| //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass converts selects to conditional jumps when profitable. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/CodeGen/TargetSchedule.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/ProfDataUtils.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/ScaledNumber.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Transforms/Utils/SizeOpts.h" |
| #include <algorithm> |
| #include <memory> |
| #include <queue> |
| #include <stack> |
| #include <string> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "select-optimize" |
| |
| STATISTIC(NumSelectOptAnalyzed, |
| "Number of select groups considered for conversion to branch"); |
| STATISTIC(NumSelectConvertedExpColdOperand, |
| "Number of select groups converted due to expensive cold operand"); |
| STATISTIC(NumSelectConvertedHighPred, |
| "Number of select groups converted due to high-predictability"); |
| STATISTIC(NumSelectUnPred, |
| "Number of select groups not converted due to unpredictability"); |
| STATISTIC(NumSelectColdBB, |
| "Number of select groups not converted due to cold basic block"); |
| STATISTIC(NumSelectConvertedLoop, |
| "Number of select groups converted due to loop-level analysis"); |
| STATISTIC(NumSelectsConverted, "Number of selects converted"); |
| |
| static cl::opt<unsigned> ColdOperandThreshold( |
| "cold-operand-threshold", |
| cl::desc("Maximum frequency of path for an operand to be considered cold."), |
| cl::init(20), cl::Hidden); |
| |
| static cl::opt<unsigned> ColdOperandMaxCostMultiplier( |
| "cold-operand-max-cost-multiplier", |
| cl::desc("Maximum cost multiplier of TCC_expensive for the dependence " |
| "slice of a cold operand to be considered inexpensive."), |
| cl::init(1), cl::Hidden); |
| |
| static cl::opt<unsigned> |
| GainGradientThreshold("select-opti-loop-gradient-gain-threshold", |
| cl::desc("Gradient gain threshold (%)."), |
| cl::init(25), cl::Hidden); |
| |
| static cl::opt<unsigned> |
| GainCycleThreshold("select-opti-loop-cycle-gain-threshold", |
| cl::desc("Minimum gain per loop (in cycles) threshold."), |
| cl::init(4), cl::Hidden); |
| |
| static cl::opt<unsigned> GainRelativeThreshold( |
| "select-opti-loop-relative-gain-threshold", |
| cl::desc( |
| "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"), |
| cl::init(8), cl::Hidden); |
| |
| static cl::opt<unsigned> MispredictDefaultRate( |
| "mispredict-default-rate", cl::Hidden, cl::init(25), |
| cl::desc("Default mispredict rate (initialized to 25%).")); |
| |
| static cl::opt<bool> |
| DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden, |
| cl::init(false), |
| cl::desc("Disable loop-level heuristics.")); |
| |
| namespace { |
| |
| class SelectOptimize : public FunctionPass { |
| const TargetMachine *TM = nullptr; |
| const TargetSubtargetInfo *TSI; |
| const TargetLowering *TLI = nullptr; |
| const TargetTransformInfo *TTI = nullptr; |
| const LoopInfo *LI; |
| DominatorTree *DT; |
| std::unique_ptr<BlockFrequencyInfo> BFI; |
| std::unique_ptr<BranchProbabilityInfo> BPI; |
| ProfileSummaryInfo *PSI; |
| OptimizationRemarkEmitter *ORE; |
| TargetSchedModel TSchedModel; |
| |
| public: |
| static char ID; |
| |
| SelectOptimize() : FunctionPass(ID) { |
| initializeSelectOptimizePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| AU.addRequired<TargetPassConfig>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); |
| } |
| |
| private: |
| // Select groups consist of consecutive select instructions with the same |
| // condition. |
| using SelectGroup = SmallVector<SelectInst *, 2>; |
| using SelectGroups = SmallVector<SelectGroup, 2>; |
| |
| using Scaled64 = ScaledNumber<uint64_t>; |
| |
| struct CostInfo { |
| /// Predicated cost (with selects as conditional moves). |
| Scaled64 PredCost; |
| /// Non-predicated cost (with selects converted to branches). |
| Scaled64 NonPredCost; |
| }; |
| |
| // Converts select instructions of a function to conditional jumps when deemed |
| // profitable. Returns true if at least one select was converted. |
| bool optimizeSelects(Function &F); |
| |
| // Heuristics for determining which select instructions can be profitably |
| // conveted to branches. Separate heuristics for selects in inner-most loops |
| // and the rest of code regions (base heuristics for non-inner-most loop |
| // regions). |
| void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups); |
| void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups); |
| |
| // Converts to branches the select groups that were deemed |
| // profitable-to-convert. |
| void convertProfitableSIGroups(SelectGroups &ProfSIGroups); |
| |
| // Splits selects of a given basic block into select groups. |
| void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups); |
| |
| // Determines for which select groups it is profitable converting to branches |
| // (base and inner-most-loop heuristics). |
| void findProfitableSIGroupsBase(SelectGroups &SIGroups, |
| SelectGroups &ProfSIGroups); |
| void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups, |
| SelectGroups &ProfSIGroups); |
| |
| // Determines if a select group should be converted to a branch (base |
| // heuristics). |
