| //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements ELF object file writer information. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/ADT/iterator.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/MC/MCAsmBackend.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCAsmLayout.h" |
| #include "llvm/MC/MCAssembler.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCELFObjectWriter.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCFixup.h" |
| #include "llvm/MC/MCFixupKindInfo.h" |
| #include "llvm/MC/MCFragment.h" |
| #include "llvm/MC/MCObjectWriter.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCSectionELF.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCSymbolELF.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/MC/MCValue.h" |
| #include "llvm/MC/StringTableBuilder.h" |
| #include "llvm/Support/Alignment.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compression.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/EndianStream.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Host.h" |
| #include "llvm/Support/LEB128.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/SMLoc.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <map> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #undef DEBUG_TYPE |
| #define DEBUG_TYPE "reloc-info" |
| |
| namespace { |
| |
| using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>; |
| |
| class ELFObjectWriter; |
| struct ELFWriter; |
| |
| bool isDwoSection(const MCSectionELF &Sec) { |
| return Sec.getName().endswith(".dwo"); |
| } |
| |
| class SymbolTableWriter { |
| ELFWriter &EWriter; |
| bool Is64Bit; |
| |
| // indexes we are going to write to .symtab_shndx. |
| std::vector<uint32_t> ShndxIndexes; |
| |
| // The numbel of symbols written so far. |
| unsigned NumWritten; |
| |
| void createSymtabShndx(); |
| |
| template <typename T> void write(T Value); |
| |
| public: |
| SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit); |
| |
| void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size, |
| uint8_t other, uint32_t shndx, bool Reserved); |
| |
| ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; } |
| }; |
| |
| struct ELFWriter { |
| ELFObjectWriter &OWriter; |
| support::endian::Writer W; |
| |
| enum DwoMode { |
| AllSections, |
| NonDwoOnly, |
| DwoOnly, |
| } Mode; |
| |
| static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout); |
| static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, |
| bool Used, bool Renamed); |
| |
| /// Helper struct for containing some precomputed information on symbols. |
| struct ELFSymbolData { |
| const MCSymbolELF *Symbol; |
| StringRef Name; |
| uint32_t SectionIndex; |
| uint32_t Order; |
| }; |
| |
| /// @} |
| /// @name Symbol Table Data |
| /// @{ |
| |
| StringTableBuilder StrTabBuilder{StringTableBuilder::ELF}; |
| |
| /// @} |
| |
| // This holds the symbol table index of the last local symbol. |
| unsigned LastLocalSymbolIndex; |
| // This holds the .strtab section index. |
| unsigned StringTableIndex; |
| // This holds the .symtab section index. |
| unsigned SymbolTableIndex; |
| |
| // Sections in the order they are to be output in the section table. |
| std::vector<const MCSectionELF *> SectionTable; |
| unsigned addToSectionTable(const MCSectionELF *Sec); |
| |
| // TargetObjectWriter wrappers. |
| bool is64Bit() const; |
| bool usesRela(const MCSectionELF &Sec) const; |
| |
| uint64_t align(Align Alignment); |
| |
| bool maybeWriteCompression(uint32_t ChType, uint64_t Size, |
| SmallVectorImpl<uint8_t> &CompressedContents, |
| Align Alignment); |
| |
| public: |
| ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS, |
| bool IsLittleEndian, DwoMode Mode) |
| : OWriter(OWriter), |
| W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {} |
| |
| void WriteWord(uint64_t Word) { |
| if (is64Bit()) |
| W.write<uint64_t>(Word); |
| else |
| W.write<uint32_t>(Word); |
| } |
| |
| template <typename T> void write(T Val) { |
| W.write(Val); |
| } |
| |
| void writeHeader(const MCAssembler &Asm); |
| |
| void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, |
| ELFSymbolData &MSD, const MCAsmLayout &Layout); |
| |
| // Start and end offset of each section |
| using SectionOffsetsTy = |
| std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>; |
| |
| // Map from a signature symbol to the group section index |
| using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>; |
| |
| /// Compute the symbol table data |
| /// |
| /// \param Asm - The assembler. |
| /// \param SectionIndexMap - Maps a section to its index. |
| /// \param RevGroupMap - Maps a signature symbol to the group section. |
| void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout, |
| const SectionIndexMapTy &SectionIndexMap, |
| const RevGroupMapTy &RevGroupMap, |
| SectionOffsetsTy &SectionOffsets); |
| |
| void writeAddrsigSection(); |
| |
| MCSectionELF *createRelocationSection(MCContext &Ctx, |
| const MCSectionELF &Sec); |
| |
| void createMemtagRelocs(MCAssembler &Asm); |
| |
| void writeSectionHeader(const MCAsmLayout &Layout, |
| const SectionIndexMapTy &SectionIndexMap, |
| const SectionOffsetsTy &SectionOffsets); |
| |
| void writeSectionData(const MCAssembler &Asm, MCSection &Sec, |
| const MCAsmLayout &Layout); |
| |
| void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, |
| uint64_t Address, uint64_t Offset, uint64_t Size, |
| uint32_t Link, uint32_t Info, MaybeAlign Alignment, |
| uint64_t EntrySize); |
| |
| void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec); |
| |
| uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout); |
| void writeSection(const SectionIndexMapTy &SectionIndexMap, |
| uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size, |
| const MCSectionELF &Section); |
| }; |
| |
| class ELFObjectWriter : public MCObjectWriter { |
| /// The target specific ELF writer instance. |
| std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter; |
| |
| DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations; |
| |
| DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames; |
| |
| bool SeenGnuAbi = false; |
| |
| bool hasRelocationAddend() const; |
| |
| bool shouldRelocateWithSymbol(const MCAssembler &Asm, |
| const MCSymbolRefExpr *RefA, |
| const MCSymbolELF *Sym, uint64_t C, |
