| //===-- RISCVISelDAGToDAG.cpp - A dag to dag inst selector for RISCV ------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines an instruction selector for the RISCV target. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RISCVISelDAGToDAG.h" |
| #include "MCTargetDesc/RISCVMCTargetDesc.h" |
| #include "MCTargetDesc/RISCVMatInt.h" |
| #include "RISCVISelLowering.h" |
| #include "RISCVMachineFunctionInfo.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/IR/IntrinsicsRISCV.h" |
| #include "llvm/Support/Alignment.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <optional> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "riscv-isel" |
| #define PASS_NAME "RISCV DAG->DAG Pattern Instruction Selection" |
| |
| namespace llvm::RISCV { |
| #define GET_RISCVVSSEGTable_IMPL |
| #define GET_RISCVVLSEGTable_IMPL |
| #define GET_RISCVVLXSEGTable_IMPL |
| #define GET_RISCVVSXSEGTable_IMPL |
| #define GET_RISCVVLETable_IMPL |
| #define GET_RISCVVSETable_IMPL |
| #define GET_RISCVVLXTable_IMPL |
| #define GET_RISCVVSXTable_IMPL |
| #define GET_RISCVMaskedPseudosTable_IMPL |
| #include "RISCVGenSearchableTables.inc" |
| } // namespace llvm::RISCV |
| |
| static unsigned getLastNonGlueOrChainOpIdx(const SDNode *Node) { |
| assert(Node->getNumOperands() > 0 && "Node with no operands"); |
| unsigned LastOpIdx = Node->getNumOperands() - 1; |
| if (Node->getOperand(LastOpIdx).getValueType() == MVT::Glue) |
| --LastOpIdx; |
| if (Node->getOperand(LastOpIdx).getValueType() == MVT::Other) |
| --LastOpIdx; |
| return LastOpIdx; |
| } |
| |
| static unsigned getVecPolicyOpIdx(const SDNode *Node, const MCInstrDesc &MCID) { |
| assert(RISCVII::hasVecPolicyOp(MCID.TSFlags)); |
| (void)MCID; |
| return getLastNonGlueOrChainOpIdx(Node); |
| } |
| |
| void RISCVDAGToDAGISel::PreprocessISelDAG() { |
| SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| |
| bool MadeChange = false; |
| while (Position != CurDAG->allnodes_begin()) { |
| SDNode *N = &*--Position; |
| if (N->use_empty()) |
| continue; |
| |
| SDValue Result; |
| switch (N->getOpcode()) { |
| case ISD::SPLAT_VECTOR: { |
| // Convert integer SPLAT_VECTOR to VMV_V_X_VL and floating-point |
| // SPLAT_VECTOR to VFMV_V_F_VL to reduce isel burden. |
| MVT VT = N->getSimpleValueType(0); |
| unsigned Opc = |
| VT.isInteger() ? RISCVISD::VMV_V_X_VL : RISCVISD::VFMV_V_F_VL; |
| SDLoc DL(N); |
| SDValue VL = CurDAG->getRegister(RISCV::X0, Subtarget->getXLenVT()); |
| Result = CurDAG->getNode(Opc, DL, VT, CurDAG->getUNDEF(VT), |
| N->getOperand(0), VL); |
| break; |
| } |
| case RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL: { |
| // Lower SPLAT_VECTOR_SPLIT_I64 to two scalar stores and a stride 0 vector |
| // load. Done after lowering and combining so that we have a chance to |
| // optimize this to VMV_V_X_VL when the upper bits aren't needed. |
| assert(N->getNumOperands() == 4 && "Unexpected number of operands"); |
| MVT VT = N->getSimpleValueType(0); |
| SDValue Passthru = N->getOperand(0); |
| SDValue Lo = N->getOperand(1); |
| SDValue Hi = N->getOperand(2); |
| SDValue VL = N->getOperand(3); |
| assert(VT.getVectorElementType() == MVT::i64 && VT.isScalableVector() && |
| Lo.getValueType() == MVT::i32 && Hi.getValueType() == MVT::i32 && |
| "Unexpected VTs!"); |
| MachineFunction &MF = CurDAG->getMachineFunction(); |
| RISCVMachineFunctionInfo *FuncInfo = |
| MF.getInfo<RISCVMachineFunctionInfo>(); |
| SDLoc DL(N); |
| |
| // We use the same frame index we use for moving two i32s into 64-bit FPR. |
| // This is an analogous operation. |
| int FI = FuncInfo->getMoveF64FrameIndex(MF); |
| MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); |
| const TargetLowering &TLI = CurDAG->getTargetLoweringInfo(); |
| SDValue StackSlot = |
| CurDAG->getFrameIndex(FI, TLI.getPointerTy(CurDAG->getDataLayout())); |
| |
| SDValue Chain = CurDAG->getEntryNode(); |
| Lo = CurDAG->getStore(Chain, DL, Lo, StackSlot, MPI, Align(8)); |
| |
| SDValue OffsetSlot = |
| CurDAG->getMemBasePlusOffset(StackSlot, TypeSize::Fixed(4), DL); |
| Hi = CurDAG->getStore(Chain, DL, Hi, OffsetSlot, MPI.getWithOffset(4), |
| Align(8)); |
| |
| Chain = CurDAG->getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); |
| |
| SDVTList VTs = CurDAG->getVTList({VT, MVT::Other}); |
| SDValue IntID = |
| CurDAG->getTargetConstant(Intrinsic::riscv_vlse, DL, MVT::i64); |
| SDValue Ops[] = {Chain, |
| IntID, |
| Passthru, |
| StackSlot, |
| CurDAG->getRegister(RISCV::X0, MVT::i64), |
| VL}; |
| |
| Result = CurDAG->getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, |
| MVT::i64, MPI, Align(8), |
| MachineMemOperand::MOLoad); |
| break; |
| } |
| } |
| |
| if (Result) { |
| LLVM_DEBUG(dbgs() << "RISCV DAG preprocessing replacing:\nOld: "); |
| LLVM_DEBUG(N->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\nNew: "); |
| LLVM_DEBUG(Result->dump(CurDAG)); |
| LLVM_DEBUG(dbgs() << "\n"); |
| |
| CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); |
| MadeChange = true; |
| } |
| } |
| |
| if (MadeChange) |
| CurDAG->RemoveDeadNodes(); |
| } |
| |
| void RISCVDAGToDAGISel::PostprocessISelDAG() { |
| HandleSDNode Dummy(CurDAG->getRoot()); |
| SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| |
| bool MadeChange = false; |
| while (Position != CurDAG->allnodes_begin()) { |
| SDNode *N = &*--Position; |
| // Skip dead nodes and any non-machine opcodes. |
| if (N->use_empty() || !N->isMachineOpcode()) |
| continue; |
| |
| MadeChange |= doPeepholeSExtW(N); |
| MadeChange |= doPeepholeMaskedRVV(N); |
| } |
| |
| CurDAG->setRoot(Dummy.getValue()); |
| |
| MadeChange |= doPeepholeMergeVVMFold(); |
| |
| if (MadeChange) |
| CurDAG->RemoveDeadNodes(); |
| } |
| |
| static SDNode *selectImmSeq(SelectionDAG *CurDAG, const SDLoc &DL, const MVT VT, |
| RISCVMatInt::InstSeq &Seq) { |
| SDNode *Result = nullptr; |
| SDValue SrcReg = CurDAG->getRegister(RISCV::X0, VT); |
| for (RISCVMatInt::Inst &Inst : Seq) { |
| SDValue SDImm = CurDAG->getTargetConstant(Inst.getImm(), DL, VT); |
| switch (Inst.getOpndKind()) { |
| case RISCVMatInt::Imm: |
| Result = CurDAG->getMachineNode(Inst.getOpcode(), DL, VT, SDImm); |
| break; |
| case RISCVMatInt::RegX0: |
| Result = CurDAG->getMachineNode(Inst.getOpcode(), DL, VT, SrcReg, |
| CurDAG->getRegister(RISCV::X0, VT)); |
| break; |
| case RISCVMatInt::RegReg: |
| Result = CurDAG->getMachineNode(Inst.getOpcode(), DL, VT, SrcReg, SrcReg); |
| break; |
| case RISCVMatInt::RegImm: |
| Result = CurDAG->getMachineNode(Inst.getOpcode(), DL, VT, SrcReg, SDImm); |
| break; |
| } |
| |
| // Only the first instruction has X0 as its source. |
| SrcReg = SDValue(Result, 0); |
| } |
| |
| return Result; |
| } |
| |
| static SDNode *selectImm(SelectionDAG *CurDAG, const SDLoc &DL, const MVT VT, |
| int64_t Imm, const RISCVSubtarget &Subtarget) { |
| RISCVMatInt::InstSeq Seq = |
| RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits()); |
| |
| return selectImmSeq(CurDAG, DL, VT, Seq); |
| } |
| |
| static SDValue createTuple(SelectionDAG &CurDAG, ArrayRef<SDValue> Regs, |
| unsigned NF, RISCVII::VLMUL LMUL) { |
| static const unsigned M1TupleRegClassIDs[] = { |
| RISCV::VRN2M1RegClassID, RISCV::VRN3M1RegClassID, RISCV::VRN4M1RegClassID, |
| RISCV::VRN5M1RegClassID, RISCV::VRN6M1RegClassID, RISCV::VRN7M1RegClassID, |
| RISCV::VRN8M1RegClassID}; |
| static const unsigned M2TupleRegClassIDs[] = {RISCV::VRN2M2RegClassID, |
| RISCV::VRN3M2RegClassID, |
| RISCV::VRN4M2RegClassID}; |
| |
| assert(Regs.size() >= 2 && Regs.size() <= 8); |
| |
| unsigned RegClassID; |
| unsigned SubReg0; |
| switch (LMUL) { |
| default: |
| llvm_unreachable("Invalid LMUL."); |
| case RISCVII::VLMUL::LMUL_F8: |
| case RISCVII::VLMUL::LMUL_F4: |
| case RISCVII::VLMUL::LMUL_F2: |
| case RISCVII::VLMUL::LMUL_1: |
| static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7, |
| "Unexpected subreg numbering"); |
| SubReg0 = RISCV::sub_vrm1_0; |
| RegClassID = M1TupleRegClassIDs[NF - 2]; |
| break; |
| case RISCVII::VLMUL::LMUL_2: |
| static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3, |
| "Unexpected subreg numbering"); |
| SubReg0 = RISCV::sub_vrm2_0; |
| RegClassID = M2TupleRegClassIDs[NF - 2]; |
| break; |
| case RISCVII::VLMUL::LMUL_4: |
| static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1, |
| "Unexpected subreg numbering"); |
| SubReg0 = RISCV::sub_vrm4_0; |
| RegClassID = RISCV::VRN2M4RegClassID; |
| break; |
| } |
| |
| SDLoc DL(Regs[0]); |
| SmallVector<SDValue, 8> Ops; |
| |
| Ops.push_back(CurDAG.getTargetConstant(RegClassID, DL, MVT::i32)); |
| |
| for (unsigned I = 0; I < Regs.size(); ++I) { |
| Ops.push_back(Regs[I]); |
| Ops.push_back(CurDAG.getTargetConstant(SubReg0 + I, DL, MVT::i32)); |
| } |
| SDNode *N = |
| CurDAG.getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops); |
| return SDValue(N, 0); |
| } |
| |
| void RISCVDAGToDAGISel::addVectorLoadStoreOperands( |
| SDNode *Node, unsigned Log2SEW, const SDLoc &DL, unsigned CurOp, |
| bool IsMasked, bool IsStridedOrIndexed, SmallVectorImpl<SDValue> &Operands, |
| bool IsLoad, MVT *IndexVT) { |
| SDValue Chain = Node->getOperand(0); |
| SDValue Glue; |
| |
| Operands.push_back(Node->getOperand(CurOp++)); // Base pointer. |
| |
| if (IsStridedOrIndexed) { |
| Operands.push_back(Node->getOperand(CurOp++)); // Index. |
| if (IndexVT) |
| *IndexVT = Operands.back()->getSimpleValueType(0); |
| } |
| |
| if (IsMasked) { |
| // Mask needs to be copied to V0. |
| SDValue Mask = Node->getOperand(CurOp++); |
| Chain = CurDAG->getCopyToReg(Chain, DL, RISCV::V0, Mask, SDValue()); |
| Glue = Chain.getValue(1); |
| Operands.push_back(CurDAG->getRegister(RISCV::V0, Mask.getValueType())); |
| } |
| SDValue VL; |
| selectVLOp(Node->getOperand(CurOp++), VL); |
| Operands.push_back(VL); |
| |
| MVT XLenVT = Subtarget->getXLenVT(); |
| SDValue SEWOp = CurDAG->getTargetConstant(Log2SEW, DL, XLenVT); |
| Operands.push_back(SEWOp); |
| |
| // Masked load has the tail policy argument. |
| if (IsMasked && IsLoad) { |
| // Policy must be a constant. |
| uint64_t Policy = Node->getConstantOperandVal(CurOp++); |
| SDValue PolicyOp = CurDAG->getTargetConstant(Policy, DL, XLenVT); |
| Operands.push_back(PolicyOp); |
| } |
| |
| Operands.push_back(Chain); // Chain. |
| if (Glue) |
| Operands.push_back(Glue); |
| } |
| |
| static bool isAllUndef(ArrayRef<SDValue> Values) { |
| return llvm::all_of(Values, [](SDValue V) { return V->isUndef(); }); |
| } |
| |
| void RISCVDAGToDAGISel::selectVLSEG(SDNode *Node, bool IsMasked, |
| bool IsStrided) { |
| SDLoc DL(Node); |
| unsigned NF = Node->getNumValues() - 1; |
| MVT VT = Node->getSimpleValueType(0); |
| unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits()); |
| RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| |
| unsigned CurOp = 2; |
| SmallVector<SDValue, 8> Operands; |
| |
| SmallVector<SDValue, 8> Regs(Node->op_begin() + CurOp, |
| Node->op_begin() + CurOp + NF); |
| bool IsTU = IsMasked || !isAllUndef(Regs); |
| if (IsTU) { |
| SDValue Merge = createTuple(*CurDAG, Regs, NF, LMUL); |
| Operands.push_back(Merge); |
| } |
| CurOp += NF; |
| |
| addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStrided, |
| Operands, /*IsLoad=*/true); |
| |
| const RISCV::VLSEGPseudo *P = |
| RISCV::getVLSEGPseudo(NF, IsMasked, IsTU, IsStrided, /*FF*/ false, Log2SEW, |
| static_cast<unsigned>(LMUL)); |
| MachineSDNode *Load = |
| CurDAG->getMachineNode(P->Pseudo, DL, MVT::Untyped, MVT::Other, Operands); |
| |
| if (auto *MemOp = dyn_cast<MemSDNode>(Node)) |
| CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()}); |
| |
| SDValue SuperReg = SDValue(Load, 0); |
| for (unsigned I = 0; I < NF; ++I) { |
| unsigned SubRegIdx = RISCVTargetLowering::getSubregIndexByMVT(VT, I); |
| ReplaceUses(SDValue(Node, I), |
| CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, SuperReg)); |
| } |
| |
| ReplaceUses(SDValue(Node, NF), SDValue(Load, 1)); |
| CurDAG->RemoveDeadNode(Node); |
| } |
| |
| void RISCVDAGToDAGISel::selectVLSEGFF(SDNode *Node, bool IsMasked) { |
| SDLoc DL(Node); |
| unsigned NF = Node->getNumValues() - 2; // Do not count VL and Chain. |
| MVT VT = Node->getSimpleValueType(0); |
| MVT XLenVT = Subtarget->getXLenVT(); |
| unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits()); |
| RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| |
| unsigned CurOp = 2; |
| SmallVector<SDValue, 7> Operands; |
| |
| SmallVector<SDValue, 8> Regs(Node->op_begin() + CurOp, |
| Node->op_begin() + CurOp + NF); |
| bool IsTU = IsMasked || !isAllUndef(Regs); |
| if (IsTU) { |
| SDValue MaskedOff = createTuple(*CurDAG, Regs, NF, LMUL); |
| Operands.push_back(MaskedOff); |
| } |
| CurOp += NF; |
| |
| addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| /*IsStridedOrIndexed*/ false, Operands, |
| /*IsLoad=*/true); |
| |
| const RISCV::VLSEGPseudo *P = |
| RISCV::getVLSEGPseudo(NF, IsMasked, IsTU, /*Strided*/ false, /*FF*/ true, |
| Log2SEW, static_cast<unsigned>(LMUL)); |
| MachineSDNode *Load = CurDAG->getMachineNode(P->Pseudo, DL, MVT::Untyped, |
| XLenVT, MVT::Other, Operands); |
| |
| if (auto *MemOp = dyn_cast<MemSDNode>(Node)) |
| CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()}); |
| |