| bool isConvertToBranchProfitableBase(const SmallVector<SelectInst *, 2> &ASI); |
| |
| // Returns true if there are expensive instructions in the cold value |
| // operand's (if any) dependence slice of any of the selects of the given |
| // group. |
| bool hasExpensiveColdOperand(const SmallVector<SelectInst *, 2> &ASI); |
| |
| // For a given source instruction, collect its backwards dependence slice |
| // consisting of instructions exclusively computed for producing the operands |
| // of the source instruction. |
| void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice, |
| Instruction *SI, bool ForSinking = false); |
| |
| // Returns true if the condition of the select is highly predictable. |
| bool isSelectHighlyPredictable(const SelectInst *SI); |
| |
| // Loop-level checks to determine if a non-predicated version (with branches) |
| // of the given loop is more profitable than its predicated version. |
| bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]); |
| |
| // Computes instruction and loop-critical-path costs for both the predicated |
| // and non-predicated version of the given loop. |
| bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups, |
| DenseMap<const Instruction *, CostInfo> &InstCostMap, |
| CostInfo *LoopCost); |
| |
| // Returns a set of all the select instructions in the given select groups. |
| SmallPtrSet<const Instruction *, 2> getSIset(const SelectGroups &SIGroups); |
| |
| // Returns the latency cost of a given instruction. |
| std::optional<uint64_t> computeInstCost(const Instruction *I); |
| |
| // Returns the misprediction cost of a given select when converted to branch. |
| Scaled64 getMispredictionCost(const SelectInst *SI, const Scaled64 CondCost); |
| |
| // Returns the cost of a branch when the prediction is correct. |
| Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, |
| const SelectInst *SI); |
| |
| // Returns true if the target architecture supports lowering a given select. |
| bool isSelectKindSupported(SelectInst *SI); |
| }; |
| } // namespace |
| |
| char SelectOptimize::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false, |
| false) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) |
| INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false, |
| false) |
| |
| FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); } |
| |
| bool SelectOptimize::runOnFunction(Function &F) { |
| TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); |
| TSI = TM->getSubtargetImpl(F); |
| TLI = TSI->getTargetLowering(); |
| |
| // If none of the select types is supported then skip this pass. |
| // This is an optimization pass. Legality issues will be handled by |
| // instruction selection. |
| if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) && |
| !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) && |
| !TLI->isSelectSupported(TargetLowering::VectorMaskSelect)) |
| return false; |
| |
| TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| |
| if (!TTI->enableSelectOptimize()) |
| return false; |
| |
| DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| BPI.reset(new BranchProbabilityInfo(F, *LI)); |
| BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); |
| PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); |
| TSchedModel.init(TSI); |
| |
| // When optimizing for size, selects are preferable over branches. |
| if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI.get())) |
| return false; |
| |
| return optimizeSelects(F); |
| } |
| |
| bool SelectOptimize::optimizeSelects(Function &F) { |
| // Determine for which select groups it is profitable converting to branches. |
| SelectGroups ProfSIGroups; |
| // Base heuristics apply only to non-loops and outer loops. |
| optimizeSelectsBase(F, ProfSIGroups); |
| // Separate heuristics for inner-most loops. |
| optimizeSelectsInnerLoops(F, ProfSIGroups); |
| |
| // Convert to branches the select groups that were deemed |
| // profitable-to-convert. |
| convertProfitableSIGroups(ProfSIGroups); |
| |
| // Code modified if at least one select group was converted. |
| return !ProfSIGroups.empty(); |
| } |
| |
| void SelectOptimize::optimizeSelectsBase(Function &F, |
| SelectGroups &ProfSIGroups) { |
| // Collect all the select groups. |
| SelectGroups SIGroups; |
| for (BasicBlock &BB : F) { |
| // Base heuristics apply only to non-loops and outer loops. |
| Loop *L = LI->getLoopFor(&BB); |
| if (L && L->isInnermost()) |
| continue; |
| collectSelectGroups(BB, SIGroups); |
| } |
| |
| // Determine for which select groups it is profitable converting to branches. |
| findProfitableSIGroupsBase(SIGroups, ProfSIGroups); |
| } |
| |
| void SelectOptimize::optimizeSelectsInnerLoops(Function &F, |
| SelectGroups &ProfSIGroups) { |
| SmallVector<Loop *, 4> Loops(LI->begin(), LI->end()); |
| // Need to check size on each iteration as we accumulate child loops. |
| for (unsigned long i = 0; i < Loops.size(); ++i) |
| for (Loop *ChildL : Loops[i]->getSubLoops()) |
| Loops.push_back(ChildL); |
| |
| for (Loop *L : Loops) { |
| if (!L->isInnermost()) |
| continue; |
| |
| SelectGroups SIGroups; |
| for (BasicBlock *BB : L->getBlocks()) |
| collectSelectGroups(*BB, SIGroups); |
| |
| findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups); |