| unsigned Type) const; |
| |
| public: |
| ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW) |
| : TargetObjectWriter(std::move(MOTW)) {} |
| |
| void reset() override { |
| SeenGnuAbi = false; |
| Relocations.clear(); |
| Renames.clear(); |
| MCObjectWriter::reset(); |
| } |
| |
| bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm, |
| const MCSymbol &SymA, |
| const MCFragment &FB, bool InSet, |
| bool IsPCRel) const override; |
| |
| virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc, |
| const MCSectionELF *From, |
| const MCSectionELF *To) { |
| return true; |
| } |
| |
| void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, |
| const MCFragment *Fragment, const MCFixup &Fixup, |
| MCValue Target, uint64_t &FixedValue) override; |
| |
| void executePostLayoutBinding(MCAssembler &Asm, |
| const MCAsmLayout &Layout) override; |
| |
| void markGnuAbi() override { SeenGnuAbi = true; } |
| bool seenGnuAbi() const { return SeenGnuAbi; } |
| |
| friend struct ELFWriter; |
| }; |
| |
| class ELFSingleObjectWriter : public ELFObjectWriter { |
| raw_pwrite_stream &OS; |
| bool IsLittleEndian; |
| |
| public: |
| ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, |
| raw_pwrite_stream &OS, bool IsLittleEndian) |
| : ELFObjectWriter(std::move(MOTW)), OS(OS), |
| IsLittleEndian(IsLittleEndian) {} |
| |
| uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { |
| return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections) |
| .writeObject(Asm, Layout); |
| } |
| |
| friend struct ELFWriter; |
| }; |
| |
| class ELFDwoObjectWriter : public ELFObjectWriter { |
| raw_pwrite_stream &OS, &DwoOS; |
| bool IsLittleEndian; |
| |
| public: |
| ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, |
| raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, |
| bool IsLittleEndian) |
| : ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS), |
| IsLittleEndian(IsLittleEndian) {} |
| |
| bool checkRelocation(MCContext &Ctx, SMLoc Loc, const MCSectionELF *From, |
| const MCSectionELF *To) override { |
| if (isDwoSection(*From)) { |
| Ctx.reportError(Loc, "A dwo section may not contain relocations"); |
| return false; |
| } |
| if (To && isDwoSection(*To)) { |
| Ctx.reportError(Loc, "A relocation may not refer to a dwo section"); |
| return false; |
| } |
| return true; |
| } |
| |
| uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override { |
| uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly) |
| .writeObject(Asm, Layout); |
| Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly) |
| .writeObject(Asm, Layout); |
| return Size; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| uint64_t ELFWriter::align(Align Alignment) { |
| uint64_t Offset = W.OS.tell(); |
| uint64_t NewOffset = alignTo(Offset, Alignment); |
| W.OS.write_zeros(NewOffset - Offset); |
| return NewOffset; |
| } |
| |
| unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) { |
| SectionTable.push_back(Sec); |
| StrTabBuilder.add(Sec->getName()); |
| return SectionTable.size(); |
| } |
| |
| void SymbolTableWriter::createSymtabShndx() { |
| if (!ShndxIndexes.empty()) |
| return; |
| |
| ShndxIndexes.resize(NumWritten); |
| } |
| |
| template <typename T> void SymbolTableWriter::write(T Value) { |
| EWriter.write(Value); |
| } |
| |
| SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit) |
| : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {} |
| |
| void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value, |
| uint64_t size, uint8_t other, |
| uint32_t shndx, bool Reserved) { |
| bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved; |
| |
| if (LargeIndex) |
| createSymtabShndx(); |
| |
| if (!ShndxIndexes.empty()) { |
| if (LargeIndex) |
| ShndxIndexes.push_back(shndx); |
| else |
| ShndxIndexes.push_back(0); |
| } |
| |
| uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx; |
| |
| if (Is64Bit) { |
| write(name); // st_name |
| write(info); // st_info |
| write(other); // st_other |
| write(Index); // st_shndx |
| write(value); // st_value |
| write(size); // st_size |
| } else { |
| write(name); // st_name |
| write(uint32_t(value)); // st_value |
| write(uint32_t(size)); // st_size |
| write(info); // st_info |
| write(other); // st_other |
| write(Index); // st_shndx |
| } |
| |
| ++NumWritten; |
| } |
| |
| bool ELFWriter::is64Bit() const { |
| return OWriter.TargetObjectWriter->is64Bit(); |
| } |
| |
| bool ELFWriter::usesRela(const MCSectionELF &Sec) const { |
| return OWriter.hasRelocationAddend() && |
| Sec.getType() != ELF::SHT_LLVM_CALL_GRAPH_PROFILE; |
| } |
| |
| // Emit the ELF header. |
| void ELFWriter::writeHeader(const MCAssembler &Asm) { |
| // ELF Header |
| // ---------- |
| // |
| // Note |
| // ---- |
| // emitWord method behaves differently for ELF32 and ELF64, writing |
| // 4 bytes in the former and 8 in the latter. |
| |
| W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3] |
| |
| W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS] |
| |
| // e_ident[EI_DATA] |
| W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB |
| : ELF::ELFDATA2MSB); |
| |
| W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION] |
| // e_ident[EI_OSABI] |
| uint8_t OSABI = OWriter.TargetObjectWriter->getOSABI(); |
| W.OS << char(OSABI == ELF::ELFOSABI_NONE && OWriter.seenGnuAbi() |
| ? int(ELF::ELFOSABI_GNU) |
| : OSABI); |
| // e_ident[EI_ABIVERSION] |
| W.OS << char(OWriter.TargetObjectWriter->getABIVersion()); |
| |
| W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD); |
| |
| W.write<uint16_t>(ELF::ET_REL); // e_type |
| |
| W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target |
| |
| W.write<uint32_t>(ELF::EV_CURRENT); // e_version |
| WriteWord(0); // e_entry, no entry point in .o file |
| WriteWord(0); // e_phoff, no program header for .o |
| WriteWord(0); // e_shoff = sec hdr table off in bytes |
| |
| // e_flags = whatever the target wants |
| W.write<uint32_t>(Asm.getELFHeaderEFlags()); |
| |
| // e_ehsize = ELF header size |
| W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr) |
| : sizeof(ELF::Elf32_Ehdr)); |
| |
| W.write<uint16_t>(0); // e_phentsize = prog header entry size |
| W.write<uint16_t>(0); // e_phnum = # prog header entries = 0 |
| |
| // e_shentsize = Section header entry size |
| W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr) |