| SDValue SuperReg = SDValue(Load, 0); |
| for (unsigned I = 0; I < NF; ++I) { |
| unsigned SubRegIdx = RISCVTargetLowering::getSubregIndexByMVT(VT, I); |
| ReplaceUses(SDValue(Node, I), |
| CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, SuperReg)); |
| } |
| |
| ReplaceUses(SDValue(Node, NF), SDValue(Load, 1)); // VL |
| ReplaceUses(SDValue(Node, NF + 1), SDValue(Load, 2)); // Chain |
| CurDAG->RemoveDeadNode(Node); |
| } |
| |
| void RISCVDAGToDAGISel::selectVLXSEG(SDNode *Node, bool IsMasked, |
| bool IsOrdered) { |
| SDLoc DL(Node); |
| unsigned NF = Node->getNumValues() - 1; |
| MVT VT = Node->getSimpleValueType(0); |
| unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits()); |
| RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| |
| unsigned CurOp = 2; |
| SmallVector<SDValue, 8> Operands; |
| |
| SmallVector<SDValue, 8> Regs(Node->op_begin() + CurOp, |
| Node->op_begin() + CurOp + NF); |
| bool IsTU = IsMasked || !isAllUndef(Regs); |
| if (IsTU) { |
| SDValue MaskedOff = createTuple(*CurDAG, Regs, NF, LMUL); |
| Operands.push_back(MaskedOff); |
| } |
| CurOp += NF; |
| |
| MVT IndexVT; |
| addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| /*IsStridedOrIndexed*/ true, Operands, |
| /*IsLoad=*/true, &IndexVT); |
| |
| assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && |
| "Element count mismatch"); |
| |
| RISCVII::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(IndexVT); |
| unsigned IndexLog2EEW = Log2_32(IndexVT.getScalarSizeInBits()); |
| if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| report_fatal_error("The V extension does not support EEW=64 for index " |
| "values when XLEN=32"); |
| } |
| const RISCV::VLXSEGPseudo *P = RISCV::getVLXSEGPseudo( |
| NF, IsMasked, IsTU, IsOrdered, IndexLog2EEW, static_cast<unsigned>(LMUL), |
| static_cast<unsigned>(IndexLMUL)); |
| MachineSDNode *Load = |
| CurDAG->getMachineNode(P->Pseudo, DL, MVT::Untyped, MVT::Other, Operands); |
| |
| if (auto *MemOp = dyn_cast<MemSDNode>(Node)) |
| CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()}); |
| |
| SDValue SuperReg = SDValue(Load, 0); |
| for (unsigned I = 0; I < NF; ++I) { |
| unsigned SubRegIdx = RISCVTargetLowering::getSubregIndexByMVT(VT, I); |
| ReplaceUses(SDValue(Node, I), |
| CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, SuperReg)); |
| } |
| |
| ReplaceUses(SDValue(Node, NF), SDValue(Load, 1)); |
| CurDAG->RemoveDeadNode(Node); |
| } |
| |
| void RISCVDAGToDAGISel::selectVSSEG(SDNode *Node, bool IsMasked, |
| bool IsStrided) { |
| SDLoc DL(Node); |
| unsigned NF = Node->getNumOperands() - 4; |
| if (IsStrided) |
| NF--; |
| if (IsMasked) |
| NF--; |
| MVT VT = Node->getOperand(2)->getSimpleValueType(0); |
| unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits()); |
| RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| SmallVector<SDValue, 8> Regs(Node->op_begin() + 2, Node->op_begin() + 2 + NF); |
| SDValue StoreVal = createTuple(*CurDAG, Regs, NF, LMUL); |
| |
| SmallVector<SDValue, 8> Operands; |
| Operands.push_back(StoreVal); |
| unsigned CurOp = 2 + NF; |
| |
| addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStrided, |
| Operands); |
| |
| const RISCV::VSSEGPseudo *P = RISCV::getVSSEGPseudo( |
| NF, IsMasked, IsStrided, Log2SEW, static_cast<unsigned>(LMUL)); |
| MachineSDNode *Store = |
| CurDAG->getMachineNode(P->Pseudo, DL, Node->getValueType(0), Operands); |
| |
| if (auto *MemOp = dyn_cast<MemSDNode>(Node)) |
| CurDAG->setNodeMemRefs(Store, {MemOp->getMemOperand()}); |
| |
| ReplaceNode(Node, Store); |
| } |
| |
| void RISCVDAGToDAGISel::selectVSXSEG(SDNode *Node, bool IsMasked, |
| bool IsOrdered) { |
| SDLoc DL(Node); |
| unsigned NF = Node->getNumOperands() - 5; |
| if (IsMasked) |
| --NF; |
| MVT VT = Node->getOperand(2)->getSimpleValueType(0); |
| unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits()); |
| RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| SmallVector<SDValue, 8> Regs(Node->op_begin() + 2, Node->op_begin() + 2 + NF); |
| SDValue StoreVal = createTuple(*CurDAG, Regs, NF, LMUL); |
| |
| SmallVector<SDValue, 8> Operands; |
| Operands.push_back(StoreVal); |
| unsigned CurOp = 2 + NF; |
| |
| MVT IndexVT; |
| addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| /*IsStridedOrIndexed*/ true, Operands, |
| /*IsLoad=*/false, &IndexVT); |
| |
| assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && |
| "Element count mismatch"); |
| |
| RISCVII::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(IndexVT); |
| unsigned IndexLog2EEW = Log2_32(IndexVT.getScalarSizeInBits()); |
| if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| report_fatal_error("The V extension does not support EEW=64 for index " |
| "values when XLEN=32"); |
| } |
| const RISCV::VSXSEGPseudo *P = RISCV::getVSXSEGPseudo( |
| NF, IsMasked, IsOrdered, IndexLog2EEW, static_cast<unsigned>(LMUL), |
| static_cast<unsigned>(IndexLMUL)); |
| MachineSDNode *Store = |
| CurDAG->getMachineNode(P->Pseudo, DL, Node->getValueType(0), Operands); |
| |
| if (auto *MemOp = dyn_cast<MemSDNode>(Node)) |
| CurDAG->setNodeMemRefs(Store, {MemOp->getMemOperand()}); |
| |
| ReplaceNode(Node, Store); |
| } |
| |
| void RISCVDAGToDAGISel::selectVSETVLI(SDNode *Node) { |
| if (!Subtarget->hasVInstructions()) |
| return; |
| |
| assert((Node->getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| Node->getOpcode() == ISD::INTRINSIC_WO_CHAIN) && |
| "Unexpected opcode"); |
| |
| SDLoc DL(Node); |
| MVT XLenVT = Subtarget->getXLenVT(); |
| |
| bool HasChain = Node->getOpcode() == ISD::INTRINSIC_W_CHAIN; |
| unsigned IntNoOffset = HasChain ? 1 : 0; |
| unsigned IntNo = Node->getConstantOperandVal(IntNoOffset); |
| |
| assert((IntNo == Intrinsic::riscv_vsetvli || |
| IntNo == Intrinsic::riscv_vsetvlimax || |
| IntNo == Intrinsic::riscv_vsetvli_opt || |
| IntNo == Intrinsic::riscv_vsetvlimax_opt) && |
| "Unexpected vsetvli intrinsic"); |
| |
| bool VLMax = IntNo == Intrinsic::riscv_vsetvlimax || |
| IntNo == Intrinsic::riscv_vsetvlimax_opt; |
| unsigned Offset = IntNoOffset + (VLMax ? 1 : 2); |
| |
| assert(Node->getNumOperands() == Offset + 2 && |
| "Unexpected number of operands"); |
| |
| unsigned SEW = |
| RISCVVType::decodeVSEW(Node->getConstantOperandVal(Offset) & 0x7); |
| RISCVII::VLMUL VLMul = static_cast<RISCVII::VLMUL>( |
| Node->getConstantOperandVal(Offset + 1) & 0x7); |
| |
| unsigned VTypeI = RISCVVType::encodeVTYPE(VLMul, SEW, /*TailAgnostic*/ true, |
| /*MaskAgnostic*/ false); |
| SDValue VTypeIOp = CurDAG->getTargetConstant(VTypeI, DL, XLenVT); |
| |
| SmallVector<EVT, 2> VTs = {XLenVT}; |
| if (HasChain) |
| VTs.push_back(MVT::Other); |
| |
| SDValue VLOperand; |
| unsigned Opcode = RISCV::PseudoVSETVLI; |
| if (VLMax) { |
| VLOperand = CurDAG->getRegister(RISCV::X0, XLenVT); |
| Opcode = RISCV::PseudoVSETVLIX0; |
| } else { |
| VLOperand = Node->getOperand(IntNoOffset + 1); |
| |
| if (auto *C = dyn_cast<ConstantSDNode>(VLOperand)) { |
| uint64_t AVL = C->getZExtValue(); |
| if (isUInt<5>(AVL)) { |
| SDValue VLImm = CurDAG->getTargetConstant(AVL, DL, XLenVT); |
| SmallVector<SDValue, 3> Ops = {VLImm, VTypeIOp}; |
| if (HasChain) |
| Ops.push_back(Node->getOperand(0)); |
| ReplaceNode( |
| Node, CurDAG->getMachineNode(RISCV::PseudoVSETIVLI, DL, VTs, Ops)); |
| return; |
| } |
| } |
| } |
| |
| SmallVector<SDValue, 3> Ops = {VLOperand, VTypeIOp}; |
| if (HasChain) |
| Ops.push_back(Node->getOperand(0)); |
| |
| ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, VTs, Ops)); |
| } |
| |
| bool RISCVDAGToDAGISel::tryShrinkShlLogicImm(SDNode *Node) { |
| MVT VT = Node->getSimpleValueType(0); |
| unsigned Opcode = Node->getOpcode(); |
| assert((Opcode == ISD::AND || Opcode == ISD::OR || Opcode == ISD::XOR) && |
| "Unexpected opcode"); |
| SDLoc DL(Node); |
| |
| // For operations of the form (x << C1) op C2, check if we can use |
| // ANDI/ORI/XORI by transforming it into (x op (C2>>C1)) << C1. |
| SDValue N0 = Node->getOperand(0); |
| SDValue N1 = Node->getOperand(1); |
| |
| ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1); |
| if (!Cst) |
| return false; |
| |
| int64_t Val = Cst->getSExtValue(); |
| |
| // Check if immediate can already use ANDI/ORI/XORI. |
| if (isInt<12>(Val)) |
| return false; |
| |
| SDValue Shift = N0; |
| |
| // If Val is simm32 and we have a sext_inreg from i32, then the binop |
| // produces at least 33 sign bits. We can peek through the sext_inreg and use |
| // a SLLIW at the end. |
| bool SignExt = false; |
| if (isInt<32>(Val) && N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| N0.hasOneUse() && cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32) { |
| SignExt = true; |
| Shift = N0.getOperand(0); |
| } |
| |
| if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse()) |
| return false; |
| |
| ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); |
| if (!ShlCst) |
| return false; |
| |
| uint64_t ShAmt = ShlCst->getZExtValue(); |
| |
| // Make sure that we don't change the operation by removing bits. |
| // This only matters for OR and XOR, AND is unaffected. |
| uint64_t RemovedBitsMask = maskTrailingOnes<uint64_t>(ShAmt); |
| if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) |
| return false; |
| |
| int64_t ShiftedVal = Val >> ShAmt; |
| if (!isInt<12>(ShiftedVal)) |
| return false; |
| |
| // If we peeked through a sext_inreg, make sure the shift is valid for SLLIW. |
| if (SignExt && ShAmt >= 32) |
| return false; |
| |
| // Ok, we can reorder to get a smaller immediate. |
| unsigned BinOpc; |
| switch (Opcode) { |
| default: llvm_unreachable("Unexpected opcode"); |
| case ISD::AND: BinOpc = RISCV::ANDI; break; |
| case ISD::OR: BinOpc = RISCV::ORI; break; |
| case ISD::XOR: BinOpc = RISCV::XORI; break; |
| } |
| |
| unsigned ShOpc = SignExt ? RISCV::SLLIW : RISCV::SLLI; |
| |
| SDNode *BinOp = |
| CurDAG->getMachineNode(BinOpc, DL, VT, Shift.getOperand(0), |
| CurDAG->getTargetConstant(ShiftedVal, DL, VT)); |
| SDNode *SLLI = |
| CurDAG->getMachineNode(ShOpc, DL, VT, SDValue(BinOp, 0), |
| CurDAG->getTargetConstant(ShAmt, DL, VT)); |
| ReplaceNode(Node, SLLI); |
| return true; |
| } |
| |
| void RISCVDAGToDAGISel::Select(SDNode *Node) { |
| // If we have a custom node, we have already selected. |
| if (Node->isMachineOpcode()) { |
| LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n"); |
| Node->setNodeId(-1); |
| return; |
| } |
| |
| // Instruction Selection not handled by the auto-generated tablegen selection |
| // should be handled here. |
| unsigned Opcode = Node->getOpcode(); |
| MVT XLenVT = Subtarget->getXLenVT(); |
| SDLoc DL(Node); |
| MVT VT = Node->getSimpleValueType(0); |
| |
| switch (Opcode) { |
| case ISD::Constant: { |
| auto *ConstNode = cast<ConstantSDNode>(Node); |
| if (VT == XLenVT && ConstNode->isZero()) { |
| SDValue New = |
| CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, RISCV::X0, XLenVT); |
| ReplaceNode(Node, New.getNode()); |
| return; |
| } |
| int64_t Imm = ConstNode->getSExtValue(); |
| // If the upper XLen-16 bits are not used, try to convert this to a simm12 |
| // by sign extending bit 15. |
| if (isUInt<16>(Imm) && isInt<12>(SignExtend64<16>(Imm)) && |
| hasAllHUsers(Node)) |
| Imm = SignExtend64<16>(Imm); |
| // If the upper 32-bits are not used try to convert this into a simm32 by |
| // sign extending bit 32. |
| if (!isInt<32>(Imm) && isUInt<32>(Imm) && hasAllWUsers(Node)) |
| Imm = SignExtend64<32>(Imm); |
| |
| ReplaceNode(Node, selectImm(CurDAG, DL, VT, Imm, *Subtarget)); |
| return; |
| } |
| case ISD::SHL: { |
| auto *N1C = dyn_cast<ConstantSDNode>(Node->getOperand(1)); |
| if (!N1C) |
| break; |
| SDValue N0 = Node->getOperand(0); |
| if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() || |
| !isa<ConstantSDNode>(N0.getOperand(1))) |
| break; |
| unsigned ShAmt = N1C->getZExtValue(); |
| uint64_t Mask = N0.getConstantOperandVal(1); |
| |
| // Optimize (shl (and X, C2), C) -> (slli (srliw X, C3), C3+C) where C2 has |
| // 32 leading zeros and C3 trailing zeros. |
| if (ShAmt <= 32 && isShiftedMask_64(Mask)) { |
| unsigned XLen = Subtarget->getXLen(); |
| unsigned LeadingZeros = XLen - llvm::bit_width(Mask); |
| unsigned TrailingZeros = countTrailingZeros(Mask); |
| if (TrailingZeros > 0 && LeadingZeros == 32) { |
| SDNode *SRLIW = CurDAG->getMachineNode( |
| RISCV::SRLIW, DL, VT, N0->getOperand(0), |
| CurDAG->getTargetConstant(TrailingZeros, DL, VT)); |
| SDNode *SLLI = CurDAG->getMachineNode( |
| RISCV::SLLI, DL, VT, SDValue(SRLIW, 0), |
| CurDAG->getTargetConstant(TrailingZeros + ShAmt, DL, VT)); |
| ReplaceNode(Node, SLLI); |
| return; |
| } |
| } |
| break; |
| } |
| case ISD::SRL: { |
| auto *N1C = dyn_cast<ConstantSDNode>(Node->getOperand(1)); |
| if (!N1C) |
| break; |
| SDValue N0 = Node->getOperand(0); |
| if (N0.getOpcode() != ISD::AND || !isa<ConstantSDNode>(N0.getOperand(1))) |
| break; |
| unsigned ShAmt = N1C->getZExtValue(); |
| uint64_t Mask = N0.getConstantOperandVal(1); |
| |
| // Optimize (srl (and X, C2), C) -> (slli (srliw X, C3), C3-C) where C2 has |
| // 32 leading zeros and C3 trailing zeros. |
| if (isShiftedMask_64(Mask) && N0.hasOneUse()) { |
| unsigned XLen = Subtarget->getXLen(); |
