HasStdExtZbkb, IsRV32] in { |
| def ZIP_RV32 : RVBUnary<0b0000100, 0b01111, 0b001, OPC_OP_IMM, "zip">, |
| Sched<[WriteZIP, ReadZIP]>; |
| def UNZIP_RV32 : RVBUnary<0b0000100, 0b01111, 0b101, OPC_OP_IMM, "unzip">, |
| Sched<[WriteZIP, ReadZIP]>; |
| } // Predicates = [HasStdExtZbkb, IsRV32] |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Pseudo Instructions |
| //===----------------------------------------------------------------------===// |
| |
| let Predicates = [HasStdExtZba, IsRV64] in { |
| def : InstAlias<"zext.w $rd, $rs", (ADD_UW GPR:$rd, GPR:$rs, X0)>; |
| } // Predicates = [HasStdExtZba, IsRV64] |
| |
| let Predicates = [HasStdExtZbb] in { |
| def : InstAlias<"ror $rd, $rs1, $shamt", |
| (RORI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>; |
| } // Predicates = [HasStdExtZbb] |
| |
| let Predicates = [HasStdExtZbb, IsRV64] in { |
| def : InstAlias<"rorw $rd, $rs1, $shamt", |
| (RORIW GPR:$rd, GPR:$rs1, uimm5:$shamt), 0>; |
| } // Predicates = [HasStdExtZbb, IsRV64] |
| |
| let Predicates = [HasStdExtZbs] in { |
| def : InstAlias<"bset $rd, $rs1, $shamt", |
| (BSETI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>; |
| def : InstAlias<"bclr $rd, $rs1, $shamt", |
| (BCLRI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>; |
| def : InstAlias<"binv $rd, $rs1, $shamt", |
| (BINVI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>; |
| def : InstAlias<"bext $rd, $rs1, $shamt", |
| (BEXTI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt), 0>; |
| } // Predicates = [HasStdExtZbs] |
| |
| //===----------------------------------------------------------------------===// |
| // Codegen patterns |
| //===----------------------------------------------------------------------===// |
| |
| let Predicates = [HasStdExtZbbOrZbkb] in { |
| def : Pat<(and GPR:$rs1, (not GPR:$rs2)), (ANDN GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(or GPR:$rs1, (not GPR:$rs2)), (ORN GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(xor GPR:$rs1, (not GPR:$rs2)), (XNOR GPR:$rs1, GPR:$rs2)>; |
| } // Predicates = [HasStdExtZbbOrZbkb] |
| |
| let Predicates = [HasStdExtZbbOrZbkb] in { |
| def : PatGprGpr<shiftop<rotl>, ROL>; |
| def : PatGprGpr<shiftop<rotr>, ROR>; |
| |
| def : PatGprImm<rotr, RORI, uimmlog2xlen>; |
| // There's no encoding for roli in the the 'B' extension as it can be |
| // implemented with rori by negating the immediate. |
| def : Pat<(rotl GPR:$rs1, uimmlog2xlen:$shamt), |
| (RORI GPR:$rs1, (ImmSubFromXLen uimmlog2xlen:$shamt))>; |
| } // Predicates = [HasStdExtZbbOrZbkb] |
| |