| : sizeof(ELF::Elf32_Shdr)); |
| |
| // e_shnum = # of section header ents |
| W.write<uint16_t>(0); |
| |
| // e_shstrndx = Section # of '.strtab' |
| assert(StringTableIndex < ELF::SHN_LORESERVE); |
| W.write<uint16_t>(StringTableIndex); |
| } |
| |
| uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym, |
| const MCAsmLayout &Layout) { |
| if (Sym.isCommon()) |
| return Sym.getCommonAlignment()->value(); |
| |
| uint64_t Res; |
| if (!Layout.getSymbolOffset(Sym, Res)) |
| return 0; |
| |
| if (Layout.getAssembler().isThumbFunc(&Sym)) |
| Res |= 1; |
| |
| return Res; |
| } |
| |
| static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) { |
| uint8_t Type = newType; |
| |
| // Propagation rules: |
| // IFUNC > FUNC > OBJECT > NOTYPE |
| // TLS_OBJECT > OBJECT > NOTYPE |
| // |
| // dont let the new type degrade the old type |
| switch (origType) { |
| default: |
| break; |
| case ELF::STT_GNU_IFUNC: |
| if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT || |
| Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS) |
| Type = ELF::STT_GNU_IFUNC; |
| break; |
| case ELF::STT_FUNC: |
| if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || |
| Type == ELF::STT_TLS) |
| Type = ELF::STT_FUNC; |
| break; |
| case ELF::STT_OBJECT: |
| if (Type == ELF::STT_NOTYPE) |
| Type = ELF::STT_OBJECT; |
| break; |
| case ELF::STT_TLS: |
| if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE || |
| Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC) |
| Type = ELF::STT_TLS; |
| break; |
| } |
| |
| return Type; |
| } |
| |
| static bool isIFunc(const MCSymbolELF *Symbol) { |
| while (Symbol->getType() != ELF::STT_GNU_IFUNC) { |
| const MCSymbolRefExpr *Value; |
| if (!Symbol->isVariable() || |
| !(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) || |
| Value->getKind() != MCSymbolRefExpr::VK_None || |
| mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC) |
| return false; |
| Symbol = &cast<MCSymbolELF>(Value->getSymbol()); |
| } |
| return true; |
| } |
| |
| void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex, |
| ELFSymbolData &MSD, const MCAsmLayout &Layout) { |
| const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol); |
| const MCSymbolELF *Base = |
| cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol)); |
| |
| // This has to be in sync with when computeSymbolTable uses SHN_ABS or |
| // SHN_COMMON. |
| bool IsReserved = !Base || Symbol.isCommon(); |
| |
| // Binding and Type share the same byte as upper and lower nibbles |
| uint8_t Binding = Symbol.getBinding(); |
| uint8_t Type = Symbol.getType(); |
| if (isIFunc(&Symbol)) |
| Type = ELF::STT_GNU_IFUNC; |
| if (Base) { |
| Type = mergeTypeForSet(Type, Base->getType()); |
| } |
| uint8_t Info = (Binding << 4) | Type; |
| |
| // Other and Visibility share the same byte with Visibility using the lower |
| // 2 bits |
| uint8_t Visibility = Symbol.getVisibility(); |
| uint8_t Other = Symbol.getOther() | Visibility; |
| |
| uint64_t Value = SymbolValue(*MSD.Symbol, Layout); |
| uint64_t Size = 0; |
| |
| const MCExpr *ESize = MSD.Symbol->getSize(); |
| if (!ESize && Base) { |
| // For expressions like .set y, x+1, if y's size is unset, inherit from x. |
| ESize = Base->getSize(); |
| |
| // For `.size x, 2; y = x; .size y, 1; z = y; z1 = z; .symver y, y@v1`, z, |
| // z1, and y@v1's st_size equals y's. However, `Base` is `x` which will give |
| // us 2. Follow the MCSymbolRefExpr assignment chain, which covers most |
| // needs. MCBinaryExpr is not handled. |
| const MCSymbolELF *Sym = &Symbol; |
| while (Sym->isVariable()) { |
| if (auto *Expr = |
| dyn_cast<MCSymbolRefExpr>(Sym->getVariableValue(false))) { |
| Sym = cast<MCSymbolELF>(&Expr->getSymbol()); |
| if (!Sym->getSize()) |
| continue; |
| ESize = Sym->getSize(); |
| } |
| break; |
| } |
| } |
| |
| if (ESize) { |
| int64_t Res; |
| if (!ESize->evaluateKnownAbsolute(Res, Layout)) |
| report_fatal_error("Size expression must be absolute."); |
| Size = Res; |
| } |
| |
| // Write out the symbol table entry |
| Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex, |
| IsReserved); |
| } |
| |
| bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol, |
| bool Used, bool Renamed) { |
| if (Symbol.isVariable()) { |
| const MCExpr *Expr = Symbol.getVariableValue(); |
| // Target Expressions that are always inlined do not appear in the symtab |
| if (const auto *T = dyn_cast<MCTargetExpr>(Expr)) |
| if (T->inlineAssignedExpr()) |
| return false; |
| if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) { |
| if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF) |
| return false; |
| } |
| } |
| |
| if (Used) |
| return true; |
| |
| if (Renamed) |
| return false; |
| |
| if (Symbol.isVariable() && Symbol.isUndefined()) { |
| // FIXME: this is here just to diagnose the case of a var = commmon_sym. |
| Layout.getBaseSymbol(Symbol); |
| return false; |
| } |
| |
| if (Symbol.isTemporary()) |
| return false; |
| |
| if (Symbol.getType() == ELF::STT_SECTION) |
| return false; |
| |
| return true; |
| } |
| |
| void ELFWriter::createMemtagRelocs(MCAssembler &Asm) { |
| MCSectionELF *MemtagRelocs = nullptr; |
| for (const MCSymbol &Sym : Asm.symbols()) { |
| const auto &SymE = cast<MCSymbolELF>(Sym); |
| if (!SymE.isMemtag()) |
| continue; |
| if (MemtagRelocs == nullptr) { |
| MemtagRelocs = OWriter.TargetObjectWriter->getMemtagRelocsSection(Asm.getContext()); |
| if (MemtagRelocs == nullptr) |
| report_fatal_error("Tagged globals are not available on this architecture."); |
| Asm.registerSection(*MemtagRelocs); |
| } |
| ELFRelocationEntry Rec(0, &SymE, ELF::R_AARCH64_NONE, 0, nullptr, 0); |
| OWriter.Relocations[MemtagRelocs].push_back(Rec); |
| } |
| } |
| |
| void ELFWriter::computeSymbolTable( |
| MCAssembler &Asm, const MCAsmLayout &Layout, |
| const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap, |
| SectionOffsetsTy &SectionOffsets) { |
| MCContext &Ctx = Asm.getContext(); |
| SymbolTableWriter Writer(*this, is64Bit()); |
| |
| // Symbol table |
| unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32; |
| MCSectionELF *SymtabSection = |
| Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize); |
| SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4)); |
| SymbolTableIndex = addToSectionTable(SymtabSection); |