| unsigned LeadingZeros = XLen - llvm::bit_width(Mask); |
| unsigned TrailingZeros = countTrailingZeros(Mask); |
| if (LeadingZeros == 32 && TrailingZeros > ShAmt) { |
| SDNode *SRLIW = CurDAG->getMachineNode( |
| RISCV::SRLIW, DL, VT, N0->getOperand(0), |
| CurDAG->getTargetConstant(TrailingZeros, DL, VT)); |
| SDNode *SLLI = CurDAG->getMachineNode( |
| RISCV::SLLI, DL, VT, SDValue(SRLIW, 0), |
| CurDAG->getTargetConstant(TrailingZeros - ShAmt, DL, VT)); |
| ReplaceNode(Node, SLLI); |
| return; |
| } |
| } |
| |
| // Optimize (srl (and X, C2), C) -> |
| // (srli (slli X, (XLen-C3), (XLen-C3) + C) |
| // Where C2 is a mask with C3 trailing ones. |
| // Taking into account that the C2 may have had lower bits unset by |
| // SimplifyDemandedBits. This avoids materializing the C2 immediate. |
| // This pattern occurs when type legalizing right shifts for types with |
| // less than XLen bits. |
| Mask |= maskTrailingOnes<uint64_t>(ShAmt); |
| if (!isMask_64(Mask)) |
| break; |
| unsigned TrailingOnes = countTrailingOnes(Mask); |
| if (ShAmt >= TrailingOnes) |
| break; |
| // If the mask has 32 trailing ones, use SRLIW. |
| if (TrailingOnes == 32) { |
| SDNode *SRLIW = |
| CurDAG->getMachineNode(RISCV::SRLIW, DL, VT, N0->getOperand(0), |
| CurDAG->getTargetConstant(ShAmt, DL, VT)); |
| ReplaceNode(Node, SRLIW); |
| return; |
| } |
| |
| // Only do the remaining transforms if the shift has one use. |
| if (!N0.hasOneUse()) |
| break; |
| |
| // If C2 is (1 << ShAmt) use bexti if possible. |
| if (Subtarget->hasStdExtZbs() && ShAmt + 1 == TrailingOnes) { |
| SDNode *BEXTI = |
| CurDAG->getMachineNode(RISCV::BEXTI, DL, VT, N0->getOperand(0), |
| CurDAG->getTargetConstant(ShAmt, DL, VT)); |
| ReplaceNode(Node, BEXTI); |
| return; |
| } |
| unsigned LShAmt = Subtarget->getXLen() - TrailingOnes; |
| SDNode *SLLI = |
| CurDAG->getMachineNode(RISCV::SLLI, DL, VT, N0->getOperand(0), |
| CurDAG->getTargetConstant(LShAmt, DL, VT)); |
| SDNode *SRLI = CurDAG->getMachineNode( |
| RISCV::SRLI, DL, VT, SDValue(SLLI, 0), |
| CurDAG->getTargetConstant(LShAmt + ShAmt, DL, VT)); |
| ReplaceNode(Node, SRLI); |
| return; |
| } |
| case ISD::SRA: { |
| // Optimize (sra (sext_inreg X, i16), C) -> |
| // (srai (slli X, (XLen-16), (XLen-16) + C) |
| // And (sra (sext_inreg X, i8), C) -> |
| // (srai (slli X, (XLen-8), (XLen-8) + C) |
| // This can occur when Zbb is enabled, which makes sext_inreg i16/i8 legal. |
| // This transform matches the code we get without Zbb. The shifts are more |
| // compressible, and this can help expose CSE opportunities in the sdiv by |
| // constant optimization. |
| auto *N1C = dyn_cast<ConstantSDNode>(Node->getOperand(1)); |
| if (!N1C) |
| break; |
| SDValue N0 = Node->getOperand(0); |
| if (N0.getOpcode() != ISD::SIGN_EXTEND_INREG || !N0.hasOneUse()) |
| break; |
| unsigned ShAmt = N1C->getZExtValue(); |
| unsigned ExtSize = |
| cast<VTSDNode>(N0.getOperand(1))->getVT().getSizeInBits(); |
| // ExtSize of 32 should use sraiw via tablegen pattern. |
| if (ExtSize >= 32 || ShAmt >= ExtSize) |
| break; |
| unsigned LShAmt = Subtarget->getXLen() - ExtSize; |
| SDNode *SLLI = |
| CurDAG->getMachineNode(RISCV::SLLI, DL, VT, N0->getOperand(0), |
| CurDAG->getTargetConstant(LShAmt, DL, VT)); |
| SDNode *SRAI = CurDAG->getMachineNode( |
| RISCV::SRAI, DL, VT, SDValue(SLLI, 0), |
| CurDAG->getTargetConstant(LShAmt + ShAmt, DL, VT)); |
| ReplaceNode(Node, SRAI); |
| return; |
| } |
| case ISD::OR: |
| case ISD::XOR: |
| if (tryShrinkShlLogicImm(Node)) |
| return; |
| |
| break; |
| case ISD::AND: { |
| auto *N1C = dyn_cast<ConstantSDNode>(Node->getOperand(1)); |
| if (!N1C) |
| break; |
| |
| SDValue N0 = Node->getOperand(0); |
| |
| bool LeftShift = N0.getOpcode() == ISD::SHL; |
| if (LeftShift || N0.getOpcode() == ISD::SRL) { |
| auto *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (!C) |
| break; |
| unsigned C2 = C->getZExtValue(); |
| unsigned XLen = Subtarget->getXLen(); |
| assert((C2 > 0 && C2 < XLen) && "Unexpected shift amount!"); |
| |
| uint64_t C1 = N1C->getZExtValue(); |
| |
| // Keep track of whether this is a c.andi. If we can't use c.andi, the |
| // shift pair might offer more compression opportunities. |
| // TODO: We could check for C extension here, but we don't have many lit |
| // tests with the C extension enabled so not checking gets better |
| // coverage. |
| // TODO: What if ANDI faster than shift? |
| bool IsCANDI = isInt<6>(N1C->getSExtValue()); |
| |
| // Clear irrelevant bits in the mask. |
| if (LeftShift) |
| C1 &= maskTrailingZeros<uint64_t>(C2); |
| else |
| C1 &= maskTrailingOnes<uint64_t>(XLen - C2); |
| |
| // Some transforms should only be done if the shift has a single use or |
| // the AND would become (srli (slli X, 32), 32) |
| bool OneUseOrZExtW = N0.hasOneUse() || C1 == UINT64_C(0xFFFFFFFF); |
| |
| SDValue X = N0.getOperand(0); |
| |
| // Turn (and (srl x, c2) c1) -> (srli (slli x, c3-c2), c3) if c1 is a mask |
| // with c3 leading zeros. |
| if (!LeftShift && isMask_64(C1)) { |
| unsigned Leading = XLen - llvm::bit_width(C1); |
| if (C2 < Leading) { |
| // If the number of leading zeros is C2+32 this can be SRLIW. |
| if (C2 + 32 == Leading) { |
| SDNode *SRLIW = CurDAG->getMachineNode( |
| RISCV::SRLIW, DL, VT, X, CurDAG->getTargetConstant(C2, DL, VT)); |
| ReplaceNode(Node, SRLIW); |
| return; |
| } |
| |
| // (and (srl (sexti32 Y), c2), c1) -> (srliw (sraiw Y, 31), c3 - 32) |
| // if c1 is a mask with c3 leading zeros and c2 >= 32 and c3-c2==1. |
| // |
| // This pattern occurs when (i32 (srl (sra 31), c3 - 32)) is type |
| // legalized and goes through DAG combine. |
| if (C2 >= 32 && (Leading - C2) == 1 && N0.hasOneUse() && |
| X.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(X.getOperand(1))->getVT() == MVT::i32) { |
| SDNode *SRAIW = |
| CurDAG->getMachineNode(RISCV::SRAIW, DL, VT, X.getOperand(0), |
| CurDAG->getTargetConstant(31, DL, VT)); |
| SDNode *SRLIW = CurDAG->getMachineNode( |
| RISCV::SRLIW, DL, VT, SDValue(SRAIW, 0), |
| CurDAG->getTargetConstant(Leading - 32, DL, VT)); |
| ReplaceNode(Node, SRLIW); |
| return; |
| } |
| |
| // (srli (slli x, c3-c2), c3). |
| // Skip if we could use (zext.w (sraiw X, C2)). |
| bool Skip = Subtarget->hasStdExtZba() && Leading == 32 && |
| X.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(X.getOperand(1))->getVT() == MVT::i32; |
| // Also Skip if we can use bexti. |
| Skip |= Subtarget->hasStdExtZbs() && Leading == XLen - 1; |
| if (OneUseOrZExtW && !Skip) { |
| SDNode *SLLI = CurDAG->getMachineNode( |
| RISCV::SLLI, DL, VT, X, |
| CurDAG->getTargetConstant(Leading - C2, DL, VT)); |
| SDNode *SRLI = CurDAG->getMachineNode( |
| RISCV::SRLI, DL, VT, SDValue(SLLI, 0), |
| CurDAG->getTargetConstant(Leading, DL, VT)); |
| ReplaceNode(Node, SRLI); |
| return; |
| } |
| } |
| } |
| |
| // Turn (and (shl x, c2), c1) -> (srli (slli c2+c3), c3) if c1 is a mask |
| // shifted by c2 bits with c3 leading zeros. |
| if (LeftShift && isShiftedMask_64(C1)) { |
| unsigned Leading = XLen - llvm::bit_width(C1); |
| |
| if (C2 + Leading < XLen && |
| C1 == (maskTrailingOnes<uint64_t>(XLen - (C2 + Leading)) << C2)) { |
| // Use slli.uw when possible. |
| if ((XLen - (C2 + Leading)) == 32 && Subtarget->hasStdExtZba()) { |
| SDNode *SLLI_UW = |
| CurDAG->getMachineNode(RISCV::SLLI_UW, DL, VT, X, |
| CurDAG->getTargetConstant(C2, DL, VT)); |
| ReplaceNode(Node, SLLI_UW); |
| return; |
| } |
| |
| // (srli (slli c2+c3), c3) |
| if (OneUseOrZExtW && !IsCANDI) { |
| SDNode *SLLI = CurDAG->getMachineNode( |
| RISCV::SLLI, DL, VT, X, |
| CurDAG->getTargetConstant(C2 + Leading, DL, VT)); |
| SDNode *SRLI = CurDAG->getMachineNode( |
| RISCV::SRLI, DL, VT, SDValue(SLLI, 0), |
| CurDAG->getTargetConstant(Leading, DL, VT)); |
| ReplaceNode(Node, SRLI); |
| return; |
| } |
| } |
| } |
| |
| // Turn (and (shr x, c2), c1) -> (slli (srli x, c2+c3), c3) if c1 is a |
| // shifted mask with c2 leading zeros and c3 trailing zeros. |
| if (!LeftShift && isShiftedMask_64(C1)) { |
| unsigned Leading = XLen - llvm::bit_width(C1); |
| unsigned Trailing = countTrailingZeros(C1); |
| if (Leading == C2 && C2 + Trailing < XLen && OneUseOrZExtW && |
| !IsCANDI) { |
| unsigned SrliOpc = RISCV::SRLI; |
| // If the input is zexti32 we should use SRLIW. |
| if (X.getOpcode() == ISD::AND && |
| isa<ConstantSDNode>(X.getOperand(1)) && |
| X.getConstantOperandVal(1) == UINT64_C(0xFFFFFFFF)) { |
| SrliOpc = RISCV::SRLIW; |
| X = X.getOperand(0); |
| } |
| SDNode *SRLI = CurDAG->getMachineNode( |
| SrliOpc, DL, VT, X, |
| CurDAG->getTargetConstant(C2 + Trailing, DL, VT)); |
| SDNode *SLLI = CurDAG->getMachineNode( |
| RISCV::SLLI, DL, VT, SDValue(SRLI, 0), |
| CurDAG->getTargetConstant(Trailing, DL, VT)); |
| ReplaceNode(Node, SLLI); |
| return; |
| } |
| // If the leading zero count is C2+32, we can use SRLIW instead of SRLI. |
| if (Leading > 32 && (Leading - 32) == C2 && C2 + Trailing < 32 && |
| OneUseOrZExtW && !IsCANDI) { |
| SDNode *SRLIW = CurDAG->getMachineNode( |
| RISCV::SRLIW, DL, VT, X, |
| CurDAG->getTargetConstant(C2 + Trailing, DL, VT)); |
| SDNode *SLLI = CurDAG->getMachineNode( |
| RISCV::SLLI, DL, VT, SDValue(SRLIW, 0), |
| CurDAG->getTargetConstant(Trailing, DL, VT)); |
| ReplaceNode(Node, SLLI); |
| return; |
| } |
| } |
| |
| // Turn (and (shl x, c2), c1) -> (slli (srli x, c3-c2), c3) if c1 is a |
| // shifted mask with no leading zeros and c3 trailing zeros. |
| if (LeftShift && isShiftedMask_64(C1)) { |
| unsigned Leading = XLen - llvm::bit_width(C1); |
| unsigned Trailing = countTrailingZeros(C1); |
| if (Leading == 0 && C2 < Trailing && OneUseOrZExtW && !IsCANDI) { |
| SDNode *SRLI = CurDAG->getMachineNode( |
| RISCV::SRLI, DL, VT, X, |
| CurDAG->getTargetConstant(Trailing - C2, DL, VT)); |
| SDNode *SLLI = CurDAG->getMachineNode( |
| RISCV::SLLI, DL, VT, SDValue(SRLI, 0), |
| CurDAG->getTargetConstant(Trailing, DL, VT)); |
| ReplaceNode(Node, SLLI); |
| return; |
| } |
| // If we have (32-C2) leading zeros, we can use SRLIW instead of SRLI. |
| if (C2 < Trailing && Leading + C2 == 32 && OneUseOrZExtW && !IsCANDI) { |
| SDNode *SRLIW = CurDAG->getMachineNode( |
| RISCV::SRLIW, DL, VT, X, |
| CurDAG->getTargetConstant(Trailing - C2, DL, VT)); |
| SDNode *SLLI = CurDAG->getMachineNode( |
| RISCV::SLLI, DL, VT, SDValue(SRLIW, 0), |
| CurDAG->getTargetConstant(Trailing, DL, VT)); |
| ReplaceNode(Node, SLLI); |
| return; |
| } |
| } |
| } |
| |
| if (tryShrinkShlLogicImm(Node)) |
| return; |
| |
| break; |
| } |
| case ISD::MUL: { |
| // Special case for calculating (mul (and X, C2), C1) where the full product |
| // fits in XLen bits. We can shift X left by the number of leading zeros in |
| // C2 and shift C1 left by XLen-lzcnt(C2). This will ensure the final |
| // product has XLen trailing zeros, putting it in the output of MULHU. This |
| // can avoid materializing a constant in a register for C2. |
| |
| // RHS should be a constant. |
| auto *N1C = dyn_cast<ConstantSDNode>(Node->getOperand(1)); |
| if (!N1C || !N1C->hasOneUse()) |
| break; |
| |
| // LHS should be an AND with constant. |
| SDValue N0 = Node->getOperand(0); |
| if (N0.getOpcode() != ISD::AND || !isa<ConstantSDNode>(N0.getOperand(1))) |
| break; |
| |
| uint64_t C2 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue(); |
| |
| // Constant should be a mask. |
| if (!isMask_64(C2)) |
| break; |
| |
| // If this can be an ANDI, ZEXT.H or ZEXT.W, don't do this if the ANDI/ZEXT |
| // has multiple users or the constant is a simm12. This prevents inserting |
| // a shift and still have uses of the AND/ZEXT. Shifting a simm12 will |
| // likely make it more costly to materialize. Otherwise, using a SLLI |
| // might allow it to be compressed. |
| bool IsANDIOrZExt = |
| isInt<12>(C2) || |
| (C2 == UINT64_C(0xFFFF) && Subtarget->hasStdExtZbb()) || |
| (C2 == UINT64_C(0xFFFFFFFF) && Subtarget->hasStdExtZba()); |
| if (IsANDIOrZExt && (isInt<12>(N1C->getSExtValue()) || !N0.hasOneUse())) |
| break; |
| |
| // We need to shift left the AND input and C1 by a total of XLen bits. |
| |
| // How far left do we need to shift the AND input? |
| unsigned XLen = Subtarget->getXLen(); |
| unsigned LeadingZeros = XLen - llvm::bit_width(C2); |
| |
| // The constant gets shifted by the remaining amount unless that would |
| // shift bits out. |
| uint64_t C1 = N1C->getZExtValue(); |
| unsigned ConstantShift = XLen - LeadingZeros; |
| if (ConstantShift > (XLen - llvm::bit_width(C1))) |
| break; |
| |
| uint64_t ShiftedC1 = C1 << ConstantShift; |
| // If this RV32, we need to sign extend the constant. |
| if (XLen == 32) |
| ShiftedC1 = SignExtend64<32>(ShiftedC1); |
| |
| // Create (mulhu (slli X, lzcnt(C2)), C1 << (XLen - lzcnt(C2))). |
| SDNode *Imm = selectImm(CurDAG, DL, VT, ShiftedC1, *Subtarget); |
| SDNode *SLLI = |
| CurDAG->getMachineNode(RISCV::SLLI, DL, VT, N0.getOperand(0), |
| CurDAG->getTargetConstant(LeadingZeros, DL, VT)); |
| SDNode *MULHU = CurDAG->getMachineNode(RISCV::MULHU, DL, VT, |
| SDValue(SLLI, 0), SDValue(Imm, 0)); |
| ReplaceNode(Node, MULHU); |
| return; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntNo = Node->getConstantOperandVal(0); |
| switch (IntNo) { |
| // By default we do not custom select any intrinsic. |