| let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in { |
| def : PatGprGpr<shiftopw<riscv_rolw>, ROLW>; |
| def : PatGprGpr<shiftopw<riscv_rorw>, RORW>; |
| def : PatGprImm<riscv_rorw, RORIW, uimm5>; |
| def : Pat<(riscv_rolw GPR:$rs1, uimm5:$rs2), |
| (RORIW GPR:$rs1, (ImmSubFrom32 uimm5:$rs2))>; |
| } // Predicates = [HasStdExtZbbOrZbkb, IsRV64] |
| |
| let Predicates = [HasStdExtZbs] in { |
| def : Pat<(and (not (shiftop<shl> 1, GPR:$rs2)), GPR:$rs1), |
| (BCLR GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(and (rotl -2, GPR:$rs2), GPR:$rs1), (BCLR GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(or (shiftop<shl> 1, GPR:$rs2), GPR:$rs1), |
| (BSET GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(xor (shiftop<shl> 1, GPR:$rs2), GPR:$rs1), |
| (BINV GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(and (shiftop<srl> GPR:$rs1, GPR:$rs2), 1), |
| (BEXT GPR:$rs1, GPR:$rs2)>; |
| |
| def : Pat<(shiftop<shl> 1, GPR:$rs2), |
| (BSET X0, GPR:$rs2)>; |
| |
| def : Pat<(and GPR:$rs1, BCLRMask:$mask), |
| (BCLRI GPR:$rs1, BCLRMask:$mask)>; |
| def : Pat<(or GPR:$rs1, SingleBitSetMask:$mask), |
| (BSETI GPR:$rs1, SingleBitSetMask:$mask)>; |
| def : Pat<(xor GPR:$rs1, SingleBitSetMask:$mask), |
| (BINVI GPR:$rs1, SingleBitSetMask:$mask)>; |
| |
| def : Pat<(and (srl GPR:$rs1, uimmlog2xlen:$shamt), (XLenVT 1)), |
| (BEXTI GPR:$rs1, uimmlog2xlen:$shamt)>; |
| |
| def : Pat<(seteq (and GPR:$rs1, SingleBitSetMask:$mask), 0), |
| (BEXTI (XORI GPR:$rs1, -1), SingleBitSetMask:$mask)>; |
| |
| def : Pat<(or GPR:$r, BSETINVTwoBitsMask:$i), |
| (BSETI (BSETI GPR:$r, (TrailingZeros BSETINVTwoBitsMask:$i)), |
| (BSETINVTwoBitsMaskHigh BSETINVTwoBitsMask:$i))>; |
| def : Pat<(xor GPR:$r, BSETINVTwoBitsMask:$i), |
| (BINVI (BINVI GPR:$r, (TrailingZeros BSETINVTwoBitsMask:$i)), |
| (BSETINVTwoBitsMaskHigh BSETINVTwoBitsMask:$i))>; |
| def : Pat<(or GPR:$r, BSETINVORIMask:$i), |
| (BSETI (ORI GPR:$r, (BSETINVORIMaskLow BSETINVORIMask:$i)), |
| (BSETINVTwoBitsMaskHigh BSETINVORIMask:$i))>; |
| def : Pat<(xor GPR:$r, BSETINVORIMask:$i), |
| (BINVI (XORI GPR:$r, (BSETINVORIMaskLow BSETINVORIMask:$i)), |
| (BSETINVTwoBitsMaskHigh BSETINVORIMask:$i))>; |
| def : Pat<(and GPR:$r, BCLRITwoBitsMask:$i), |
| (BCLRI (BCLRI GPR:$r, (BCLRITwoBitsMaskLow BCLRITwoBitsMask:$i)), |
| (BCLRITwoBitsMaskHigh BCLRITwoBitsMask:$i))>; |
| def : Pat<(and GPR:$r, BCLRIANDIMask:$i), |
| (BCLRI (ANDI GPR:$r, (BCLRIANDIMaskLow BCLRIANDIMask:$i)), |
| (BCLRITwoBitsMaskHigh BCLRIANDIMask:$i))>; |
| } // Predicates = [HasStdExtZbs] |
| |
| let Predicates = [HasStdExtZbb] in { |