| |
| uint64_t SecStart = align(SymtabSection->getAlign()); |
| |
| // The first entry is the undefined symbol entry. |
| Writer.writeSymbol(0, 0, 0, 0, 0, 0, false); |
| |
| std::vector<ELFSymbolData> LocalSymbolData; |
| std::vector<ELFSymbolData> ExternalSymbolData; |
| MutableArrayRef<std::pair<std::string, size_t>> FileNames = |
| Asm.getFileNames(); |
| for (const std::pair<std::string, size_t> &F : FileNames) |
| StrTabBuilder.add(F.first); |
| |
| // Add the data for the symbols. |
| bool HasLargeSectionIndex = false; |
| for (auto It : llvm::enumerate(Asm.symbols())) { |
| const auto &Symbol = cast<MCSymbolELF>(It.value()); |
| bool Used = Symbol.isUsedInReloc(); |
| bool WeakrefUsed = Symbol.isWeakrefUsedInReloc(); |
| bool isSignature = Symbol.isSignature(); |
| |
| if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature, |
| OWriter.Renames.count(&Symbol))) |
| continue; |
| |
| if (Symbol.isTemporary() && Symbol.isUndefined()) { |
| Ctx.reportError(SMLoc(), "Undefined temporary symbol " + Symbol.getName()); |
| continue; |
| } |
| |
| ELFSymbolData MSD; |
| MSD.Symbol = cast<MCSymbolELF>(&Symbol); |
| MSD.Order = It.index(); |
| |
| bool Local = Symbol.getBinding() == ELF::STB_LOCAL; |
| assert(Local || !Symbol.isTemporary()); |
| |
| if (Symbol.isAbsolute()) { |
| MSD.SectionIndex = ELF::SHN_ABS; |
| } else if (Symbol.isCommon()) { |
| if (Symbol.isTargetCommon()) { |
| MSD.SectionIndex = Symbol.getIndex(); |
| } else { |
| assert(!Local); |
| MSD.SectionIndex = ELF::SHN_COMMON; |
| } |
| } else if (Symbol.isUndefined()) { |
| if (isSignature && !Used) { |
| MSD.SectionIndex = RevGroupMap.lookup(&Symbol); |
| if (MSD.SectionIndex >= ELF::SHN_LORESERVE) |
| HasLargeSectionIndex = true; |
| } else { |
| MSD.SectionIndex = ELF::SHN_UNDEF; |
| } |
| } else { |
| const MCSectionELF &Section = |
| static_cast<const MCSectionELF &>(Symbol.getSection()); |
| |
| // We may end up with a situation when section symbol is technically |
| // defined, but should not be. That happens because we explicitly |
| // pre-create few .debug_* sections to have accessors. |
| // And if these sections were not really defined in the code, but were |
| // referenced, we simply error out. |
| if (!Section.isRegistered()) { |
| assert(static_cast<const MCSymbolELF &>(Symbol).getType() == |
| ELF::STT_SECTION); |
| Ctx.reportError(SMLoc(), |
| "Undefined section reference: " + Symbol.getName()); |
| continue; |
| } |
| |
| if (Mode == NonDwoOnly && isDwoSection(Section)) |
| continue; |
| MSD.SectionIndex = SectionIndexMap.lookup(&Section); |
| assert(MSD.SectionIndex && "Invalid section index!"); |
| if (MSD.SectionIndex >= ELF::SHN_LORESERVE) |
| HasLargeSectionIndex = true; |
| } |
| |
| StringRef Name = Symbol.getName(); |
| |
| // Sections have their own string table |
| if (Symbol.getType() != ELF::STT_SECTION) { |
| MSD.Name = Name; |
| StrTabBuilder.add(Name); |
| } |
| |
| if (Local) |
| LocalSymbolData.push_back(MSD); |
| else |
| ExternalSymbolData.push_back(MSD); |
| } |
| |
| // This holds the .symtab_shndx section index. |
| unsigned SymtabShndxSectionIndex = 0; |
| |
| if (HasLargeSectionIndex) { |
| MCSectionELF *SymtabShndxSection = |
| Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4); |
| SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection); |
| SymtabShndxSection->setAlignment(Align(4)); |
| } |
| |
| StrTabBuilder.finalize(); |
| |
| // Make the first STT_FILE precede previous local symbols. |
| unsigned Index = 1; |
| auto FileNameIt = FileNames.begin(); |
| if (!FileNames.empty()) |
| FileNames[0].second = 0; |
| |
| for (ELFSymbolData &MSD : LocalSymbolData) { |
| // Emit STT_FILE symbols before their associated local symbols. |
| for (; FileNameIt != FileNames.end() && FileNameIt->second <= MSD.Order; |
| ++FileNameIt) { |
| Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first), |
| ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, |
| ELF::SHN_ABS, true); |
| ++Index; |
| } |
| |
| unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION |
| ? 0 |
| : StrTabBuilder.getOffset(MSD.Name); |
| MSD.Symbol->setIndex(Index++); |
| writeSymbol(Writer, StringIndex, MSD, Layout); |
| } |
| for (; FileNameIt != FileNames.end(); ++FileNameIt) { |
| Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first), |
| ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT, |
| ELF::SHN_ABS, true); |
| ++Index; |
| } |
| |
| // Write the symbol table entries. |
| LastLocalSymbolIndex = Index; |
| |
| for (ELFSymbolData &MSD : ExternalSymbolData) { |
| unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name); |
| MSD.Symbol->setIndex(Index++); |
| writeSymbol(Writer, StringIndex, MSD, Layout); |
| assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL); |
| } |
| |
| uint64_t SecEnd = W.OS.tell(); |
| SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd); |
| |
| ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes(); |
| if (ShndxIndexes.empty()) { |
| assert(SymtabShndxSectionIndex == 0); |
| return; |
| } |
| assert(SymtabShndxSectionIndex != 0); |
| |
| SecStart = W.OS.tell(); |
| const MCSectionELF *SymtabShndxSection = |
| SectionTable[SymtabShndxSectionIndex - 1]; |
| for (uint32_t Index : ShndxIndexes) |
| write(Index); |
| SecEnd = W.OS.tell(); |
| SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd); |
| } |
| |
| void ELFWriter::writeAddrsigSection() { |
| for (const MCSymbol *Sym : OWriter.AddrsigSyms) |
| if (Sym->getIndex() != 0) |
| encodeULEB128(Sym->getIndex(), W.OS); |
| } |
| |
| MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx, |
| const MCSectionELF &Sec) { |
| if (OWriter.Relocations[&Sec].empty()) |
| return nullptr; |
| |
| const StringRef SectionName = Sec.getName(); |
| bool Rela = usesRela(Sec); |
| std::string RelaSectionName = Rela ? ".rela" : ".rel"; |
| RelaSectionName += SectionName; |
| |
| unsigned EntrySize; |
| if (Rela) |
| EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela); |
| else |
| EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel); |
| |
| unsigned Flags = ELF::SHF_INFO_LINK; |
| if (Sec.getFlags() & ELF::SHF_GROUP) |
| Flags = ELF::SHF_GROUP; |
| |
| MCSectionELF *RelaSection = Ctx.createELFRelSection( |
| RelaSectionName, Rela ? ELF::SHT_RELA : ELF::SHT_REL, Flags, EntrySize, |