| default: |
| break; |
| case Intrinsic::riscv_vmsgeu: |
| case Intrinsic::riscv_vmsge: { |
| SDValue Src1 = Node->getOperand(1); |
| SDValue Src2 = Node->getOperand(2); |
| bool IsUnsigned = IntNo == Intrinsic::riscv_vmsgeu; |
| bool IsCmpUnsignedZero = false; |
| // Only custom select scalar second operand. |
| if (Src2.getValueType() != XLenVT) |
| break; |
| // Small constants are handled with patterns. |
| if (auto *C = dyn_cast<ConstantSDNode>(Src2)) { |
| int64_t CVal = C->getSExtValue(); |
| if (CVal >= -15 && CVal <= 16) { |
| if (!IsUnsigned || CVal != 0) |
| break; |
| IsCmpUnsignedZero = true; |
| } |
| } |
| MVT Src1VT = Src1.getSimpleValueType(); |
| unsigned VMSLTOpcode, VMNANDOpcode, VMSetOpcode; |
| switch (RISCVTargetLowering::getLMUL(Src1VT)) { |
| default: |
| llvm_unreachable("Unexpected LMUL!"); |
| #define CASE_VMSLT_VMNAND_VMSET_OPCODES(lmulenum, suffix, suffix_b) \ |
| case RISCVII::VLMUL::lmulenum: \ |
| VMSLTOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix \ |
| : RISCV::PseudoVMSLT_VX_##suffix; \ |
| VMNANDOpcode = RISCV::PseudoVMNAND_MM_##suffix; \ |
| VMSetOpcode = RISCV::PseudoVMSET_M_##suffix_b; \ |
| break; |
| CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_F8, MF8, B1) |
| CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_F4, MF4, B2) |
| CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_F2, MF2, B4) |
| CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_1, M1, B8) |
| CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_2, M2, B16) |
| CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_4, M4, B32) |
| CASE_VMSLT_VMNAND_VMSET_OPCODES(LMUL_8, M8, B64) |
| #undef CASE_VMSLT_VMNAND_VMSET_OPCODES |
| } |
| SDValue SEW = CurDAG->getTargetConstant( |
| Log2_32(Src1VT.getScalarSizeInBits()), DL, XLenVT); |
| SDValue VL; |
| selectVLOp(Node->getOperand(3), VL); |
| |
| // If vmsgeu with 0 immediate, expand it to vmset. |
| if (IsCmpUnsignedZero) { |
| ReplaceNode(Node, CurDAG->getMachineNode(VMSetOpcode, DL, VT, VL, SEW)); |
| return; |
| } |
| |
| // Expand to |
| // vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd |
| SDValue Cmp = SDValue( |
| CurDAG->getMachineNode(VMSLTOpcode, DL, VT, {Src1, Src2, VL, SEW}), |
| 0); |
| ReplaceNode(Node, CurDAG->getMachineNode(VMNANDOpcode, DL, VT, |
| {Cmp, Cmp, VL, SEW})); |
| return; |
| } |
| case Intrinsic::riscv_vmsgeu_mask: |
| case Intrinsic::riscv_vmsge_mask: { |
| SDValue Src1 = Node->getOperand(2); |
| SDValue Src2 = Node->getOperand(3); |
| bool IsUnsigned = IntNo == Intrinsic::riscv_vmsgeu_mask; |
| bool IsCmpUnsignedZero = false; |
| // Only custom select scalar second operand. |
| if (Src2.getValueType() != XLenVT) |
| break; |
| // Small constants are handled with patterns. |
| if (auto *C = dyn_cast<ConstantSDNode>(Src2)) { |
| int64_t CVal = C->getSExtValue(); |
| if (CVal >= -15 && CVal <= 16) { |
| if (!IsUnsigned || CVal != 0) |
| break; |
| IsCmpUnsignedZero = true; |
| } |
| } |
| MVT Src1VT = Src1.getSimpleValueType(); |
| unsigned VMSLTOpcode, VMSLTMaskOpcode, VMXOROpcode, VMANDNOpcode, |
| VMOROpcode; |
| switch (RISCVTargetLowering::getLMUL(Src1VT)) { |
| default: |
| llvm_unreachable("Unexpected LMUL!"); |
| #define CASE_VMSLT_OPCODES(lmulenum, suffix, suffix_b) \ |
| case RISCVII::VLMUL::lmulenum: \ |
| VMSLTOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix \ |
| : RISCV::PseudoVMSLT_VX_##suffix; \ |
| VMSLTMaskOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix##_MASK \ |
| : RISCV::PseudoVMSLT_VX_##suffix##_MASK; \ |
| break; |
| CASE_VMSLT_OPCODES(LMUL_F8, MF8, B1) |
| CASE_VMSLT_OPCODES(LMUL_F4, MF4, B2) |
| CASE_VMSLT_OPCODES(LMUL_F2, MF2, B4) |
| CASE_VMSLT_OPCODES(LMUL_1, M1, B8) |
| CASE_VMSLT_OPCODES(LMUL_2, M2, B16) |
| CASE_VMSLT_OPCODES(LMUL_4, M4, B32) |
| CASE_VMSLT_OPCODES(LMUL_8, M8, B64) |
| #undef CASE_VMSLT_OPCODES |
| } |
| // Mask operations use the LMUL from the mask type. |
| switch (RISCVTargetLowering::getLMUL(VT)) { |
| default: |
| llvm_unreachable("Unexpected LMUL!"); |
| #define CASE_VMXOR_VMANDN_VMOR_OPCODES(lmulenum, suffix) \ |
| case RISCVII::VLMUL::lmulenum: \ |
| VMXOROpcode = RISCV::PseudoVMXOR_MM_##suffix; \ |
| VMANDNOpcode = RISCV::PseudoVMANDN_MM_##suffix; \ |
| VMOROpcode = RISCV::PseudoVMOR_MM_##suffix; \ |
| break; |
| CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F8, MF8) |
| CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F4, MF4) |
| CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F2, MF2) |
| CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_1, M1) |
| CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_2, M2) |
| CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_4, M4) |
| CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_8, M8) |
| #undef CASE_VMXOR_VMANDN_VMOR_OPCODES |
| } |
| SDValue SEW = CurDAG->getTargetConstant( |
| Log2_32(Src1VT.getScalarSizeInBits()), DL, XLenVT); |
| SDValue MaskSEW = CurDAG->getTargetConstant(0, DL, XLenVT); |
| SDValue VL; |
| selectVLOp(Node->getOperand(5), VL); |
| SDValue MaskedOff = Node->getOperand(1); |
| SDValue Mask = Node->getOperand(4); |
| |
| // If vmsgeu_mask with 0 immediate, expand it to vmor mask, maskedoff. |
| if (IsCmpUnsignedZero) { |
| // We don't need vmor if the MaskedOff and the Mask are the same |
| // value. |
| if (Mask == MaskedOff) { |
| ReplaceUses(Node, Mask.getNode()); |
| return; |
| } |
| ReplaceNode(Node, |
| CurDAG->getMachineNode(VMOROpcode, DL, VT, |
| {Mask, MaskedOff, VL, MaskSEW})); |
| return; |
| } |
| |
| // If the MaskedOff value and the Mask are the same value use |
| // vmslt{u}.vx vt, va, x; vmandn.mm vd, vd, vt |
| // This avoids needing to copy v0 to vd before starting the next sequence. |
| if (Mask == MaskedOff) { |
| SDValue Cmp = SDValue( |
| CurDAG->getMachineNode(VMSLTOpcode, DL, VT, {Src1, Src2, VL, SEW}), |
| 0); |
| ReplaceNode(Node, CurDAG->getMachineNode(VMANDNOpcode, DL, VT, |
| {Mask, Cmp, VL, MaskSEW})); |
| return; |
| } |
| |
| // Mask needs to be copied to V0. |
| SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, |
| RISCV::V0, Mask, SDValue()); |
| SDValue Glue = Chain.getValue(1); |
| SDValue V0 = CurDAG->getRegister(RISCV::V0, VT); |
| |
| // Otherwise use |
| // vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0 |
| // The result is mask undisturbed. |
| // We use the same instructions to emulate mask agnostic behavior, because |
| // the agnostic result can be either undisturbed or all 1. |
| SDValue Cmp = SDValue( |
| CurDAG->getMachineNode(VMSLTMaskOpcode, DL, VT, |
| {MaskedOff, Src1, Src2, V0, VL, SEW, Glue}), |
| 0); |
| // vmxor.mm vd, vd, v0 is used to update active value. |
| ReplaceNode(Node, CurDAG->getMachineNode(VMXOROpcode, DL, VT, |
| {Cmp, Mask, VL, MaskSEW})); |
| return; |
| } |
| case Intrinsic::riscv_vsetvli_opt: |
| case Intrinsic::riscv_vsetvlimax_opt: |
| return selectVSETVLI(Node); |
| } |
| break; |
| } |
| case ISD::INTRINSIC_W_CHAIN: { |
| unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); |
| switch (IntNo) { |
| // By default we do not custom select any intrinsic. |
| default: |
| break; |
| case Intrinsic::riscv_vsetvli: |
| case Intrinsic::riscv_vsetvlimax: |
| return selectVSETVLI(Node); |
| case Intrinsic::riscv_vlseg2: |
| case Intrinsic::riscv_vlseg3: |
| case Intrinsic::riscv_vlseg4: |
| case Intrinsic::riscv_vlseg5: |
| case Intrinsic::riscv_vlseg6: |
| case Intrinsic::riscv_vlseg7: |
| case Intrinsic::riscv_vlseg8: { |
| selectVLSEG(Node, /*IsMasked*/ false, /*IsStrided*/ false); |
| return; |
| } |
| case Intrinsic::riscv_vlseg2_mask: |
| case Intrinsic::riscv_vlseg3_mask: |
| case Intrinsic::riscv_vlseg4_mask: |
| case Intrinsic::riscv_vlseg5_mask: |
| case Intrinsic::riscv_vlseg6_mask: |
| case Intrinsic::riscv_vlseg7_mask: |
| case Intrinsic::riscv_vlseg8_mask: { |
| selectVLSEG(Node, /*IsMasked*/ true, /*IsStrided*/ false); |
| return; |
| } |
| case Intrinsic::riscv_vlsseg2: |
| case Intrinsic::riscv_vlsseg3: |
| case Intrinsic::riscv_vlsseg4: |
| case Intrinsic::riscv_vlsseg5: |
| case Intrinsic::riscv_vlsseg6: |
| case Intrinsic::riscv_vlsseg7: |
| case Intrinsic::riscv_vlsseg8: { |
| selectVLSEG(Node, /*IsMasked*/ false, /*IsStrided*/ true); |
| return; |
| } |
| case Intrinsic::riscv_vlsseg2_mask: |
| case Intrinsic::riscv_vlsseg3_mask: |
| case Intrinsic::riscv_vlsseg4_mask: |
| case Intrinsic::riscv_vlsseg5_mask: |
| case Intrinsic::riscv_vlsseg6_mask: |
| case Intrinsic::riscv_vlsseg7_mask: |
| case Intrinsic::riscv_vlsseg8_mask: { |
| selectVLSEG(Node, /*IsMasked*/ true, /*IsStrided*/ true); |
| return; |
| } |
| case Intrinsic::riscv_vloxseg2: |
| case Intrinsic::riscv_vloxseg3: |
| case Intrinsic::riscv_vloxseg4: |
| case Intrinsic::riscv_vloxseg5: |
| case Intrinsic::riscv_vloxseg6: |
| case Intrinsic::riscv_vloxseg7: |
| case Intrinsic::riscv_vloxseg8: |
| selectVLXSEG(Node, /*IsMasked*/ false, /*IsOrdered*/ true); |
| return; |
| case Intrinsic::riscv_vluxseg2: |
| case Intrinsic::riscv_vluxseg3: |
| case Intrinsic::riscv_vluxseg4: |
| case Intrinsic::riscv_vluxseg5: |
| case Intrinsic::riscv_vluxseg6: |
| case Intrinsic::riscv_vluxseg7: |
| case Intrinsic::riscv_vluxseg8: |
| selectVLXSEG(Node, /*IsMasked*/ false, /*IsOrdered*/ false); |
| return; |
| case Intrinsic::riscv_vloxseg2_mask: |
| case Intrinsic::riscv_vloxseg3_mask: |
| case Intrinsic::riscv_vloxseg4_mask: |
| case Intrinsic::riscv_vloxseg5_mask: |
| case Intrinsic::riscv_vloxseg6_mask: |
| case Intrinsic::riscv_vloxseg7_mask: |
| case Intrinsic::riscv_vloxseg8_mask: |
| selectVLXSEG(Node, /*IsMasked*/ true, /*IsOrdered*/ true); |
| return; |
| case Intrinsic::riscv_vluxseg2_mask: |
| case Intrinsic::riscv_vluxseg3_mask: |
| case Intrinsic::riscv_vluxseg4_mask: |
| case Intrinsic::riscv_vluxseg5_mask: |
| case Intrinsic::riscv_vluxseg6_mask: |
| case Intrinsic::riscv_vluxseg7_mask: |
| case Intrinsic::riscv_vluxseg8_mask: |
| selectVLXSEG(Node, /*IsMasked*/ true, /*IsOrdered*/ false); |
| return; |
| case Intrinsic::riscv_vlseg8ff: |
| case Intrinsic::riscv_vlseg7ff: |
| case Intrinsic::riscv_vlseg6ff: |
| case Intrinsic::riscv_vlseg5ff: |
| case Intrinsic::riscv_vlseg4ff: |
| case Intrinsic::riscv_vlseg3ff: |
| case Intrinsic::riscv_vlseg2ff: { |
| selectVLSEGFF(Node, /*IsMasked*/ false); |
| return; |
| } |
| case Intrinsic::riscv_vlseg8ff_mask: |
| case Intrinsic::riscv_vlseg7ff_mask: |
| case Intrinsic::riscv_vlseg6ff_mask: |
| case Intrinsic::riscv_vlseg5ff_mask: |
| case Intrinsic::riscv_vlseg4ff_mask: |
| case Intrinsic::riscv_vlseg3ff_mask: |
| case Intrinsic::riscv_vlseg2ff_mask: { |
| selectVLSEGFF(Node, /*IsMasked*/ true); |
| return; |
| } |
| case Intrinsic::riscv_vloxei: |
| case Intrinsic::riscv_vloxei_mask: |
| case Intrinsic::riscv_vluxei: |
| case Intrinsic::riscv_vluxei_mask: { |
| bool IsMasked = IntNo == Intrinsic::riscv_vloxei_mask || |
| IntNo == Intrinsic::riscv_vluxei_mask; |
| bool IsOrdered = IntNo == Intrinsic::riscv_vloxei || |
| IntNo == Intrinsic::riscv_vloxei_mask; |
| |
| MVT VT = Node->getSimpleValueType(0); |
| unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits()); |
| |
| unsigned CurOp = 2; |
| // Masked intrinsic only have TU version pseduo instructions. |
| bool IsTU = IsMasked || !Node->getOperand(CurOp).isUndef(); |
| SmallVector<SDValue, 8> Operands; |
| if (IsTU) |
| Operands.push_back(Node->getOperand(CurOp++)); |
| else |
| // Skip the undef passthru operand for nomask TA version pseudo |
| CurOp++; |
| |
| MVT IndexVT; |
| addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| /*IsStridedOrIndexed*/ true, Operands, |
| /*IsLoad=*/true, &IndexVT); |
| |
| assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && |
| "Element count mismatch"); |
| |
| RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| RISCVII::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(IndexVT); |
| unsigned IndexLog2EEW = Log2_32(IndexVT.getScalarSizeInBits()); |
| if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| report_fatal_error("The V extension does not support EEW=64 for index " |
| "values when XLEN=32"); |
| } |
| const RISCV::VLX_VSXPseudo *P = RISCV::getVLXPseudo( |
| IsMasked, IsTU, IsOrdered, IndexLog2EEW, static_cast<unsigned>(LMUL), |
| static_cast<unsigned>(IndexLMUL)); |
| MachineSDNode *Load = |
| CurDAG->getMachineNode(P->Pseudo, DL, Node->getVTList(), Operands); |
| |
| if (auto *MemOp = dyn_cast<MemSDNode>(Node)) |
| CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()}); |
| |
| ReplaceNode(Node, Load); |
| return; |
| } |
| case Intrinsic::riscv_vlm: |
| case Intrinsic::riscv_vle: |
| case Intrinsic::riscv_vle_mask: |
| case Intrinsic::riscv_vlse: |
| case Intrinsic::riscv_vlse_mask: { |
| bool IsMasked = IntNo == Intrinsic::riscv_vle_mask || |
| IntNo == Intrinsic::riscv_vlse_mask; |
| bool IsStrided = |
| IntNo == Intrinsic::riscv_vlse || IntNo == Intrinsic::riscv_vlse_mask; |
| |
| MVT VT = Node->getSimpleValueType(0); |
| unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits()); |
| |
| unsigned CurOp = 2; |
| // The riscv_vlm intrinsic are always tail agnostic and no passthru operand. |
| bool HasPassthruOperand = IntNo != Intrinsic::riscv_vlm; |
| // Masked intrinsic only have TU version pseduo instructions. |