| def : Pat<(riscv_orc_b GPR:$rs1), (ORC_B GPR:$rs1)>; |
| } // Predicates = [HasStdExtZbb] |
| |
| let Predicates = [HasStdExtZbkb] in { |
| def : Pat<(riscv_brev8 GPR:$rs1), (BREV8 GPR:$rs1)>; |
| } // Predicates = [HasStdExtZbkb] |
| |
| let Predicates = [HasStdExtZbkb, IsRV32] in { |
| // We treat zip and unzip as separate instructions, so match it directly. |
| def : Pat<(i32 (riscv_zip GPR:$rs1)), (ZIP_RV32 GPR:$rs1)>; |
| def : Pat<(i32 (riscv_unzip GPR:$rs1)), (UNZIP_RV32 GPR:$rs1)>; |
| } // Predicates = [HasStdExtZbkb, IsRV32] |
| |
| let Predicates = [HasStdExtZbb] in { |
| def : PatGpr<ctlz, CLZ>; |
| def : PatGpr<cttz, CTZ>; |
| def : PatGpr<ctpop, CPOP>; |
| } // Predicates = [HasStdExtZbb] |
| |
| let Predicates = [HasStdExtZbb, IsRV64] in { |
| def : PatGpr<riscv_clzw, CLZW>; |
| def : PatGpr<riscv_ctzw, CTZW>; |
| def : Pat<(i64 (ctpop (i64 (zexti32 (i64 GPR:$rs1))))), (CPOPW GPR:$rs1)>; |
| |
| def : Pat<(i64 (riscv_absw GPR:$rs1)), |
| (MAX GPR:$rs1, (SUBW X0, GPR:$rs1))>; |
| } // Predicates = [HasStdExtZbb, IsRV64] |
| |
| let Predicates = [HasStdExtZbb] in { |
| def : Pat<(sext_inreg GPR:$rs1, i8), (SEXT_B GPR:$rs1)>; |
| def : Pat<(sext_inreg GPR:$rs1, i16), (SEXT_H GPR:$rs1)>; |
| } // Predicates = [HasStdExtZbb] |
| |
| let Predicates = [HasStdExtZbb] in { |
| def : PatGprGpr<smin, MIN>; |
| def : PatGprGpr<smax, MAX>; |
| def : PatGprGpr<umin, MINU>; |
| def : PatGprGpr<umax, MAXU>; |
| } // Predicates = [HasStdExtZbb] |
| |
| let Predicates = [HasStdExtZbbOrZbkb, IsRV32] in { |
| def : Pat<(i32 (bswap GPR:$rs1)), (REV8_RV32 GPR:$rs1)>; |
| } // Predicates = [HasStdExtZbbOrZbkb, IsRV32] |
| |
| let Predicates = [HasStdExtZbbOrZbkb, IsRV64] in { |
| def : Pat<(i64 (bswap GPR:$rs1)), (REV8_RV64 GPR:$rs1)>; |
| } // Predicates = [HasStdExtZbbOrZbkb, IsRV64] |
| |
| let Predicates = [HasStdExtZbkb] in { |
| def : Pat<(or (and (shl GPR:$rs2, (XLenVT 8)), 0xFFFF), |
| (zexti8 GPR:$rs1)), |
| (PACKH GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(or (shl (zexti8 GPR:$rs2), (XLenVT 8)), |
| (zexti8 GPR:$rs1)), |
| (PACKH GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(and (or (shl GPR:$rs2, (XLenVT 8)), |
| (zexti8 GPR:$rs1)), 0xFFFF), |
| (PACKH GPR:$rs1, GPR:$rs2)>; |
| } // Predicates = [HasStdExtZbkb] |
| |
| let Predicates = [HasStdExtZbkb, IsRV32] in |
| def : Pat<(i32 (or (zexti16 GPR:$rs1), (shl GPR:$rs2, (i32 16)))), |
| (PACK GPR:$rs1, GPR:$rs2)>; |
| |
| let Predicates = [HasStdExtZbkb, IsRV64] in { |
| def : Pat<(i64 (or (zexti32 GPR:$rs1), (shl GPR:$rs2, (i64 32)))), |
| (PACK GPR:$rs1, GPR:$rs2)>; |
| |