| Sec.getGroup(), &Sec); |
| RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4)); |
| return RelaSection; |
| } |
| |
| // Include the debug info compression header. |
| bool ELFWriter::maybeWriteCompression( |
| uint32_t ChType, uint64_t Size, |
| SmallVectorImpl<uint8_t> &CompressedContents, Align Alignment) { |
| uint64_t HdrSize = |
| is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr); |
| if (Size <= HdrSize + CompressedContents.size()) |
| return false; |
| // Platform specific header is followed by compressed data. |
| if (is64Bit()) { |
| // Write Elf64_Chdr header. |
| write(static_cast<ELF::Elf64_Word>(ChType)); |
| write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field. |
| write(static_cast<ELF::Elf64_Xword>(Size)); |
| write(static_cast<ELF::Elf64_Xword>(Alignment.value())); |
| } else { |
| // Write Elf32_Chdr header otherwise. |
| write(static_cast<ELF::Elf32_Word>(ChType)); |
| write(static_cast<ELF::Elf32_Word>(Size)); |
| write(static_cast<ELF::Elf32_Word>(Alignment.value())); |
| } |
| return true; |
| } |
| |
| void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec, |
| const MCAsmLayout &Layout) { |
| MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); |
| StringRef SectionName = Section.getName(); |
| |
| auto &MC = Asm.getContext(); |
| const auto &MAI = MC.getAsmInfo(); |
| |
| const DebugCompressionType CompressionType = MAI->compressDebugSections(); |
| if (CompressionType == DebugCompressionType::None || |
| !SectionName.startswith(".debug_")) { |
| Asm.writeSectionData(W.OS, &Section, Layout); |
| return; |
| } |
| |
| SmallVector<char, 128> UncompressedData; |
| raw_svector_ostream VecOS(UncompressedData); |
| Asm.writeSectionData(VecOS, &Section, Layout); |
| ArrayRef<uint8_t> Uncompressed = |
| ArrayRef(reinterpret_cast<uint8_t *>(UncompressedData.data()), |
| UncompressedData.size()); |
| |
| SmallVector<uint8_t, 128> Compressed; |
| uint32_t ChType; |
| switch (CompressionType) { |
| case DebugCompressionType::None: |
| llvm_unreachable("has been handled"); |
| case DebugCompressionType::Zlib: |
| ChType = ELF::ELFCOMPRESS_ZLIB; |
| break; |
| case DebugCompressionType::Zstd: |
| ChType = ELF::ELFCOMPRESS_ZSTD; |
| break; |
| } |
| compression::compress(compression::Params(CompressionType), Uncompressed, |
| Compressed); |
| if (!maybeWriteCompression(ChType, UncompressedData.size(), Compressed, |
| Sec.getAlign())) { |
| W.OS << UncompressedData; |
| return; |
| } |
| |
| Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED); |
| // Alignment field should reflect the requirements of |
| // the compressed section header. |
| Section.setAlignment(is64Bit() ? Align(8) : Align(4)); |
| W.OS << toStringRef(Compressed); |
| } |
| |
| void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags, |
| uint64_t Address, uint64_t Offset, |
| uint64_t Size, uint32_t Link, uint32_t Info, |
| MaybeAlign Alignment, uint64_t EntrySize) { |
| W.write<uint32_t>(Name); // sh_name: index into string table |
| W.write<uint32_t>(Type); // sh_type |
| WriteWord(Flags); // sh_flags |
| WriteWord(Address); // sh_addr |
| WriteWord(Offset); // sh_offset |
| WriteWord(Size); // sh_size |
| W.write<uint32_t>(Link); // sh_link |
| W.write<uint32_t>(Info); // sh_info |
| WriteWord(Alignment ? Alignment->value() : 0); // sh_addralign |
| WriteWord(EntrySize); // sh_entsize |
| } |
| |
| void ELFWriter::writeRelocations(const MCAssembler &Asm, |
| const MCSectionELF &Sec) { |
| std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec]; |
| |
| // We record relocations by pushing to the end of a vector. Reverse the vector |
| // to get the relocations in the order they were created. |
| // In most cases that is not important, but it can be for special sections |
| // (.eh_frame) or specific relocations (TLS optimizations on SystemZ). |
| std::reverse(Relocs.begin(), Relocs.end()); |
| |
| // Sort the relocation entries. MIPS needs this. |
| OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs); |
| |
| const bool Rela = usesRela(Sec); |
| for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { |
| const ELFRelocationEntry &Entry = Relocs[e - i - 1]; |
| unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0; |
| |
| if (is64Bit()) { |
| write(Entry.Offset); |
| if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { |
| write(uint32_t(Index)); |
| |
| write(OWriter.TargetObjectWriter->getRSsym(Entry.Type)); |
| write(OWriter.TargetObjectWriter->getRType3(Entry.Type)); |
| write(OWriter.TargetObjectWriter->getRType2(Entry.Type)); |
| write(OWriter.TargetObjectWriter->getRType(Entry.Type)); |
| } else { |
| struct ELF::Elf64_Rela ERE64; |
| ERE64.setSymbolAndType(Index, Entry.Type); |
| write(ERE64.r_info); |
| } |
| if (Rela) |
| write(Entry.Addend); |
| } else { |
| write(uint32_t(Entry.Offset)); |
| |
| struct ELF::Elf32_Rela ERE32; |
| ERE32.setSymbolAndType(Index, Entry.Type); |
| write(ERE32.r_info); |
| |
| if (Rela) |
| write(uint32_t(Entry.Addend)); |
| |
| if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) { |
| if (uint32_t RType = |
| OWriter.TargetObjectWriter->getRType2(Entry.Type)) { |
| write(uint32_t(Entry.Offset)); |
| |
| ERE32.setSymbolAndType(0, RType); |
| write(ERE32.r_info); |
| write(uint32_t(0)); |
| } |
| if (uint32_t RType = |
| OWriter.TargetObjectWriter->getRType3(Entry.Type)) { |
| write(uint32_t(Entry.Offset)); |
| |
| ERE32.setSymbolAndType(0, RType); |
| write(ERE32.r_info); |
| write(uint32_t(0)); |
| } |
| } |
| } |
| } |
| } |
| |
| void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap, |
| uint32_t GroupSymbolIndex, uint64_t Offset, |
| uint64_t Size, const MCSectionELF &Section) { |
| uint64_t sh_link = 0; |
| uint64_t sh_info = 0; |
| |
| switch(Section.getType()) { |
| default: |
| // Nothing to do. |
| break; |
| |
| case ELF::SHT_DYNAMIC: |
| llvm_unreachable("SHT_DYNAMIC in a relocatable object"); |
| |
| case ELF::SHT_REL: |
| case ELF::SHT_RELA: { |
| sh_link = SymbolTableIndex; |
| assert(sh_link && ".symtab not found"); |
| const MCSection *InfoSection = Section.getLinkedToSection(); |
| sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection)); |
| break; |
| } |
| |
| case ELF::SHT_SYMTAB: |
| sh_link = StringTableIndex; |
| sh_info = LastLocalSymbolIndex; |
| break; |
| |
| case ELF::SHT_SYMTAB_SHNDX: |