| bool IsTU = HasPassthruOperand && |
| (IsMasked || !Node->getOperand(CurOp).isUndef()); |
| SmallVector<SDValue, 8> Operands; |
| if (IsTU) |
| Operands.push_back(Node->getOperand(CurOp++)); |
| else if (HasPassthruOperand) |
| // Skip the undef passthru operand for nomask TA version pseudo |
| CurOp++; |
| |
| addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStrided, |
| Operands, /*IsLoad=*/true); |
| |
| RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| const RISCV::VLEPseudo *P = |
| RISCV::getVLEPseudo(IsMasked, IsTU, IsStrided, /*FF*/ false, Log2SEW, |
| static_cast<unsigned>(LMUL)); |
| MachineSDNode *Load = |
| CurDAG->getMachineNode(P->Pseudo, DL, Node->getVTList(), Operands); |
| |
| if (auto *MemOp = dyn_cast<MemSDNode>(Node)) |
| CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()}); |
| |
| ReplaceNode(Node, Load); |
| return; |
| } |
| case Intrinsic::riscv_vleff: |
| case Intrinsic::riscv_vleff_mask: { |
| bool IsMasked = IntNo == Intrinsic::riscv_vleff_mask; |
| |
| MVT VT = Node->getSimpleValueType(0); |
| unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits()); |
| |
| unsigned CurOp = 2; |
| // Masked intrinsic only have TU version pseduo instructions. |
| bool IsTU = IsMasked || !Node->getOperand(CurOp).isUndef(); |
| SmallVector<SDValue, 7> Operands; |
| if (IsTU) |
| Operands.push_back(Node->getOperand(CurOp++)); |
| else |
| // Skip the undef passthru operand for nomask TA version pseudo |
| CurOp++; |
| |
| addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| /*IsStridedOrIndexed*/ false, Operands, |
| /*IsLoad=*/true); |
| |
| RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| const RISCV::VLEPseudo *P = |
| RISCV::getVLEPseudo(IsMasked, IsTU, /*Strided*/ false, /*FF*/ true, |
| Log2SEW, static_cast<unsigned>(LMUL)); |
| MachineSDNode *Load = CurDAG->getMachineNode( |
| P->Pseudo, DL, Node->getVTList(), Operands); |
| if (auto *MemOp = dyn_cast<MemSDNode>(Node)) |
| CurDAG->setNodeMemRefs(Load, {MemOp->getMemOperand()}); |
| |
| ReplaceNode(Node, Load); |
| return; |
| } |
| } |
| break; |
| } |
| case ISD::INTRINSIC_VOID: { |
| unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue(); |
| switch (IntNo) { |
| case Intrinsic::riscv_vsseg2: |
| case Intrinsic::riscv_vsseg3: |
| case Intrinsic::riscv_vsseg4: |
| case Intrinsic::riscv_vsseg5: |
| case Intrinsic::riscv_vsseg6: |
| case Intrinsic::riscv_vsseg7: |
| case Intrinsic::riscv_vsseg8: { |
| selectVSSEG(Node, /*IsMasked*/ false, /*IsStrided*/ false); |
| return; |
| } |
| case Intrinsic::riscv_vsseg2_mask: |
| case Intrinsic::riscv_vsseg3_mask: |
| case Intrinsic::riscv_vsseg4_mask: |
| case Intrinsic::riscv_vsseg5_mask: |
| case Intrinsic::riscv_vsseg6_mask: |
| case Intrinsic::riscv_vsseg7_mask: |
| case Intrinsic::riscv_vsseg8_mask: { |
| selectVSSEG(Node, /*IsMasked*/ true, /*IsStrided*/ false); |
| return; |
| } |
| case Intrinsic::riscv_vssseg2: |
| case Intrinsic::riscv_vssseg3: |
| case Intrinsic::riscv_vssseg4: |
| case Intrinsic::riscv_vssseg5: |
| case Intrinsic::riscv_vssseg6: |
| case Intrinsic::riscv_vssseg7: |
| case Intrinsic::riscv_vssseg8: { |
| selectVSSEG(Node, /*IsMasked*/ false, /*IsStrided*/ true); |
| return; |
| } |
| case Intrinsic::riscv_vssseg2_mask: |
| case Intrinsic::riscv_vssseg3_mask: |
| case Intrinsic::riscv_vssseg4_mask: |
| case Intrinsic::riscv_vssseg5_mask: |
| case Intrinsic::riscv_vssseg6_mask: |
| case Intrinsic::riscv_vssseg7_mask: |
| case Intrinsic::riscv_vssseg8_mask: { |
| selectVSSEG(Node, /*IsMasked*/ true, /*IsStrided*/ true); |
| return; |
| } |
| case Intrinsic::riscv_vsoxseg2: |
| case Intrinsic::riscv_vsoxseg3: |
| case Intrinsic::riscv_vsoxseg4: |
| case Intrinsic::riscv_vsoxseg5: |
| case Intrinsic::riscv_vsoxseg6: |
| case Intrinsic::riscv_vsoxseg7: |
| case Intrinsic::riscv_vsoxseg8: |
| selectVSXSEG(Node, /*IsMasked*/ false, /*IsOrdered*/ true); |
| return; |
| case Intrinsic::riscv_vsuxseg2: |
| case Intrinsic::riscv_vsuxseg3: |
| case Intrinsic::riscv_vsuxseg4: |
| case Intrinsic::riscv_vsuxseg5: |
| case Intrinsic::riscv_vsuxseg6: |
| case Intrinsic::riscv_vsuxseg7: |
| case Intrinsic::riscv_vsuxseg8: |
| selectVSXSEG(Node, /*IsMasked*/ false, /*IsOrdered*/ false); |
| return; |
| case Intrinsic::riscv_vsoxseg2_mask: |
| case Intrinsic::riscv_vsoxseg3_mask: |
| case Intrinsic::riscv_vsoxseg4_mask: |
| case Intrinsic::riscv_vsoxseg5_mask: |
| case Intrinsic::riscv_vsoxseg6_mask: |
| case Intrinsic::riscv_vsoxseg7_mask: |
| case Intrinsic::riscv_vsoxseg8_mask: |
| selectVSXSEG(Node, /*IsMasked*/ true, /*IsOrdered*/ true); |
| return; |
| case Intrinsic::riscv_vsuxseg2_mask: |
| case Intrinsic::riscv_vsuxseg3_mask: |
| case Intrinsic::riscv_vsuxseg4_mask: |
| case Intrinsic::riscv_vsuxseg5_mask: |
| case Intrinsic::riscv_vsuxseg6_mask: |
| case Intrinsic::riscv_vsuxseg7_mask: |
| case Intrinsic::riscv_vsuxseg8_mask: |
| selectVSXSEG(Node, /*IsMasked*/ true, /*IsOrdered*/ false); |
| return; |
| case Intrinsic::riscv_vsoxei: |
| case Intrinsic::riscv_vsoxei_mask: |
| case Intrinsic::riscv_vsuxei: |
| case Intrinsic::riscv_vsuxei_mask: { |
| bool IsMasked = IntNo == Intrinsic::riscv_vsoxei_mask || |
| IntNo == Intrinsic::riscv_vsuxei_mask; |
| bool IsOrdered = IntNo == Intrinsic::riscv_vsoxei || |
| IntNo == Intrinsic::riscv_vsoxei_mask; |
| |
| MVT VT = Node->getOperand(2)->getSimpleValueType(0); |
| unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits()); |
| |
| unsigned CurOp = 2; |
| SmallVector<SDValue, 8> Operands; |
| Operands.push_back(Node->getOperand(CurOp++)); // Store value. |
| |
| MVT IndexVT; |
| addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| /*IsStridedOrIndexed*/ true, Operands, |
| /*IsLoad=*/false, &IndexVT); |
| |
| assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && |
| "Element count mismatch"); |
| |
| RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| RISCVII::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(IndexVT); |
| unsigned IndexLog2EEW = Log2_32(IndexVT.getScalarSizeInBits()); |
| if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| report_fatal_error("The V extension does not support EEW=64 for index " |
| "values when XLEN=32"); |
| } |
| const RISCV::VLX_VSXPseudo *P = RISCV::getVSXPseudo( |
| IsMasked, /*TU*/ false, IsOrdered, IndexLog2EEW, |
| static_cast<unsigned>(LMUL), static_cast<unsigned>(IndexLMUL)); |
| MachineSDNode *Store = |
| CurDAG->getMachineNode(P->Pseudo, DL, Node->getVTList(), Operands); |
| |
| if (auto *MemOp = dyn_cast<MemSDNode>(Node)) |
| CurDAG->setNodeMemRefs(Store, {MemOp->getMemOperand()}); |
| |
| ReplaceNode(Node, Store); |
| return; |
| } |
| case Intrinsic::riscv_vsm: |
| case Intrinsic::riscv_vse: |
| case Intrinsic::riscv_vse_mask: |
| case Intrinsic::riscv_vsse: |
| case Intrinsic::riscv_vsse_mask: { |
| bool IsMasked = IntNo == Intrinsic::riscv_vse_mask || |
| IntNo == Intrinsic::riscv_vsse_mask; |
| bool IsStrided = |
| IntNo == Intrinsic::riscv_vsse || IntNo == Intrinsic::riscv_vsse_mask; |
| |
| MVT VT = Node->getOperand(2)->getSimpleValueType(0); |
| unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits()); |
| |
| unsigned CurOp = 2; |
| SmallVector<SDValue, 8> Operands; |
| Operands.push_back(Node->getOperand(CurOp++)); // Store value. |
| |
| addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStrided, |
| Operands); |
| |
| RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| const RISCV::VSEPseudo *P = RISCV::getVSEPseudo( |
| IsMasked, IsStrided, Log2SEW, static_cast<unsigned>(LMUL)); |
| MachineSDNode *Store = |
| CurDAG->getMachineNode(P->Pseudo, DL, Node->getVTList(), Operands); |
| if (auto *MemOp = dyn_cast<MemSDNode>(Node)) |
| CurDAG->setNodeMemRefs(Store, {MemOp->getMemOperand()}); |
| |
| ReplaceNode(Node, Store); |
| return; |
| } |
| } |
| break; |
| } |
| case ISD::BITCAST: { |
| MVT SrcVT = Node->getOperand(0).getSimpleValueType(); |
| // Just drop bitcasts between vectors if both are fixed or both are |
| // scalable. |
| if ((VT.isScalableVector() && SrcVT.isScalableVector()) || |
| (VT.isFixedLengthVector() && SrcVT.isFixedLengthVector())) { |
| ReplaceUses(SDValue(Node, 0), Node->getOperand(0)); |
| CurDAG->RemoveDeadNode(Node); |
| return; |
| } |
| break; |
| } |
| case ISD::INSERT_SUBVECTOR: { |
| SDValue V = Node->getOperand(0); |
| SDValue SubV = Node->getOperand(1); |
| SDLoc DL(SubV); |
| auto Idx = Node->getConstantOperandVal(2); |
| MVT SubVecVT = SubV.getSimpleValueType(); |
| |
| const RISCVTargetLowering &TLI = *Subtarget->getTargetLowering(); |
| MVT SubVecContainerVT = SubVecVT; |
| // Establish the correct scalable-vector types for any fixed-length type. |
| if (SubVecVT.isFixedLengthVector()) |
| SubVecContainerVT = TLI.getContainerForFixedLengthVector(SubVecVT); |
| if (VT.isFixedLengthVector()) |
| VT = TLI.getContainerForFixedLengthVector(VT); |
| |
| const auto *TRI = Subtarget->getRegisterInfo(); |
| unsigned SubRegIdx; |
| std::tie(SubRegIdx, Idx) = |
| RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( |
| VT, SubVecContainerVT, Idx, TRI); |
| |
| // If the Idx hasn't been completely eliminated then this is a subvector |
| // insert which doesn't naturally align to a vector register. These must |
| // be handled using instructions to manipulate the vector registers. |
| if (Idx != 0) |
| break; |
| |
| RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecContainerVT); |
| bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 || |
| SubVecLMUL == RISCVII::VLMUL::LMUL_F4 || |
| SubVecLMUL == RISCVII::VLMUL::LMUL_F8; |
| (void)IsSubVecPartReg; // Silence unused variable warning without asserts. |
| assert((!IsSubVecPartReg || V.isUndef()) && |
| "Expecting lowering to have created legal INSERT_SUBVECTORs when " |
| "the subvector is smaller than a full-sized register"); |
| |
| // If we haven't set a SubRegIdx, then we must be going between |
| // equally-sized LMUL groups (e.g. VR -> VR). This can be done as a copy. |
| if (SubRegIdx == RISCV::NoSubRegister) { |
| unsigned InRegClassID = RISCVTargetLowering::getRegClassIDForVecVT(VT); |
| assert(RISCVTargetLowering::getRegClassIDForVecVT(SubVecContainerVT) == |
| InRegClassID && |
| "Unexpected subvector extraction"); |
| SDValue RC = CurDAG->getTargetConstant(InRegClassID, DL, XLenVT); |
| SDNode *NewNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, |
| DL, VT, SubV, RC); |
| ReplaceNode(Node, NewNode); |
| return; |
| } |
| |
| SDValue Insert = CurDAG->getTargetInsertSubreg(SubRegIdx, DL, VT, V, SubV); |
| ReplaceNode(Node, Insert.getNode()); |
| return; |
| } |
| case ISD::EXTRACT_SUBVECTOR: { |
| SDValue V = Node->getOperand(0); |
| auto Idx = Node->getConstantOperandVal(1); |
| MVT InVT = V.getSimpleValueType(); |
| SDLoc DL(V); |
| |
| const RISCVTargetLowering &TLI = *Subtarget->getTargetLowering(); |
| MVT SubVecContainerVT = VT; |
| // Establish the correct scalable-vector types for any fixed-length type. |
| if (VT.isFixedLengthVector()) |
| SubVecContainerVT = TLI.getContainerForFixedLengthVector(VT); |
| if (InVT.isFixedLengthVector()) |
| InVT = TLI.getContainerForFixedLengthVector(InVT); |
| |
| const auto *TRI = Subtarget->getRegisterInfo(); |
| unsigned SubRegIdx; |
| std::tie(SubRegIdx, Idx) = |
| RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( |
| InVT, SubVecContainerVT, Idx, TRI); |
| |
| // If the Idx hasn't been completely eliminated then this is a subvector |
| // extract which doesn't naturally align to a vector register. These must |
| // be handled using instructions to manipulate the vector registers. |
| if (Idx != 0) |
| break; |
| |
| // If we haven't set a SubRegIdx, then we must be going between |
| // equally-sized LMUL types (e.g. VR -> VR). This can be done as a copy. |
| if (SubRegIdx == RISCV::NoSubRegister) { |
| unsigned InRegClassID = RISCVTargetLowering::getRegClassIDForVecVT(InVT); |
| assert(RISCVTargetLowering::getRegClassIDForVecVT(SubVecContainerVT) == |
| InRegClassID && |
| "Unexpected subvector extraction"); |
| SDValue RC = CurDAG->getTargetConstant(InRegClassID, DL, XLenVT); |
| SDNode *NewNode = |
| CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT, V, RC); |
| ReplaceNode(Node, NewNode); |
| return; |
| } |
| |
| SDValue Extract = CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, V); |
| ReplaceNode(Node, Extract.getNode()); |
| return; |
| } |
| case RISCVISD::VMV_S_X_VL: |
| case RISCVISD::VFMV_S_F_VL: |
| case RISCVISD::VMV_V_X_VL: |
| case RISCVISD::VFMV_V_F_VL: { |
| // Only if we have optimized zero-stride vector load. |
| if (!Subtarget->hasOptimizedZeroStrideLoad()) |
| break; |
| |
| // Try to match splat of a scalar load to a strided load with stride of x0. |
| bool IsScalarMove = Node->getOpcode() == RISCVISD::VMV_S_X_VL || |
| Node->getOpcode() == RISCVISD::VFMV_S_F_VL; |
| if (!Node->getOperand(0).isUndef()) |
| break; |
| SDValue Src = Node->getOperand(1); |
| auto *Ld = dyn_cast<LoadSDNode>(Src); |
| if (!Ld) |
| break; |
| EVT MemVT = Ld->getMemoryVT(); |
| // The memory VT should be the same size as the element type. |
| if (MemVT.getStoreSize() != VT.getVectorElementType().getStoreSize()) |
| break; |
| if (!IsProfitableToFold(Src, Node, Node) || |