| def : Pat<(binop_allwusers<or> (shl GPR:$rs2, (i64 16)), |
| (zexti16 GPR:$rs1)), |
| (PACKW GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(i64 (or (sext_inreg (shl GPR:$rs2, (i64 16)), i32), |
| (zexti16 GPR:$rs1))), |
| (PACKW GPR:$rs1, GPR:$rs2)>; |
| } // Predicates = [HasStdExtZbkb, IsRV64] |
| |
| let Predicates = [HasStdExtZbb, IsRV32] in |
| def : Pat<(i32 (and GPR:$rs, 0xFFFF)), (ZEXT_H_RV32 GPR:$rs)>; |
| let Predicates = [HasStdExtZbb, IsRV64] in |
| def : Pat<(i64 (and GPR:$rs, 0xFFFF)), (ZEXT_H_RV64 GPR:$rs)>; |
| |
| let Predicates = [HasStdExtZba] in { |
| def : Pat<(add (shl GPR:$rs1, (XLenVT 1)), non_imm12:$rs2), |
| (SH1ADD GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(add (shl GPR:$rs1, (XLenVT 2)), non_imm12:$rs2), |
| (SH2ADD GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(add (shl GPR:$rs1, (XLenVT 3)), non_imm12:$rs2), |
| (SH3ADD GPR:$rs1, GPR:$rs2)>; |
| |
| // More complex cases use a ComplexPattern. |
| def : Pat<(add sh1add_op:$rs1, non_imm12:$rs2), |
| (SH1ADD sh1add_op:$rs1, GPR:$rs2)>; |
| def : Pat<(add sh2add_op:$rs1, non_imm12:$rs2), |
| (SH2ADD sh2add_op:$rs1, GPR:$rs2)>; |
| def : Pat<(add sh3add_op:$rs1, non_imm12:$rs2), |
| (SH3ADD sh3add_op:$rs1, GPR:$rs2)>; |
| |
| def : Pat<(add (mul_oneuse GPR:$rs1, (XLenVT 6)), GPR:$rs2), |
| (SH1ADD (SH1ADD GPR:$rs1, GPR:$rs1), GPR:$rs2)>; |
| def : Pat<(add (mul_oneuse GPR:$rs1, (XLenVT 10)), GPR:$rs2), |
| (SH1ADD (SH2ADD GPR:$rs1, GPR:$rs1), GPR:$rs2)>; |
| def : Pat<(add (mul_oneuse GPR:$rs1, (XLenVT 18)), GPR:$rs2), |
| (SH1ADD (SH3ADD GPR:$rs1, GPR:$rs1), GPR:$rs2)>; |
| def : Pat<(add (mul_oneuse GPR:$rs1, (XLenVT 12)), GPR:$rs2), |
| (SH2ADD (SH1ADD GPR:$rs1, GPR:$rs1), GPR:$rs2)>; |
| def : Pat<(add (mul_oneuse GPR:$rs1, (XLenVT 20)), GPR:$rs2), |
| (SH2ADD (SH2ADD GPR:$rs1, GPR:$rs1), GPR:$rs2)>; |
| def : Pat<(add (mul_oneuse GPR:$rs1, (XLenVT 36)), GPR:$rs2), |
| (SH2ADD (SH3ADD GPR:$rs1, GPR:$rs1), GPR:$rs2)>; |
| def : Pat<(add (mul_oneuse GPR:$rs1, (XLenVT 24)), GPR:$rs2), |
| (SH3ADD (SH1ADD GPR:$rs1, GPR:$rs1), GPR:$rs2)>; |
| def : Pat<(add (mul_oneuse GPR:$rs1, (XLenVT 40)), GPR:$rs2), |
| (SH3ADD (SH2ADD GPR:$rs1, GPR:$rs1), GPR:$rs2)>; |
| def : Pat<(add (mul_oneuse GPR:$rs1, (XLenVT 72)), GPR:$rs2), |
| (SH3ADD (SH3ADD GPR:$rs1, GPR:$rs1), GPR:$rs2)>; |
| |
| def : Pat<(add GPR:$r, CSImm12MulBy4:$i), |
| (SH2ADD (ADDI X0, (SimmShiftRightBy2XForm CSImm12MulBy4:$i)), |
| GPR:$r)>; |
| def : Pat<(add GPR:$r, CSImm12MulBy8:$i), |
| (SH3ADD (ADDI X0, (SimmShiftRightBy3XForm CSImm12MulBy8:$i)), |
| GPR:$r)>; |
| |