| case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: |
| case ELF::SHT_LLVM_ADDRSIG: |
| sh_link = SymbolTableIndex; |
| break; |
| |
| case ELF::SHT_GROUP: |
| sh_link = SymbolTableIndex; |
| sh_info = GroupSymbolIndex; |
| break; |
| } |
| |
| if (Section.getFlags() & ELF::SHF_LINK_ORDER) { |
| // If the value in the associated metadata is not a definition, Sym will be |
| // undefined. Represent this with sh_link=0. |
| const MCSymbol *Sym = Section.getLinkedToSymbol(); |
| if (Sym && Sym->isInSection()) { |
| const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection()); |
| sh_link = SectionIndexMap.lookup(Sec); |
| } |
| } |
| |
| WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getName()), |
| Section.getType(), Section.getFlags(), 0, Offset, Size, |
| sh_link, sh_info, Section.getAlign(), |
| Section.getEntrySize()); |
| } |
| |
| void ELFWriter::writeSectionHeader( |
| const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap, |
| const SectionOffsetsTy &SectionOffsets) { |
| const unsigned NumSections = SectionTable.size(); |
| |
| // Null section first. |
| uint64_t FirstSectionSize = |
| (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0; |
| WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, std::nullopt, 0); |
| |
| for (const MCSectionELF *Section : SectionTable) { |
| uint32_t GroupSymbolIndex; |
| unsigned Type = Section->getType(); |
| if (Type != ELF::SHT_GROUP) |
| GroupSymbolIndex = 0; |
| else |
| GroupSymbolIndex = Section->getGroup()->getIndex(); |
| |
| const std::pair<uint64_t, uint64_t> &Offsets = |
| SectionOffsets.find(Section)->second; |
| uint64_t Size; |
| if (Type == ELF::SHT_NOBITS) |
| Size = Layout.getSectionAddressSize(Section); |
| else |
| Size = Offsets.second - Offsets.first; |
| |
| writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size, |
| *Section); |
| } |
| } |
| |
| uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { |
| uint64_t StartOffset = W.OS.tell(); |
| |
| MCContext &Ctx = Asm.getContext(); |
| MCSectionELF *StrtabSection = |
| Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0); |
| StringTableIndex = addToSectionTable(StrtabSection); |
| |
| createMemtagRelocs(Asm); |
| |
| RevGroupMapTy RevGroupMap; |
| SectionIndexMapTy SectionIndexMap; |
| |
| std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers; |
| |
| // Write out the ELF header ... |
| writeHeader(Asm); |
| |
| // ... then the sections ... |
| SectionOffsetsTy SectionOffsets; |
| std::vector<MCSectionELF *> Groups; |
| std::vector<MCSectionELF *> Relocations; |
| for (MCSection &Sec : Asm) { |
| MCSectionELF &Section = static_cast<MCSectionELF &>(Sec); |
| if (Mode == NonDwoOnly && isDwoSection(Section)) |
| continue; |
| if (Mode == DwoOnly && !isDwoSection(Section)) |
| continue; |
| |
| // Remember the offset into the file for this section. |
| const uint64_t SecStart = align(Section.getAlign()); |
| |
| const MCSymbolELF *SignatureSymbol = Section.getGroup(); |
| writeSectionData(Asm, Section, Layout); |
| |
| uint64_t SecEnd = W.OS.tell(); |
| SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd); |
| |
| MCSectionELF *RelSection = createRelocationSection(Ctx, Section); |
| |
| if (SignatureSymbol) { |
| unsigned &GroupIdx = RevGroupMap[SignatureSymbol]; |
| if (!GroupIdx) { |
| MCSectionELF *Group = |
| Ctx.createELFGroupSection(SignatureSymbol, Section.isComdat()); |
| GroupIdx = addToSectionTable(Group); |
| Group->setAlignment(Align(4)); |
| Groups.push_back(Group); |
| } |
| std::vector<const MCSectionELF *> &Members = |
| GroupMembers[SignatureSymbol]; |
| Members.push_back(&Section); |
| if (RelSection) |
| Members.push_back(RelSection); |
| } |
| |
| SectionIndexMap[&Section] = addToSectionTable(&Section); |
| if (RelSection) { |
| SectionIndexMap[RelSection] = addToSectionTable(RelSection); |
| Relocations.push_back(RelSection); |
| } |
| |
| OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section); |
| } |
| |
| for (MCSectionELF *Group : Groups) { |
| // Remember the offset into the file for this section. |
| const uint64_t SecStart = align(Group->getAlign()); |
| |
| const MCSymbol *SignatureSymbol = Group->getGroup(); |
| assert(SignatureSymbol); |
| write(uint32_t(Group->isComdat() ? unsigned(ELF::GRP_COMDAT) : 0)); |
| for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) { |
| uint32_t SecIndex = SectionIndexMap.lookup(Member); |
| write(SecIndex); |
| } |
| |
| uint64_t SecEnd = W.OS.tell(); |
| SectionOffsets[Group] = std::make_pair(SecStart, SecEnd); |
| } |
| |
| if (Mode == DwoOnly) { |
| // dwo files don't have symbol tables or relocations, but they do have |
| // string tables. |
| StrTabBuilder.finalize(); |
| } else { |
| MCSectionELF *AddrsigSection; |
| if (OWriter.EmitAddrsigSection) { |
| AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG, |
| ELF::SHF_EXCLUDE); |
| addToSectionTable(AddrsigSection); |
| } |
| |
| // Compute symbol table information. |
| computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, |
| SectionOffsets); |
| |
| for (MCSectionELF *RelSection : Relocations) { |
| // Remember the offset into the file for this section. |
| const uint64_t SecStart = align(RelSection->getAlign()); |
| |
| writeRelocations(Asm, |
| cast<MCSectionELF>(*RelSection->getLinkedToSection())); |
| |
| uint64_t SecEnd = W.OS.tell(); |
| SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd); |
| } |
| |
| if (OWriter.EmitAddrsigSection) { |
| uint64_t SecStart = W.OS.tell(); |
| writeAddrsigSection(); |
| uint64_t SecEnd = W.OS.tell(); |
| SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd); |
| } |
| } |
| |
| { |
| uint64_t SecStart = W.OS.tell(); |
| StrTabBuilder.write(W.OS); |
| SectionOffsets[StrtabSection] = std::make_pair(SecStart, W.OS.tell()); |
| } |
| |
| const uint64_t SectionHeaderOffset = align(is64Bit() ? Align(8) : Align(4)); |
| |
| // ... then the section header table ... |
| writeSectionHeader(Layout, SectionIndexMap, SectionOffsets); |
| |
| uint16_t NumSections = support::endian::byte_swap<uint16_t>( |
| (SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF |
| : SectionTable.size() + 1, |
| W.Endian); |
| unsigned NumSectionsOffset; |
| |
| auto &Stream = static_cast<raw_pwrite_stream &>(W.OS); |
| if (is64Bit()) { |
| uint64_t Val = |