| !IsLegalToFold(Src, Node, Node, TM.getOptLevel())) |
| break; |
| |
| SDValue VL; |
| if (IsScalarMove) { |
| // We could deal with more VL if we update the VSETVLI insert pass to |
| // avoid introducing more VSETVLI. |
| if (!isOneConstant(Node->getOperand(2))) |
| break; |
| selectVLOp(Node->getOperand(2), VL); |
| } else |
| selectVLOp(Node->getOperand(2), VL); |
| |
| unsigned Log2SEW = Log2_32(VT.getScalarSizeInBits()); |
| SDValue SEW = CurDAG->getTargetConstant(Log2SEW, DL, XLenVT); |
| |
| SDValue Operands[] = {Ld->getBasePtr(), |
| CurDAG->getRegister(RISCV::X0, XLenVT), VL, SEW, |
| Ld->getChain()}; |
| |
| RISCVII::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| const RISCV::VLEPseudo *P = RISCV::getVLEPseudo( |
| /*IsMasked*/ false, /*IsTU*/ false, /*IsStrided*/ true, /*FF*/ false, |
| Log2SEW, static_cast<unsigned>(LMUL)); |
| MachineSDNode *Load = |
| CurDAG->getMachineNode(P->Pseudo, DL, {VT, MVT::Other}, Operands); |
| // Update the chain. |
| ReplaceUses(Src.getValue(1), SDValue(Load, 1)); |
| // Record the mem-refs |
| CurDAG->setNodeMemRefs(Load, {Ld->getMemOperand()}); |
| // Replace the splat with the vlse. |
| ReplaceNode(Node, Load); |
| return; |
| } |
| } |
| |
| // Select the default instruction. |
| SelectCode(Node); |
| } |
| |
| bool RISCVDAGToDAGISel::SelectInlineAsmMemoryOperand( |
| const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) { |
| switch (ConstraintID) { |
| case InlineAsm::Constraint_m: |
| // We just support simple memory operands that have a single address |
| // operand and need no special handling. |
| OutOps.push_back(Op); |
| return false; |
| case InlineAsm::Constraint_A: |
| OutOps.push_back(Op); |
| return false; |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| bool RISCVDAGToDAGISel::SelectAddrFrameIndex(SDValue Addr, SDValue &Base, |
| SDValue &Offset) { |
| if (auto *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), Subtarget->getXLenVT()); |
| Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Subtarget->getXLenVT()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Select a frame index and an optional immediate offset from an ADD or OR. |
| bool RISCVDAGToDAGISel::SelectFrameAddrRegImm(SDValue Addr, SDValue &Base, |
| SDValue &Offset) { |
| if (SelectAddrFrameIndex(Addr, Base, Offset)) |
| return true; |
| |
| if (!CurDAG->isBaseWithConstantOffset(Addr)) |
| return false; |
| |
| if (auto *FIN = dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) { |
| int64_t CVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); |
| if (isInt<12>(CVal)) { |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), |
| Subtarget->getXLenVT()); |
| Offset = CurDAG->getTargetConstant(CVal, SDLoc(Addr), |
| Subtarget->getXLenVT()); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Fold constant addresses. |
| static bool selectConstantAddr(SelectionDAG *CurDAG, const SDLoc &DL, |
| const MVT VT, const RISCVSubtarget *Subtarget, |
| SDValue Addr, SDValue &Base, SDValue &Offset) { |
| if (!isa<ConstantSDNode>(Addr)) |
| return false; |
| |
| int64_t CVal = cast<ConstantSDNode>(Addr)->getSExtValue(); |
| |
| // If the constant is a simm12, we can fold the whole constant and use X0 as |
| // the base. If the constant can be materialized with LUI+simm12, use LUI as |
| // the base. We can't use generateInstSeq because it favors LUI+ADDIW. |
| int64_t Lo12 = SignExtend64<12>(CVal); |
| int64_t Hi = (uint64_t)CVal - (uint64_t)Lo12; |
| if (!Subtarget->is64Bit() || isInt<32>(Hi)) { |
| if (Hi) { |
| int64_t Hi20 = (Hi >> 12) & 0xfffff; |
| Base = SDValue( |
| CurDAG->getMachineNode(RISCV::LUI, DL, VT, |
| CurDAG->getTargetConstant(Hi20, DL, VT)), |
| 0); |
| } else { |
| Base = CurDAG->getRegister(RISCV::X0, VT); |
| } |
| Offset = CurDAG->getTargetConstant(Lo12, DL, VT); |
| return true; |
| } |
| |
| // Ask how constant materialization would handle this constant. |
| RISCVMatInt::InstSeq Seq = |
| RISCVMatInt::generateInstSeq(CVal, Subtarget->getFeatureBits()); |
| |
| // If the last instruction would be an ADDI, we can fold its immediate and |
| // emit the rest of the sequence as the base. |
| if (Seq.back().getOpcode() != RISCV::ADDI) |
| return false; |
| Lo12 = Seq.back().getImm(); |
| |
| // Drop the last instruction. |
| Seq.pop_back(); |
| assert(!Seq.empty() && "Expected more instructions in sequence"); |
| |
| Base = SDValue(selectImmSeq(CurDAG, DL, VT, Seq), 0); |
| Offset = CurDAG->getTargetConstant(Lo12, DL, VT); |
| return true; |
| } |
| |
| // Is this ADD instruction only used as the base pointer of scalar loads and |
| // stores? |
| static bool isWorthFoldingAdd(SDValue Add) { |
| for (auto *Use : Add->uses()) { |
| if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE && |
| Use->getOpcode() != ISD::ATOMIC_LOAD && |
| Use->getOpcode() != ISD::ATOMIC_STORE) |
| return false; |
| EVT VT = cast<MemSDNode>(Use)->getMemoryVT(); |
| if (!VT.isScalarInteger() && VT != MVT::f16 && VT != MVT::f32 && |
| VT != MVT::f64) |
| return false; |
| // Don't allow stores of the value. It must be used as the address. |
| if (Use->getOpcode() == ISD::STORE && |
| cast<StoreSDNode>(Use)->getValue() == Add) |
| return false; |
| if (Use->getOpcode() == ISD::ATOMIC_STORE && |
| cast<AtomicSDNode>(Use)->getVal() == Add) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool RISCVDAGToDAGISel::SelectAddrRegImm(SDValue Addr, SDValue &Base, |
| SDValue &Offset) { |
| if (SelectAddrFrameIndex(Addr, Base, Offset)) |
| return true; |
| |
| SDLoc DL(Addr); |
| MVT VT = Addr.getSimpleValueType(); |
| |
| if (Addr.getOpcode() == RISCVISD::ADD_LO) { |
| Base = Addr.getOperand(0); |
| Offset = Addr.getOperand(1); |
| return true; |
| } |
| |
| if (CurDAG->isBaseWithConstantOffset(Addr)) { |
| int64_t CVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); |
| if (isInt<12>(CVal)) { |
| Base = Addr.getOperand(0); |
| if (Base.getOpcode() == RISCVISD::ADD_LO) { |
| SDValue LoOperand = Base.getOperand(1); |
| if (auto *GA = dyn_cast<GlobalAddressSDNode>(LoOperand)) { |
| // If the Lo in (ADD_LO hi, lo) is a global variable's address |
| // (its low part, really), then we can rely on the alignment of that |
| // variable to provide a margin of safety before low part can overflow |
| // the 12 bits of the load/store offset. Check if CVal falls within |
| // that margin; if so (low part + CVal) can't overflow. |
| const DataLayout &DL = CurDAG->getDataLayout(); |
| Align Alignment = commonAlignment( |
| GA->getGlobal()->getPointerAlignment(DL), GA->getOffset()); |
| if (CVal == 0 || Alignment > CVal) { |
| int64_t CombinedOffset = CVal + GA->getOffset(); |
| Base = Base.getOperand(0); |
| Offset = CurDAG->getTargetGlobalAddress( |
| GA->getGlobal(), SDLoc(LoOperand), LoOperand.getValueType(), |
| CombinedOffset, GA->getTargetFlags()); |
| return true; |
| } |
| } |
| } |
| |
| if (auto *FIN = dyn_cast<FrameIndexSDNode>(Base)) |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), VT); |
| Offset = CurDAG->getTargetConstant(CVal, DL, VT); |
| return true; |
| } |
| } |
| |
| // Handle ADD with large immediates. |
| if (Addr.getOpcode() == ISD::ADD && isa<ConstantSDNode>(Addr.getOperand(1))) { |
| int64_t CVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); |
| assert(!isInt<12>(CVal) && "simm12 not already handled?"); |
| |
| // Handle immediates in the range [-4096,-2049] or [2048, 4094]. We can use |
| // an ADDI for part of the offset and fold the rest into the load/store. |
| // This mirrors the AddiPair PatFrag in RISCVInstrInfo.td. |
| if (isInt<12>(CVal / 2) && isInt<12>(CVal - CVal / 2)) { |
| int64_t Adj = CVal < 0 ? -2048 : 2047; |
| Base = SDValue( |
| CurDAG->getMachineNode(RISCV::ADDI, DL, VT, Addr.getOperand(0), |
| CurDAG->getTargetConstant(Adj, DL, VT)), |
| 0); |
| Offset = CurDAG->getTargetConstant(CVal - Adj, DL, VT); |
| return true; |
| } |
| |
| // For larger immediates, we might be able to save one instruction from |
| // constant materialization by folding the Lo12 bits of the immediate into |
| // the address. We should only do this if the ADD is only used by loads and |
| // stores that can fold the lo12 bits. Otherwise, the ADD will get iseled |
| // separately with the full materialized immediate creating extra |
| // instructions. |
| if (isWorthFoldingAdd(Addr) && |
| selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr.getOperand(1), Base, |
| Offset)) { |
| // Insert an ADD instruction with the materialized Hi52 bits. |
| Base = SDValue( |
| CurDAG->getMachineNode(RISCV::ADD, DL, VT, Addr.getOperand(0), Base), |
| 0); |
| return true; |
| } |
| } |
| |
| if (selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr, Base, Offset)) |
| return true; |
| |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, DL, VT); |
| return true; |
| } |
| |
| bool RISCVDAGToDAGISel::selectShiftMask(SDValue N, unsigned ShiftWidth, |
| SDValue &ShAmt) { |
| ShAmt = N; |
| |
| // Shift instructions on RISCV only read the lower 5 or 6 bits of the shift |
| // amount. If there is an AND on the shift amount, we can bypass it if it |
| // doesn't affect any of those bits. |
| if (ShAmt.getOpcode() == ISD::AND && isa<ConstantSDNode>(ShAmt.getOperand(1))) { |
| const APInt &AndMask = ShAmt.getConstantOperandAPInt(1); |
| |
| // Since the max shift amount is a power of 2 we can subtract 1 to make a |
| // mask that covers the bits needed to represent all shift amounts. |
| assert(isPowerOf2_32(ShiftWidth) && "Unexpected max shift amount!"); |
| APInt ShMask(AndMask.getBitWidth(), ShiftWidth - 1); |
| |
| if (ShMask.isSubsetOf(AndMask)) { |
| ShAmt = ShAmt.getOperand(0); |
| } else { |
| // SimplifyDemandedBits may have optimized the mask so try restoring any |
| // bits that are known zero. |
| KnownBits Known = CurDAG->computeKnownBits(ShAmt.getOperand(0)); |
| if (!ShMask.isSubsetOf(AndMask | Known.Zero)) |
| return true; |
| ShAmt = ShAmt.getOperand(0); |
| } |
| } |
| |
| if (ShAmt.getOpcode() == ISD::ADD && |
| isa<ConstantSDNode>(ShAmt.getOperand(1))) { |
| uint64_t Imm = ShAmt.getConstantOperandVal(1); |
| // If we are shifting by X+N where N == 0 mod Size, then just shift by X |
| // to avoid the ADD. |
| if (Imm != 0 && Imm % ShiftWidth == 0) { |
| ShAmt = ShAmt.getOperand(0); |
| return true; |
| } |
| } else if (ShAmt.getOpcode() == ISD::SUB && |
| isa<ConstantSDNode>(ShAmt.getOperand(0))) { |
| uint64_t Imm = ShAmt.getConstantOperandVal(0); |
| // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to |
| // generate a NEG instead of a SUB of a constant. |
| if (Imm != 0 && Imm % ShiftWidth == 0) { |
| SDLoc DL(ShAmt); |
| EVT VT = ShAmt.getValueType(); |
| SDValue Zero = CurDAG->getRegister(RISCV::X0, VT); |
| unsigned NegOpc = VT == MVT::i64 ? RISCV::SUBW : RISCV::SUB; |
| MachineSDNode *Neg = CurDAG->getMachineNode(NegOpc, DL, VT, Zero, |
| ShAmt.getOperand(1)); |
| ShAmt = SDValue(Neg, 0); |
| return true; |
| } |
| // If we are shifting by N-X where N == -1 mod Size, then just shift by ~X |
| // to generate a NOT instead of a SUB of a constant. |
| if (Imm % ShiftWidth == ShiftWidth - 1) { |
| SDLoc DL(ShAmt); |
| EVT VT = ShAmt.getValueType(); |
| MachineSDNode *Not = |
| CurDAG->getMachineNode(RISCV::XORI, DL, VT, ShAmt.getOperand(1), |
| CurDAG->getTargetConstant(-1, DL, VT)); |
| ShAmt = SDValue(Not, 0); |
| return true; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool RISCVDAGToDAGISel::selectSExti32(SDValue N, SDValue &Val) { |
| if (N.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(N.getOperand(1))->getVT() == MVT::i32) { |
| Val = N.getOperand(0); |
| return true; |
| } |
| MVT VT = N.getSimpleValueType(); |
| if (CurDAG->ComputeNumSignBits(N) > (VT.getSizeInBits() - 32)) { |
| Val = N; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool RISCVDAGToDAGISel::selectZExtBits(SDValue N, unsigned Bits, SDValue &Val) { |
| if (N.getOpcode() == ISD::AND) { |
| auto *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (C && C->getZExtValue() == maskTrailingOnes<uint64_t>(Bits)) { |
| Val = N.getOperand(0); |
| return true; |
| } |
| } |
| MVT VT = N.getSimpleValueType(); |
| APInt Mask = APInt::getBitsSetFrom(VT.getSizeInBits(), Bits); |
| if (CurDAG->MaskedValueIsZero(N, Mask)) { |
| Val = N; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Look for various patterns that can be done with a SHL that can be folded |
| /// into a SHXADD. \p ShAmt contains 1, 2, or 3 and is set based on which |
| /// SHXADD we are trying to match. |
| bool RISCVDAGToDAGISel::selectSHXADDOp(SDValue N, unsigned ShAmt, |
| SDValue &Val) { |
| if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) { |
| SDValue N0 = N.getOperand(0); |
| |
| bool LeftShift = N0.getOpcode() == ISD::SHL; |
| if ((LeftShift || N0.getOpcode() == ISD::SRL) && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| uint64_t Mask = N.getConstantOperandVal(1); |
| unsigned C2 = N0.getConstantOperandVal(1); |
| |
| unsigned XLen = Subtarget->getXLen(); |
| if (LeftShift) |
| Mask &= maskTrailingZeros<uint64_t>(C2); |
| else |
| Mask &= maskTrailingOnes<uint64_t>(XLen - C2); |
| |
| // Look for (and (shl y, c2), c1) where c1 is a shifted mask with no |