| def : Pat<(mul GPR:$r, C3LeftShift:$i), |
| (SLLI (SH1ADD GPR:$r, GPR:$r), |
| (TrailingZeros C3LeftShift:$i))>; |
| def : Pat<(mul GPR:$r, C5LeftShift:$i), |
| (SLLI (SH2ADD GPR:$r, GPR:$r), |
| (TrailingZeros C5LeftShift:$i))>; |
| def : Pat<(mul GPR:$r, C9LeftShift:$i), |
| (SLLI (SH3ADD GPR:$r, GPR:$r), |
| (TrailingZeros C9LeftShift:$i))>; |
| |
| def : Pat<(mul_const_oneuse GPR:$r, (XLenVT 11)), |
| (SH1ADD (SH2ADD GPR:$r, GPR:$r), GPR:$r)>; |
| def : Pat<(mul_const_oneuse GPR:$r, (XLenVT 19)), |
| (SH1ADD (SH3ADD GPR:$r, GPR:$r), GPR:$r)>; |
| def : Pat<(mul_const_oneuse GPR:$r, (XLenVT 13)), |
| (SH2ADD (SH1ADD GPR:$r, GPR:$r), GPR:$r)>; |
| def : Pat<(mul_const_oneuse GPR:$r, (XLenVT 21)), |
| (SH2ADD (SH2ADD GPR:$r, GPR:$r), GPR:$r)>; |
| def : Pat<(mul_const_oneuse GPR:$r, (XLenVT 37)), |
| (SH2ADD (SH3ADD GPR:$r, GPR:$r), GPR:$r)>; |
| def : Pat<(mul_const_oneuse GPR:$r, (XLenVT 25)), |
| (SH3ADD (SH1ADD GPR:$r, GPR:$r), GPR:$r)>; |
| def : Pat<(mul_const_oneuse GPR:$r, (XLenVT 41)), |
| (SH3ADD (SH2ADD GPR:$r, GPR:$r), GPR:$r)>; |
| def : Pat<(mul_const_oneuse GPR:$r, (XLenVT 73)), |
| (SH3ADD (SH3ADD GPR:$r, GPR:$r), GPR:$r)>; |
| def : Pat<(mul_const_oneuse GPR:$r, (XLenVT 27)), |
| (SH1ADD (SH3ADD GPR:$r, GPR:$r), (SH3ADD GPR:$r, GPR:$r))>; |
| def : Pat<(mul_const_oneuse GPR:$r, (XLenVT 45)), |
| (SH2ADD (SH3ADD GPR:$r, GPR:$r), (SH3ADD GPR:$r, GPR:$r))>; |
| def : Pat<(mul_const_oneuse GPR:$r, (XLenVT 81)), |
| (SH3ADD (SH3ADD GPR:$r, GPR:$r), (SH3ADD GPR:$r, GPR:$r))>; |
| } // Predicates = [HasStdExtZba] |
| |
| let Predicates = [HasStdExtZba, IsRV64] in { |
| def : Pat<(i64 (shl (and GPR:$rs1, 0xFFFFFFFF), uimm5:$shamt)), |
| (SLLI_UW GPR:$rs1, uimm5:$shamt)>; |
| // Match a shifted 0xffffffff mask. Use SRLI to clear the LSBs and SLLI_UW to |
| // mask and shift. |
| def : Pat<(i64 (and GPR:$rs1, Shifted32OnesMask:$mask)), |
| (SLLI_UW (SRLI GPR:$rs1, Shifted32OnesMask:$mask), |
| Shifted32OnesMask:$mask)>; |
| |
| def : Pat<(i64 (add (and GPR:$rs1, 0xFFFFFFFF), non_imm12:$rs2)), |
| (ADD_UW GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(i64 (and GPR:$rs, 0xFFFFFFFF)), (ADD_UW GPR:$rs, X0)>; |
| |
| def : Pat<(i64 (add (shl (and GPR:$rs1, 0xFFFFFFFF), (i64 1)), non_imm12:$rs2)), |
| (SH1ADD_UW GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(i64 (add (shl (and GPR:$rs1, 0xFFFFFFFF), (i64 2)), non_imm12:$rs2)), |
| (SH2ADD_UW GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(i64 (add (shl (and GPR:$rs1, 0xFFFFFFFF), (i64 3)), non_imm12:$rs2)), |
| (SH3ADD_UW GPR:$rs1, GPR:$rs2)>; |
| |