| support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian); |
| Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), |
| offsetof(ELF::Elf64_Ehdr, e_shoff)); |
| NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum); |
| } else { |
| uint32_t Val = |
| support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian); |
| Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val), |
| offsetof(ELF::Elf32_Ehdr, e_shoff)); |
| NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum); |
| } |
| Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections), |
| NumSectionsOffset); |
| |
| return W.OS.tell() - StartOffset; |
| } |
| |
| bool ELFObjectWriter::hasRelocationAddend() const { |
| return TargetObjectWriter->hasRelocationAddend(); |
| } |
| |
| void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm, |
| const MCAsmLayout &Layout) { |
| // The presence of symbol versions causes undefined symbols and |
| // versions declared with @@@ to be renamed. |
| for (const MCAssembler::Symver &S : Asm.Symvers) { |
| StringRef AliasName = S.Name; |
| const auto &Symbol = cast<MCSymbolELF>(*S.Sym); |
| size_t Pos = AliasName.find('@'); |
| assert(Pos != StringRef::npos); |
| |
| StringRef Prefix = AliasName.substr(0, Pos); |
| StringRef Rest = AliasName.substr(Pos); |
| StringRef Tail = Rest; |
| if (Rest.startswith("@@@")) |
| Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1); |
| |
| auto *Alias = |
| cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail)); |
| Asm.registerSymbol(*Alias); |
| const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext()); |
| Alias->setVariableValue(Value); |
| |
| // Aliases defined with .symvar copy the binding from the symbol they alias. |
| // This is the first place we are able to copy this information. |
| Alias->setBinding(Symbol.getBinding()); |
| Alias->setVisibility(Symbol.getVisibility()); |
| Alias->setOther(Symbol.getOther()); |
| |
| if (!Symbol.isUndefined() && S.KeepOriginalSym) |
| continue; |
| |
| if (Symbol.isUndefined() && Rest.startswith("@@") && |
| !Rest.startswith("@@@")) { |
| Asm.getContext().reportError(S.Loc, "default version symbol " + |
| AliasName + " must be defined"); |
| continue; |
| } |
| |
| if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) { |
| Asm.getContext().reportError(S.Loc, Twine("multiple versions for ") + |
| Symbol.getName()); |
| continue; |
| } |
| |
| Renames.insert(std::make_pair(&Symbol, Alias)); |
| } |
| |
| for (const MCSymbol *&Sym : AddrsigSyms) { |
| if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym))) |
| Sym = R; |
| if (Sym->isInSection() && Sym->getName().startswith(".L")) |
| Sym = Sym->getSection().getBeginSymbol(); |
| Sym->setUsedInReloc(); |
| } |
| } |
| |
| // It is always valid to create a relocation with a symbol. It is preferable |
| // to use a relocation with a section if that is possible. Using the section |
| // allows us to omit some local symbols from the symbol table. |
| bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm, |
| const MCSymbolRefExpr *RefA, |
| const MCSymbolELF *Sym, |
| uint64_t C, |
| unsigned Type) const { |
| // A PCRel relocation to an absolute value has no symbol (or section). We |
| // represent that with a relocation to a null section. |
| if (!RefA) |
| return false; |
| |
| MCSymbolRefExpr::VariantKind Kind = RefA->getKind(); |
| switch (Kind) { |
| default: |
| break; |
| // The .odp creation emits a relocation against the symbol ".TOC." which |
| // create a R_PPC64_TOC relocation. However the relocation symbol name |
| // in final object creation should be NULL, since the symbol does not |
| // really exist, it is just the reference to TOC base for the current |
| // object file. Since the symbol is undefined, returning false results |
| // in a relocation with a null section which is the desired result. |
| case MCSymbolRefExpr::VK_PPC_TOCBASE: |
| return false; |
| |
| // These VariantKind cause the relocation to refer to something other than |
| // the symbol itself, like a linker generated table. Since the address of |
| // symbol is not relevant, we cannot replace the symbol with the |
| // section and patch the difference in the addend. |
| case MCSymbolRefExpr::VK_GOT: |
| case MCSymbolRefExpr::VK_PLT: |
| case MCSymbolRefExpr::VK_GOTPCREL: |
| case MCSymbolRefExpr::VK_GOTPCREL_NORELAX: |
| case MCSymbolRefExpr::VK_PPC_GOT_LO: |
| case MCSymbolRefExpr::VK_PPC_GOT_HI: |
| case MCSymbolRefExpr::VK_PPC_GOT_HA: |
| return true; |
| } |
| |
| // An undefined symbol is not in any section, so the relocation has to point |
| // to the symbol itself. |
| assert(Sym && "Expected a symbol"); |
| if (Sym->isUndefined()) |
| return true; |
| |
| // For memory-tagged symbols, ensure that the relocation uses the symbol. For |
| // tagged symbols, we emit an empty relocation (R_AARCH64_NONE) in a special |
| // section (SHT_AARCH64_MEMTAG_GLOBALS_STATIC) to indicate to the linker that |
| // this global needs to be tagged. In addition, the linker needs to know |
| // whether to emit a special addend when relocating `end` symbols, and this |
| // can only be determined by the attributes of the symbol itself. |
| if (Sym->isMemtag()) |
| return true; |
| |
| unsigned Binding = Sym->getBinding(); |
| switch(Binding) { |
| default: |
| llvm_unreachable("Invalid Binding"); |
| case ELF::STB_LOCAL: |
| break; |
| case ELF::STB_WEAK: |
| // If the symbol is weak, it might be overridden by a symbol in another |
| // file. The relocation has to point to the symbol so that the linker |
| // can update it. |
| return true; |
| case ELF::STB_GLOBAL: |
| case ELF::STB_GNU_UNIQUE: |
| // Global ELF symbols can be preempted by the dynamic linker. The relocation |
| // has to point to the symbol for a reason analogous to the STB_WEAK case. |
| return true; |
| } |
| |
| // Keep symbol type for a local ifunc because it may result in an IRELATIVE |
| // reloc that the dynamic loader will use to resolve the address at startup |
| // time. |
| if (Sym->getType() == ELF::STT_GNU_IFUNC) |
| return true; |
| |
| // If a relocation points to a mergeable section, we have to be careful. |
| // If the offset is zero, a relocation with the section will encode the |
| // same information. With a non-zero offset, the situation is different. |