| // leading zeros and c3 trailing zeros. We can use an SRLI by c2+c3 |
| // followed by a SHXADD with c3 for the X amount. |
| if (isShiftedMask_64(Mask)) { |
| unsigned Leading = XLen - llvm::bit_width(Mask); |
| unsigned Trailing = countTrailingZeros(Mask); |
| if (LeftShift && Leading == 0 && C2 < Trailing && Trailing == ShAmt) { |
| SDLoc DL(N); |
| EVT VT = N.getValueType(); |
| Val = SDValue(CurDAG->getMachineNode( |
| RISCV::SRLI, DL, VT, N0.getOperand(0), |
| CurDAG->getTargetConstant(Trailing - C2, DL, VT)), |
| 0); |
| return true; |
| } |
| // Look for (and (shr y, c2), c1) where c1 is a shifted mask with c2 |
| // leading zeros and c3 trailing zeros. We can use an SRLI by C3 |
| // followed by a SHXADD using c3 for the X amount. |
| if (!LeftShift && Leading == C2 && Trailing == ShAmt) { |
| SDLoc DL(N); |
| EVT VT = N.getValueType(); |
| Val = SDValue( |
| CurDAG->getMachineNode( |
| RISCV::SRLI, DL, VT, N0.getOperand(0), |
| CurDAG->getTargetConstant(Leading + Trailing, DL, VT)), |
| 0); |
| return true; |
| } |
| } |
| } |
| } |
| |
| bool LeftShift = N.getOpcode() == ISD::SHL; |
| if ((LeftShift || N.getOpcode() == ISD::SRL) && |
| isa<ConstantSDNode>(N.getOperand(1))) { |
| SDValue N0 = N.getOperand(0); |
| if (N0.getOpcode() == ISD::AND && N0.hasOneUse() && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| uint64_t Mask = N0.getConstantOperandVal(1); |
| if (isShiftedMask_64(Mask)) { |
| unsigned C1 = N.getConstantOperandVal(1); |
| unsigned XLen = Subtarget->getXLen(); |
| unsigned Leading = XLen - llvm::bit_width(Mask); |
| unsigned Trailing = countTrailingZeros(Mask); |
| // Look for (shl (and X, Mask), C1) where Mask has 32 leading zeros and |
| // C3 trailing zeros. If C1+C3==ShAmt we can use SRLIW+SHXADD. |
| if (LeftShift && Leading == 32 && Trailing > 0 && |
| (Trailing + C1) == ShAmt) { |
| SDLoc DL(N); |
| EVT VT = N.getValueType(); |
| Val = SDValue(CurDAG->getMachineNode( |
| RISCV::SRLIW, DL, VT, N0.getOperand(0), |
| CurDAG->getTargetConstant(Trailing, DL, VT)), |
| 0); |
| return true; |
| } |
| // Look for (srl (and X, Mask), C1) where Mask has 32 leading zeros and |
| // C3 trailing zeros. If C3-C1==ShAmt we can use SRLIW+SHXADD. |
| if (!LeftShift && Leading == 32 && Trailing > C1 && |
| (Trailing - C1) == ShAmt) { |
| SDLoc DL(N); |
| EVT VT = N.getValueType(); |
| Val = SDValue(CurDAG->getMachineNode( |
| RISCV::SRLIW, DL, VT, N0.getOperand(0), |
| CurDAG->getTargetConstant(Trailing, DL, VT)), |
| 0); |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Look for various patterns that can be done with a SHL that can be folded |
| /// into a SHXADD_UW. \p ShAmt contains 1, 2, or 3 and is set based on which |
| /// SHXADD_UW we are trying to match. |
| bool RISCVDAGToDAGISel::selectSHXADD_UWOp(SDValue N, unsigned ShAmt, |
| SDValue &Val) { |
| if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1)) && |
| N.hasOneUse()) { |
| SDValue N0 = N.getOperand(0); |
| if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) && |
| N0.hasOneUse()) { |
| uint64_t Mask = N.getConstantOperandVal(1); |
| unsigned C2 = N0.getConstantOperandVal(1); |
| |
| Mask &= maskTrailingZeros<uint64_t>(C2); |
| |
| // Look for (and (shl y, c2), c1) where c1 is a shifted mask with |
| // 32-ShAmt leading zeros and c2 trailing zeros. We can use SLLI by |
| // c2-ShAmt followed by SHXADD_UW with ShAmt for the X amount. |
| if (isShiftedMask_64(Mask)) { |
| unsigned Leading = countLeadingZeros(Mask); |
| unsigned Trailing = countTrailingZeros(Mask); |
| if (Leading == 32 - ShAmt && Trailing == C2 && Trailing > ShAmt) { |
| SDLoc DL(N); |
| EVT VT = N.getValueType(); |
| Val = SDValue(CurDAG->getMachineNode( |
| RISCV::SLLI, DL, VT, N0.getOperand(0), |
| CurDAG->getTargetConstant(C2 - ShAmt, DL, VT)), |
| 0); |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| // Return true if all users of this SDNode* only consume the lower \p Bits. |
| // This can be used to form W instructions for add/sub/mul/shl even when the |
| // root isn't a sext_inreg. This can allow the ADDW/SUBW/MULW/SLLIW to CSE if |
| // SimplifyDemandedBits has made it so some users see a sext_inreg and some |
| // don't. The sext_inreg+add/sub/mul/shl will get selected, but still leave |
| // the add/sub/mul/shl to become non-W instructions. By checking the users we |
| // may be able to use a W instruction and CSE with the other instruction if |
| // this has happened. We could try to detect that the CSE opportunity exists |
| // before doing this, but that would be more complicated. |
| bool RISCVDAGToDAGISel::hasAllNBitUsers(SDNode *Node, unsigned Bits, |
| const unsigned Depth) const { |
| assert((Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::SUB || |
| Node->getOpcode() == ISD::MUL || Node->getOpcode() == ISD::SHL || |
| Node->getOpcode() == ISD::SRL || Node->getOpcode() == ISD::AND || |
| Node->getOpcode() == ISD::OR || Node->getOpcode() == ISD::XOR || |
| Node->getOpcode() == ISD::SIGN_EXTEND_INREG || |
| isa<ConstantSDNode>(Node) || Depth != 0) && |
| "Unexpected opcode"); |
| |
| if (Depth >= SelectionDAG::MaxRecursionDepth) |
| return false; |
| |
| for (auto UI = Node->use_begin(), UE = Node->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| // Users of this node should have already been instruction selected |
| if (!User->isMachineOpcode()) |
| return false; |
| |
| // TODO: Add more opcodes? |
| switch (User->getMachineOpcode()) { |
| default: |
| return false; |
| case RISCV::ADDW: |
| case RISCV::ADDIW: |
| case RISCV::SUBW: |
| case RISCV::MULW: |
| case RISCV::SLLW: |
| case RISCV::SLLIW: |
| case RISCV::SRAW: |
| case RISCV::SRAIW: |
| case RISCV::SRLW: |
| case RISCV::SRLIW: |
| case RISCV::DIVW: |
| case RISCV::DIVUW: |
| case RISCV::REMW: |
| case RISCV::REMUW: |
| case RISCV::ROLW: |
| case RISCV::RORW: |
| case RISCV::RORIW: |
| case RISCV::CLZW: |
| case RISCV::CTZW: |
| case RISCV::CPOPW: |
| case RISCV::SLLI_UW: |
| case RISCV::FMV_W_X: |
| case RISCV::FCVT_H_W: |
| case RISCV::FCVT_H_WU: |
| case RISCV::FCVT_S_W: |
| case RISCV::FCVT_S_WU: |
| case RISCV::FCVT_D_W: |
| case RISCV::FCVT_D_WU: |
| if (Bits < 32) |
| return false; |
| break; |
| case RISCV::SLL: |
| case RISCV::SRA: |
| case RISCV::SRL: |
| case RISCV::ROL: |
| case RISCV::ROR: |
| case RISCV::BSET: |
| case RISCV::BCLR: |
| case RISCV::BINV: |
| // Shift amount operands only use log2(Xlen) bits. |
| if (UI.getOperandNo() != 1 || Bits < Log2_32(Subtarget->getXLen())) |
| return false; |
| break; |
| case RISCV::SLLI: |
| // SLLI only uses the lower (XLen - ShAmt) bits. |
| if (Bits < Subtarget->getXLen() - User->getConstantOperandVal(1)) |
| return false; |
| break; |
| case RISCV::ANDI: |
| if (Bits >= (unsigned)llvm::bit_width(User->getConstantOperandVal(1))) |
| break; |
| goto RecCheck; |
| case RISCV::ORI: { |
| uint64_t Imm = cast<ConstantSDNode>(User->getOperand(1))->getSExtValue(); |
| if (Bits >= (unsigned)llvm::bit_width<uint64_t>(~Imm)) |
| break; |
| [[fallthrough]]; |
| } |
| case RISCV::AND: |
| case RISCV::OR: |
| case RISCV::XOR: |
| case RISCV::XORI: |
| case RISCV::ANDN: |
| case RISCV::ORN: |
| case RISCV::XNOR: |
| case RISCV::SH1ADD: |
| case RISCV::SH2ADD: |
| case RISCV::SH3ADD: |
| RecCheck: |
| if (hasAllNBitUsers(User, Bits, Depth + 1)) |
| break; |
| return false; |
| case RISCV::SRLI: { |
| unsigned ShAmt = User->getConstantOperandVal(1); |
| // If we are shifting right by less than Bits, and users don't demand any |
| // bits that were shifted into [Bits-1:0], then we can consider this as an |
| // N-Bit user. |
| if (Bits > ShAmt && hasAllNBitUsers(User, Bits - ShAmt, Depth + 1)) |
| break; |
| return false; |
| } |
| case RISCV::SEXT_B: |
| case RISCV::PACKH: |
| if (Bits < 8) |
| return false; |
| break; |
| case RISCV::SEXT_H: |
| case RISCV::FMV_H_X: |
| case RISCV::ZEXT_H_RV32: |
| case RISCV::ZEXT_H_RV64: |
| case RISCV::PACKW: |
| if (Bits < 16) |
| return false; |
| break; |
| case RISCV::PACK: |
| if (Bits < (Subtarget->getXLen() / 2)) |
| return false; |
| break; |
| case RISCV::ADD_UW: |
| case RISCV::SH1ADD_UW: |
| case RISCV::SH2ADD_UW: |
| case RISCV::SH3ADD_UW: |
| // The first operand to add.uw/shXadd.uw is implicitly zero extended from |
| // 32 bits. |
| if (UI.getOperandNo() != 0 || Bits < 32) |
| return false; |
| break; |
| case RISCV::SB: |
| if (UI.getOperandNo() != 0 || Bits < 8) |
| return false; |
| break; |
| case RISCV::SH: |
| if (UI.getOperandNo() != 0 || Bits < 16) |
| return false; |
| break; |
| case RISCV::SW: |
| if (UI.getOperandNo() != 0 || Bits < 32) |
| return false; |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Select VL as a 5 bit immediate or a value that will become a register. This |
| // allows us to choose betwen VSETIVLI or VSETVLI later. |
| bool RISCVDAGToDAGISel::selectVLOp(SDValue N, SDValue &VL) { |
| auto *C = dyn_cast<ConstantSDNode>(N); |
| if (C && isUInt<5>(C->getZExtValue())) { |
| VL = CurDAG->getTargetConstant(C->getZExtValue(), SDLoc(N), |
| N->getValueType(0)); |
| } else if (C && C->isAllOnesValue()) { |
| // Treat all ones as VLMax. |
| VL = CurDAG->getTargetConstant(RISCV::VLMaxSentinel, SDLoc(N), |
| N->getValueType(0)); |
| } else if (isa<RegisterSDNode>(N) && |
| cast<RegisterSDNode>(N)->getReg() == RISCV::X0) { |
| // All our VL operands use an operand that allows GPRNoX0 or an immediate |
| // as the register class. Convert X0 to a special immediate to pass the |
| // MachineVerifier. This is recognized specially by the vsetvli insertion |
| // pass. |
| VL = CurDAG->getTargetConstant(RISCV::VLMaxSentinel, SDLoc(N), |
| N->getValueType(0)); |
| } else { |
| VL = N; |
| } |
| |
| return true; |
| } |
| |
| bool RISCVDAGToDAGISel::selectVSplat(SDValue N, SDValue &SplatVal) { |
| if (N.getOpcode() != RISCVISD::VMV_V_X_VL || !N.getOperand(0).isUndef()) |
| return false; |
| assert(N.getNumOperands() == 3 && "Unexpected number of operands"); |
| SplatVal = N.getOperand(1); |
| return true; |
| } |
| |
| using ValidateFn = bool (*)(int64_t); |
| |
| static bool selectVSplatSimmHelper(SDValue N, SDValue &SplatVal, |
| SelectionDAG &DAG, |
| const RISCVSubtarget &Subtarget, |
| ValidateFn ValidateImm) { |
| if (N.getOpcode() != RISCVISD::VMV_V_X_VL || !N.getOperand(0).isUndef() || |
| !isa<ConstantSDNode>(N.getOperand(1))) |
| return false; |
| assert(N.getNumOperands() == 3 && "Unexpected number of operands"); |
| |
| int64_t SplatImm = |
| cast<ConstantSDNode>(N.getOperand(1))->getSExtValue(); |
| |
| // The semantics of RISCVISD::VMV_V_X_VL is that when the operand |
| // type is wider than the resulting vector element type: an implicit |
| // truncation first takes place. Therefore, perform a manual |
| // truncation/sign-extension in order to ignore any truncated bits and catch |
| // any zero-extended immediate. |
| // For example, we wish to match (i8 -1) -> (XLenVT 255) as a simm5 by first |
| // sign-extending to (XLenVT -1). |
| MVT XLenVT = Subtarget.getXLenVT(); |
| assert(XLenVT == N.getOperand(1).getSimpleValueType() && |
| "Unexpected splat operand type"); |
| MVT EltVT = N.getSimpleValueType().getVectorElementType(); |
| if (EltVT.bitsLT(XLenVT)) |
| SplatImm = SignExtend64(SplatImm, EltVT.getSizeInBits()); |
| |
| if (!ValidateImm(SplatImm)) |
| return false; |
| |
| SplatVal = DAG.getTargetConstant(SplatImm, SDLoc(N), XLenVT); |
| return true; |
| } |
| |
| bool RISCVDAGToDAGISel::selectVSplatSimm5(SDValue N, SDValue &SplatVal) { |
| return selectVSplatSimmHelper(N, SplatVal, *CurDAG, *Subtarget, |
| [](int64_t Imm) { return isInt<5>(Imm); }); |
| } |
| |
| bool RISCVDAGToDAGISel::selectVSplatSimm5Plus1(SDValue N, SDValue &SplatVal) { |
| return selectVSplatSimmHelper( |
| N, SplatVal, *CurDAG, *Subtarget, |
| [](int64_t Imm) { return (isInt<5>(Imm) && Imm != -16) || Imm == 16; }); |
| } |
| |
| bool RISCVDAGToDAGISel::selectVSplatSimm5Plus1NonZero(SDValue N, |
| SDValue &SplatVal) { |
| return selectVSplatSimmHelper( |
| N, SplatVal, *CurDAG, *Subtarget, [](int64_t Imm) { |
| return Imm != 0 && ((isInt<5>(Imm) && Imm != -16) || Imm == 16); |
| }); |
| } |
| |
| bool RISCVDAGToDAGISel::selectVSplatUimm5(SDValue N, SDValue &SplatVal) { |
| if (N.getOpcode() != RISCVISD::VMV_V_X_VL || !N.getOperand(0).isUndef() || |
| !isa<ConstantSDNode>(N.getOperand(1))) |
| return false; |
| |
| int64_t SplatImm = |
| cast<ConstantSDNode>(N.getOperand(1))->getSExtValue(); |
| |
| if (!isUInt<5>(SplatImm)) |
| return false; |
| |
| SplatVal = |
| CurDAG->getTargetConstant(SplatImm, SDLoc(N), Subtarget->getXLenVT()); |
| |
| return true; |
| } |
| |
| bool RISCVDAGToDAGISel::selectRVVSimm5(SDValue N, unsigned Width, |
| SDValue &Imm) { |
| if (auto *C = dyn_cast<ConstantSDNode>(N)) { |
| int64_t ImmVal = SignExtend64(C->getSExtValue(), Width); |
| |
| if (!isInt<5>(ImmVal)) |
| return false; |
| |
| Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), Subtarget->getXLenVT()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Try to remove sext.w if the input is a W instruction or can be made into |
| // a W instruction cheaply. |
| bool RISCVDAGToDAGISel::doPeepholeSExtW(SDNode *N) { |
| // Look for the sext.w pattern, addiw rd, rs1, 0. |
| if (N->getMachineOpcode() != RISCV::ADDIW || |