| def : Pat<(i64 (add (and (shl GPR:$rs1, (i64 1)), 0x1FFFFFFFF), non_imm12:$rs2)), |
| (SH1ADD_UW GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(i64 (add (and (shl GPR:$rs1, (i64 2)), 0x3FFFFFFFF), non_imm12:$rs2)), |
| (SH2ADD_UW GPR:$rs1, GPR:$rs2)>; |
| def : Pat<(i64 (add (and (shl GPR:$rs1, (i64 3)), 0x7FFFFFFFF), non_imm12:$rs2)), |
| (SH3ADD_UW GPR:$rs1, GPR:$rs2)>; |
| |
| // More complex cases use a ComplexPattern. |
| def : Pat<(add sh1add_uw_op:$rs1, non_imm12:$rs2), |
| (SH1ADD_UW sh1add_uw_op:$rs1, GPR:$rs2)>; |
| def : Pat<(add sh2add_uw_op:$rs1, non_imm12:$rs2), |
| (SH2ADD_UW sh2add_uw_op:$rs1, GPR:$rs2)>; |
| def : Pat<(add sh3add_uw_op:$rs1, non_imm12:$rs2), |
| (SH3ADD_UW sh3add_uw_op:$rs1, GPR:$rs2)>; |
| |
| def : Pat<(i64 (add (and GPR:$rs1, 0xFFFFFFFE), non_imm12:$rs2)), |
| (SH1ADD (SRLIW GPR:$rs1, 1), GPR:$rs2)>; |
| def : Pat<(i64 (add (and GPR:$rs1, 0xFFFFFFFC), non_imm12:$rs2)), |
| (SH2ADD (SRLIW GPR:$rs1, 2), GPR:$rs2)>; |
| def : Pat<(i64 (add (and GPR:$rs1, 0xFFFFFFF8), non_imm12:$rs2)), |
| (SH3ADD (SRLIW GPR:$rs1, 3), GPR:$rs2)>; |
| |
| // Use SRLI to clear the LSBs and SHXADD_UW to mask and shift. |
| def : Pat<(i64 (add (and GPR:$rs1, 0x1FFFFFFFE), non_imm12:$rs2)), |
| (SH1ADD_UW (SRLI GPR:$rs1, 1), GPR:$rs2)>; |
| def : Pat<(i64 (add (and GPR:$rs1, 0x3FFFFFFFC), non_imm12:$rs2)), |
| (SH2ADD_UW (SRLI GPR:$rs1, 2), GPR:$rs2)>; |
| def : Pat<(i64 (add (and GPR:$rs1, 0x7FFFFFFF8), non_imm12:$rs2)), |
| (SH3ADD_UW (SRLI GPR:$rs1, 3), GPR:$rs2)>; |
| |
| def : Pat<(mul (binop_oneuse<and> GPR:$r, 0xFFFFFFFF), C3LeftShiftUW:$i), |
| (SH1ADD (SLLI_UW GPR:$r, (TrailingZeros C3LeftShiftUW:$i)), |
| (SLLI_UW GPR:$r, (TrailingZeros C3LeftShiftUW:$i)))>; |
| def : Pat<(mul (binop_oneuse<and> GPR:$r, 0xFFFFFFFF), C5LeftShiftUW:$i), |
| (SH2ADD (SLLI_UW GPR:$r, (TrailingZeros C5LeftShiftUW:$i)), |
| (SLLI_UW GPR:$r, (TrailingZeros C5LeftShiftUW:$i)))>; |
| def : Pat<(mul (binop_oneuse<and> GPR:$r, 0xFFFFFFFF), C9LeftShiftUW:$i), |
| (SH3ADD (SLLI_UW GPR:$r, (TrailingZeros C9LeftShiftUW:$i)), |
| (SLLI_UW GPR:$r, (TrailingZeros C9LeftShiftUW:$i)))>; |
| } // Predicates = [HasStdExtZba, IsRV64] |
| |
| let Predicates = [HasStdExtZbcOrZbkc] in { |
| def : PatGprGpr<int_riscv_clmul, CLMUL>; |
| def : PatGprGpr<int_riscv_clmulh, CLMULH>; |
| } // Predicates = [HasStdExtZbcOrZbkc] |
| |
| let Predicates = [HasStdExtZbc] in |
| def : PatGprGpr<int_riscv_clmulr, CLMULR>; |
| |
| let Predicates = [HasStdExtZbkx] in { |
| def : PatGprGpr<int_riscv_xperm4, XPERM4>; |
| def : PatGprGpr<int_riscv_xperm8, XPERM8>; |
| } // Predicates = [HasStdExtZbkx] |