| // For example, a relocation can point 42 bytes past the end of a string. |
| // If we change such a relocation to use the section, the linker would think |
| // that it pointed to another string and subtracting 42 at runtime will |
| // produce the wrong value. |
| if (Sym->isInSection()) { |
| auto &Sec = cast<MCSectionELF>(Sym->getSection()); |
| unsigned Flags = Sec.getFlags(); |
| if (Flags & ELF::SHF_MERGE) { |
| if (C != 0) |
| return true; |
| |
| // gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9) |
| // (http://sourceware.org/PR16794). |
| if (TargetObjectWriter->getEMachine() == ELF::EM_386 && |
| Type == ELF::R_386_GOTOFF) |
| return true; |
| |
| // ld.lld handles R_MIPS_HI16/R_MIPS_LO16 separately, not as a whole, so |
| // it doesn't know that an R_MIPS_HI16 with implicit addend 1 and an |
| // R_MIPS_LO16 with implicit addend -32768 represents 32768, which is in |
| // range of a MergeInputSection. We could introduce a new RelExpr member |
| // (like R_RISCV_PC_INDIRECT for R_RISCV_PCREL_HI20 / R_RISCV_PCREL_LO12) |
| // but the complexity is unnecessary given that GNU as keeps the original |
| // symbol for this case as well. |
| if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS && |
| !hasRelocationAddend()) |
| return true; |
| } |
| |
| // Most TLS relocations use a got, so they need the symbol. Even those that |
| // are just an offset (@tpoff), require a symbol in gold versions before |
| // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed |
| // http://sourceware.org/PR16773. |
| if (Flags & ELF::SHF_TLS) |
| return true; |
| } |
| |
| // If the symbol is a thumb function the final relocation must set the lowest |
| // bit. With a symbol that is done by just having the symbol have that bit |
| // set, so we would lose the bit if we relocated with the section. |
| // FIXME: We could use the section but add the bit to the relocation value. |
| if (Asm.isThumbFunc(Sym)) |
| return true; |
| |
| if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type)) |
| return true; |
| return false; |
| } |
| |
| void ELFObjectWriter::recordRelocation(MCAssembler &Asm, |
| const MCAsmLayout &Layout, |
| const MCFragment *Fragment, |
| const MCFixup &Fixup, MCValue Target, |
| uint64_t &FixedValue) { |
| MCAsmBackend &Backend = Asm.getBackend(); |
| bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags & |
| MCFixupKindInfo::FKF_IsPCRel; |
| const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent()); |
| uint64_t C = Target.getConstant(); |
| uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); |
| MCContext &Ctx = Asm.getContext(); |
| |
| if (const MCSymbolRefExpr *RefB = Target.getSymB()) { |
| const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol()); |
| if (SymB.isUndefined()) { |
| Ctx.reportError(Fixup.getLoc(), |
| Twine("symbol '") + SymB.getName() + |
| "' can not be undefined in a subtraction expression"); |
| return; |
| } |
| |
| assert(!SymB.isAbsolute() && "Should have been folded"); |
| const MCSection &SecB = SymB.getSection(); |
| if (&SecB != &FixupSection) { |
| Ctx.reportError(Fixup.getLoc(), |
| "Cannot represent a difference across sections"); |
| return; |
| } |
| |
| assert(!IsPCRel && "should have been folded"); |
| IsPCRel = true; |
| C += FixupOffset - Layout.getSymbolOffset(SymB); |
| } |
| |
| // We either rejected the fixup or folded B into C at this point. |
| const MCSymbolRefExpr *RefA = Target.getSymA(); |
| const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr; |
| |
| bool ViaWeakRef = false; |
| if (SymA && SymA->isVariable()) { |
| const MCExpr *Expr = SymA->getVariableValue(); |
| if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) { |
| if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) { |
| SymA = cast<MCSymbolELF>(&Inner->getSymbol()); |
| ViaWeakRef = true; |
| } |
| } |
| } |
| |
| const MCSectionELF *SecA = (SymA && SymA->isInSection()) |
| ? cast<MCSectionELF>(&SymA->getSection()) |
| : nullptr; |
| if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA)) |
| return; |
| |
| unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel); |
| const auto *Parent = cast<MCSectionELF>(Fragment->getParent()); |
| // Emiting relocation with sybmol for CG Profile to help with --cg-profile. |
| bool RelocateWithSymbol = |
| shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type) || |
| (Parent->getType() == ELF::SHT_LLVM_CALL_GRAPH_PROFILE); |
| uint64_t Addend = 0; |
| |
| FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined() |
| ? C + Layout.getSymbolOffset(*SymA) |
| : C; |
| if (hasRelocationAddend()) { |
| Addend = FixedValue; |
| FixedValue = 0; |
| } |
| |
| if (!RelocateWithSymbol) { |
| const auto *SectionSymbol = |
| SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr; |
| if (SectionSymbol) |
| SectionSymbol->setUsedInReloc(); |
| ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C); |
| Relocations[&FixupSection].push_back(Rec); |
| return; |
| } |
| |
| const MCSymbolELF *RenamedSymA = SymA; |
| if (SymA) { |
| if (const MCSymbolELF *R = Renames.lookup(SymA)) |
| RenamedSymA = R; |
| |
| if (ViaWeakRef) |
| RenamedSymA->setIsWeakrefUsedInReloc(); |
| else |
| RenamedSymA->setUsedInReloc(); |
| } |
| ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C); |
| Relocations[&FixupSection].push_back(Rec); |
| } |
| |
| bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( |
| const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB, |
| bool InSet, bool IsPCRel) const { |
| const auto &SymA = cast<MCSymbolELF>(SA); |
| if (IsPCRel) { |
| assert(!InSet); |
| if (SymA.getBinding() != ELF::STB_LOCAL || |
| SymA.getType() == ELF::STT_GNU_IFUNC) |
| return false; |
| } |
| return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB, |
| InSet, IsPCRel); |
| } |
| |
| std::unique_ptr<MCObjectWriter> |
| llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, |
| raw_pwrite_stream &OS, bool IsLittleEndian) { |
| return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS, |
| IsLittleEndian); |
| } |
| |
| std::unique_ptr<MCObjectWriter> |
| llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW, |
| raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS, |
| bool IsLittleEndian) { |
| return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS, |
| IsLittleEndian); |
| } |