| !isNullConstant(N->getOperand(1))) |
| return false; |
| |
| SDValue N0 = N->getOperand(0); |
| if (!N0.isMachineOpcode()) |
| return false; |
| |
| switch (N0.getMachineOpcode()) { |
| default: |
| break; |
| case RISCV::ADD: |
| case RISCV::ADDI: |
| case RISCV::SUB: |
| case RISCV::MUL: |
| case RISCV::SLLI: { |
| // Convert sext.w+add/sub/mul to their W instructions. This will create |
| // a new independent instruction. This improves latency. |
| unsigned Opc; |
| switch (N0.getMachineOpcode()) { |
| default: |
| llvm_unreachable("Unexpected opcode!"); |
| case RISCV::ADD: Opc = RISCV::ADDW; break; |
| case RISCV::ADDI: Opc = RISCV::ADDIW; break; |
| case RISCV::SUB: Opc = RISCV::SUBW; break; |
| case RISCV::MUL: Opc = RISCV::MULW; break; |
| case RISCV::SLLI: Opc = RISCV::SLLIW; break; |
| } |
| |
| SDValue N00 = N0.getOperand(0); |
| SDValue N01 = N0.getOperand(1); |
| |
| // Shift amount needs to be uimm5. |
| if (N0.getMachineOpcode() == RISCV::SLLI && |
| !isUInt<5>(cast<ConstantSDNode>(N01)->getSExtValue())) |
| break; |
| |
| SDNode *Result = |
| CurDAG->getMachineNode(Opc, SDLoc(N), N->getValueType(0), |
| N00, N01); |
| ReplaceUses(N, Result); |
| return true; |
| } |
| case RISCV::ADDW: |
| case RISCV::ADDIW: |
| case RISCV::SUBW: |
| case RISCV::MULW: |
| case RISCV::SLLIW: |
| case RISCV::PACKW: |
| // Result is already sign extended just remove the sext.w. |
| // NOTE: We only handle the nodes that are selected with hasAllWUsers. |
| ReplaceUses(N, N0.getNode()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Return true if we can make sure mask of N is all-ones mask. |
| static bool usesAllOnesMask(SDNode *N, unsigned MaskOpIdx) { |
| // Check that we're using V0 as a mask register. |
| if (!isa<RegisterSDNode>(N->getOperand(MaskOpIdx)) || |
| cast<RegisterSDNode>(N->getOperand(MaskOpIdx))->getReg() != RISCV::V0) |
| return false; |
| |
| // The glued user defines V0. |
| const auto *Glued = N->getGluedNode(); |
| |
| if (!Glued || Glued->getOpcode() != ISD::CopyToReg) |
| return false; |
| |
| // Check that we're defining V0 as a mask register. |
| if (!isa<RegisterSDNode>(Glued->getOperand(1)) || |
| cast<RegisterSDNode>(Glued->getOperand(1))->getReg() != RISCV::V0) |
| return false; |
| |
| // Check the instruction defining V0; it needs to be a VMSET pseudo. |
| SDValue MaskSetter = Glued->getOperand(2); |
| |
| const auto IsVMSet = [](unsigned Opc) { |
| return Opc == RISCV::PseudoVMSET_M_B1 || Opc == RISCV::PseudoVMSET_M_B16 || |
| Opc == RISCV::PseudoVMSET_M_B2 || Opc == RISCV::PseudoVMSET_M_B32 || |
| Opc == RISCV::PseudoVMSET_M_B4 || Opc == RISCV::PseudoVMSET_M_B64 || |
| Opc == RISCV::PseudoVMSET_M_B8; |
| }; |
| |
| // TODO: Check that the VMSET is the expected bitwidth? The pseudo has |
| // undefined behaviour if it's the wrong bitwidth, so we could choose to |
| // assume that it's all-ones? Same applies to its VL. |
| return MaskSetter->isMachineOpcode() && |
| IsVMSet(MaskSetter.getMachineOpcode()); |
| } |
| |
| // Optimize masked RVV pseudo instructions with a known all-ones mask to their |
| // corresponding "unmasked" pseudo versions. The mask we're interested in will |
| // take the form of a V0 physical register operand, with a glued |
| // register-setting instruction. |
| bool RISCVDAGToDAGISel::doPeepholeMaskedRVV(SDNode *N) { |
| const RISCV::RISCVMaskedPseudoInfo *I = |
| RISCV::getMaskedPseudoInfo(N->getMachineOpcode()); |
| if (!I) |
| return false; |
| |
| unsigned MaskOpIdx = I->MaskOpIdx; |
| |
| if (!usesAllOnesMask(N, MaskOpIdx)) |
| return false; |
| |
| // Retrieve the tail policy operand index, if any. |
| std::optional<unsigned> TailPolicyOpIdx; |
| const RISCVInstrInfo &TII = *Subtarget->getInstrInfo(); |
| const MCInstrDesc &MaskedMCID = TII.get(N->getMachineOpcode()); |
| |
| bool IsTA = true; |
| if (RISCVII::hasVecPolicyOp(MaskedMCID.TSFlags)) { |
| TailPolicyOpIdx = getVecPolicyOpIdx(N, MaskedMCID); |
| if (!(N->getConstantOperandVal(*TailPolicyOpIdx) & |
| RISCVII::TAIL_AGNOSTIC)) { |
| // Keep the true-masked instruction when there is no unmasked TU |
| // instruction |
| if (I->UnmaskedTUPseudo == I->MaskedPseudo && !N->getOperand(0).isUndef()) |
| return false; |
| // We can't use TA if the tie-operand is not IMPLICIT_DEF |
| if (!N->getOperand(0).isUndef()) |
| IsTA = false; |
| } |
| } |
| |
| unsigned Opc = IsTA ? I->UnmaskedPseudo : I->UnmaskedTUPseudo; |
| |
| // Check that we're dropping the mask operand and any policy operand |
| // when we transform to this unmasked pseudo. Additionally, if this insturtion |
| // is tail agnostic, the unmasked instruction should not have a merge op. |
| uint64_t TSFlags = TII.get(Opc).TSFlags; |
| assert((IsTA != RISCVII::hasMergeOp(TSFlags)) && |
| RISCVII::hasDummyMaskOp(TSFlags) && |
| !RISCVII::hasVecPolicyOp(TSFlags) && |
| "Unexpected pseudo to transform to"); |
| (void)TSFlags; |
| |
| SmallVector<SDValue, 8> Ops; |
| // Skip the merge operand at index 0 if IsTA |
| for (unsigned I = IsTA, E = N->getNumOperands(); I != E; I++) { |
| // Skip the mask, the policy, and the Glue. |
| SDValue Op = N->getOperand(I); |
| if (I == MaskOpIdx || I == TailPolicyOpIdx || |
| Op.getValueType() == MVT::Glue) |
| continue; |
| Ops.push_back(Op); |
| } |
| |
| // Transitively apply any node glued to our new node. |
| const auto *Glued = N->getGluedNode(); |
| if (auto *TGlued = Glued->getGluedNode()) |
| Ops.push_back(SDValue(TGlued, TGlued->getNumValues() - 1)); |
| |
| SDNode *Result = CurDAG->getMachineNode(Opc, SDLoc(N), N->getVTList(), Ops); |
| Result->setFlags(N->getFlags()); |
| ReplaceUses(N, Result); |
| |
| return true; |
| } |
| |
| // Try to fold VMERGE_VVM with unmasked intrinsic to masked intrinsic. The |
| // peephole only deals with VMERGE_VVM which is TU and has false operand same as |
| // its true operand now. E.g. (VMERGE_VVM_M1_TU False, False, (VADD_M1 ...), |
| // ...) -> (VADD_VV_M1_MASK) |
| bool RISCVDAGToDAGISel::performCombineVMergeAndVOps(SDNode *N, bool IsTA) { |
| unsigned Offset = IsTA ? 0 : 1; |
| uint64_t Policy = IsTA ? RISCVII::TAIL_AGNOSTIC : /*TUMU*/ 0; |
| |
| SDValue False = N->getOperand(0 + Offset); |
| SDValue True = N->getOperand(1 + Offset); |
| SDValue Mask = N->getOperand(2 + Offset); |
| SDValue VL = N->getOperand(3 + Offset); |
| |
| assert(True.getResNo() == 0 && |
| "Expect True is the first output of an instruction."); |
| |
| // Need N is the exactly one using True. |
| if (!True.hasOneUse()) |
| return false; |
| |
| if (!True.isMachineOpcode()) |
| return false; |
| |
| unsigned TrueOpc = True.getMachineOpcode(); |
| |
| // Skip if True has merge operand. |
| // TODO: Deal with True having same merge operand with N. |
| if (RISCVII::hasMergeOp(TII->get(TrueOpc).TSFlags)) |
| return false; |
| |
| // Skip if True has side effect. |
| // TODO: Support velff and vlsegff. |
| if (TII->get(TrueOpc).hasUnmodeledSideEffects()) |
| return false; |
| |
| // Only deal with True when True is unmasked intrinsic now. |
| const RISCV::RISCVMaskedPseudoInfo *Info = |
| RISCV::lookupMaskedIntrinsicByUnmaskedTA(TrueOpc); |
| |
| if (!Info) |
| return false; |
| |
| // The last operand of unmasked intrinsic should be sew or chain. |
| bool HasChainOp = |
| True.getOperand(True.getNumOperands() - 1).getValueType() == MVT::Other; |
| |
| if (HasChainOp) { |
| // Avoid creating cycles in the DAG. We must ensure that none of the other |
| // operands depend on True through it's Chain. |
| SmallVector<const SDNode *, 4> LoopWorklist; |
| SmallPtrSet<const SDNode *, 16> Visited; |
| LoopWorklist.push_back(False.getNode()); |
| LoopWorklist.push_back(Mask.getNode()); |
| LoopWorklist.push_back(VL.getNode()); |
| if (SDNode *Glued = N->getGluedNode()) |
| LoopWorklist.push_back(Glued); |
| if (SDNode::hasPredecessorHelper(True.getNode(), Visited, LoopWorklist)) |
| return false; |
| } |
| |
| // Need True has same VL with N. |
| unsigned TrueVLIndex = True.getNumOperands() - HasChainOp - 2; |
| SDValue TrueVL = True.getOperand(TrueVLIndex); |
| |
| auto IsNoFPExcept = [this](SDValue N) { |
| return !this->mayRaiseFPException(N.getNode()) || |
| N->getFlags().hasNoFPExcept(); |
| }; |
| |
| // Allow the peephole for non-exception True with VLMAX vector length, since |
| // all the values after VL of N are dependent on Merge. VLMAX should be |
| // lowered to (XLenVT -1). |
| if (TrueVL != VL && !(IsNoFPExcept(True) && isAllOnesConstant(TrueVL))) |
| return false; |
| |
| SDLoc DL(N); |
| unsigned MaskedOpc = Info->MaskedPseudo; |
| assert(RISCVII::hasVecPolicyOp(TII->get(MaskedOpc).TSFlags) && |
| "Expected instructions with mask have policy operand."); |
| assert(RISCVII::hasMergeOp(TII->get(MaskedOpc).TSFlags) && |
| "Expected instructions with mask have merge operand."); |
| |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(False); |
| Ops.append(True->op_begin(), True->op_begin() + TrueVLIndex); |
| Ops.append({Mask, VL, /* SEW */ True.getOperand(TrueVLIndex + 1)}); |
| Ops.push_back(CurDAG->getTargetConstant(Policy, DL, Subtarget->getXLenVT())); |
| |
| // Result node should have chain operand of True. |
| if (HasChainOp) |
| Ops.push_back(True.getOperand(True.getNumOperands() - 1)); |
| |
| // Result node should take over glued node of N. |
| if (N->getGluedNode()) |
| Ops.push_back(N->getOperand(N->getNumOperands() - 1)); |
| |
| SDNode *Result = |
| CurDAG->getMachineNode(MaskedOpc, DL, True->getVTList(), Ops); |
| Result->setFlags(True->getFlags()); |
| |
| // Replace vmerge.vvm node by Result. |
| ReplaceUses(SDValue(N, 0), SDValue(Result, 0)); |
| |
| // Replace another value of True. E.g. chain and VL. |
| for (unsigned Idx = 1; Idx < True->getNumValues(); ++Idx) |
| ReplaceUses(True.getValue(Idx), SDValue(Result, Idx)); |
| |
| // Try to transform Result to unmasked intrinsic. |
| doPeepholeMaskedRVV(Result); |
| return true; |
| } |
| |
| // Transform (VMERGE_VVM_<LMUL>_TU false, false, true, allones, vl, sew) to |
| // (VADD_VI_<LMUL>_TU false, true, 0, vl, sew). It may decrease uses of VMSET. |
| bool RISCVDAGToDAGISel::performVMergeToVAdd(SDNode *N) { |
| unsigned NewOpc; |
| switch (N->getMachineOpcode()) { |
| default: |
| llvm_unreachable("Expected VMERGE_VVM_<LMUL>_TU instruction."); |
| case RISCV::PseudoVMERGE_VVM_MF8_TU: |
| NewOpc = RISCV::PseudoVADD_VI_MF8_TU; |
| break; |
| case RISCV::PseudoVMERGE_VVM_MF4_TU: |
| NewOpc = RISCV::PseudoVADD_VI_MF4_TU; |
| break; |
| case RISCV::PseudoVMERGE_VVM_MF2_TU: |
| NewOpc = RISCV::PseudoVADD_VI_MF2_TU; |
| break; |
| case RISCV::PseudoVMERGE_VVM_M1_TU: |
| NewOpc = RISCV::PseudoVADD_VI_M1_TU; |
| break; |
| case RISCV::PseudoVMERGE_VVM_M2_TU: |
| NewOpc = RISCV::PseudoVADD_VI_M2_TU; |
| break; |
| case RISCV::PseudoVMERGE_VVM_M4_TU: |
| NewOpc = RISCV::PseudoVADD_VI_M4_TU; |
| break; |
| case RISCV::PseudoVMERGE_VVM_M8_TU: |
| NewOpc = RISCV::PseudoVADD_VI_M8_TU; |
| break; |
| } |
| |
| if (!usesAllOnesMask(N, /* MaskOpIdx */ 3)) |
| return false; |
| |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| SDValue Ops[] = {N->getOperand(1), N->getOperand(2), |
| CurDAG->getTargetConstant(0, DL, Subtarget->getXLenVT()), |
| N->getOperand(4), N->getOperand(5)}; |
| SDNode *Result = CurDAG->getMachineNode(NewOpc, DL, VT, Ops); |
| ReplaceUses(N, Result); |
| return true; |
| } |
| |
| bool RISCVDAGToDAGISel::doPeepholeMergeVVMFold() { |
| bool MadeChange = false; |
| SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| |
| while (Position != CurDAG->allnodes_begin()) { |
| SDNode *N = &*--Position; |
| if (N->use_empty() || !N->isMachineOpcode()) |
| continue; |
| |
| auto IsVMergeTU = [](unsigned Opcode) { |
| return Opcode == RISCV::PseudoVMERGE_VVM_MF8_TU || |
| Opcode == RISCV::PseudoVMERGE_VVM_MF4_TU || |
| Opcode == RISCV::PseudoVMERGE_VVM_MF2_TU || |
| Opcode == RISCV::PseudoVMERGE_VVM_M1_TU || |
| Opcode == RISCV::PseudoVMERGE_VVM_M2_TU || |
| Opcode == RISCV::PseudoVMERGE_VVM_M4_TU || |
| Opcode == RISCV::PseudoVMERGE_VVM_M8_TU; |
| }; |
| |
| auto IsVMergeTA = [](unsigned Opcode) { |
| return Opcode == RISCV::PseudoVMERGE_VVM_MF8 || |
| Opcode == RISCV::PseudoVMERGE_VVM_MF4 || |
| Opcode == RISCV::PseudoVMERGE_VVM_MF2 || |
| Opcode == RISCV::PseudoVMERGE_VVM_M1 || |
| Opcode == RISCV::PseudoVMERGE_VVM_M2 || |
| Opcode == RISCV::PseudoVMERGE_VVM_M4 || |
| Opcode == RISCV::PseudoVMERGE_VVM_M8; |
| }; |
| |
| unsigned Opc = N->getMachineOpcode(); |
| // The following optimizations require that the merge operand of N is same |
| // as the false operand of N. |
| if ((IsVMergeTU(Opc) && N->getOperand(0) == N->getOperand(1)) || |
| IsVMergeTA(Opc)) |
| MadeChange |= performCombineVMergeAndVOps(N, IsVMergeTA(Opc)); |
| if (IsVMergeTU(Opc) && N->getOperand(0) == N->getOperand(1)) |
| MadeChange |= performVMergeToVAdd(N); |
| } |
| return MadeChange; |
| } |
| |
| // This pass converts a legalized DAG into a RISCV-specific DAG, ready |
| // for instruction scheduling. |
| FunctionPass *llvm::createRISCVISelDag(RISCVTargetMachine &TM, |
| CodeGenOpt::Level OptLevel) { |
| return new RISCVDAGToDAGISel(TM, OptLevel); |
| } |
| |
| char RISCVDAGToDAGISel::ID = 0; |
| |
| INITIALIZE_PASS(RISCVDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false) |