| } |
| } |
| |
| /// If \p isTrue is true, return the true value of \p SI, otherwise return |
| /// false value of \p SI. If the true/false value of \p SI is defined by any |
| /// select instructions in \p Selects, look through the defining select |
| /// instruction until the true/false value is not defined in \p Selects. |
| static Value * |
| getTrueOrFalseValue(SelectInst *SI, bool isTrue, |
| const SmallPtrSet<const Instruction *, 2> &Selects) { |
| Value *V = nullptr; |
| for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); |
| DefSI = dyn_cast<SelectInst>(V)) { |
| assert(DefSI->getCondition() == SI->getCondition() && |
| "The condition of DefSI does not match with SI"); |
| V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); |
| } |
| assert(V && "Failed to get select true/false value"); |
| return V; |
| } |
| |
| void SelectOptimize::convertProfitableSIGroups(SelectGroups &ProfSIGroups) { |
| for (SelectGroup &ASI : ProfSIGroups) { |
| // The code transformation here is a modified version of the sinking |
| // transformation in CodeGenPrepare::optimizeSelectInst with a more |
| // aggressive strategy of which instructions to sink. |
| // |
| // TODO: eliminate the redundancy of logic transforming selects to branches |
| // by removing CodeGenPrepare::optimizeSelectInst and optimizing here |
| // selects for all cases (with and without profile information). |
| |
| // Transform a sequence like this: |
| // start: |
| // %cmp = cmp uge i32 %a, %b |
| // %sel = select i1 %cmp, i32 %c, i32 %d |
| // |
| // Into: |
| // start: |
| // %cmp = cmp uge i32 %a, %b |
| // %cmp.frozen = freeze %cmp |
| // br i1 %cmp.frozen, label %select.true, label %select.false |
| // select.true: |
| // br label %select.end |
| // select.false: |
| // br label %select.end |
| // select.end: |
| // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] |
| // |
| // %cmp should be frozen, otherwise it may introduce undefined behavior. |
| // In addition, we may sink instructions that produce %c or %d into the |
| // destination(s) of the new branch. |
| // If the true or false blocks do not contain a sunken instruction, that |
| // block and its branch may be optimized away. In that case, one side of the |
| // first branch will point directly to select.end, and the corresponding PHI |
| // predecessor block will be the start block. |
| |
| // Find all the instructions that can be soundly sunk to the true/false |
| // blocks. These are instructions that are computed solely for producing the |
| // operands of the select instructions in the group and can be sunk without |
| // breaking the semantics of the LLVM IR (e.g., cannot sink instructions |
| // with side effects). |
| SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices; |
| typedef std::stack<Instruction *>::size_type StackSizeType; |
| StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0; |
| for (SelectInst *SI : ASI) { |
| // For each select, compute the sinkable dependence chains of the true and |
| // false operands. |
| if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue())) { |
| std::stack<Instruction *> TrueSlice; |
| getExclBackwardsSlice(TI, TrueSlice, SI, true); |
| maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size()); |
| TrueSlices.push_back(TrueSlice); |
| } |
| if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue())) { |
| std::stack<Instruction *> FalseSlice; |
| getExclBackwardsSlice(FI, FalseSlice, SI, true); |
| maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size()); |
| FalseSlices.push_back(FalseSlice); |
| } |
| } |
| // In the case of multiple select instructions in the same group, the order |
| // of non-dependent instructions (instructions of different dependence |
| // slices) in the true/false blocks appears to affect performance. |
| // Interleaving the slices seems to experimentally be the optimal approach. |
| // This interleaving scheduling allows for more ILP (with a natural downside |
| // of increasing a bit register pressure) compared to a simple ordering of |
| // one whole chain after another. One would expect that this ordering would |
| // not matter since the scheduling in the backend of the compiler would |
| // take care of it, but apparently the scheduler fails to deliver optimal |
| // ILP with a naive ordering here. |
| SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved; |
| for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) { |
| for (auto &S : TrueSlices) { |
| if (!S.empty()) { |
| TrueSlicesInterleaved.push_back(S.top()); |
| S.pop(); |
| } |
| } |
| } |
| for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) { |
| for (auto &S : FalseSlices) { |
| if (!S.empty()) { |
| FalseSlicesInterleaved.push_back(S.top()); |
| S.pop(); |
| } |
| } |
| } |
| |
| // We split the block containing the select(s) into two blocks. |
| SelectInst *SI = ASI.front(); |
| SelectInst *LastSI = ASI.back(); |
| BasicBlock *StartBlock = SI->getParent(); |
| BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); |
| BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); |
| BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); |
| // Delete the unconditional branch that was just created by the split. |
| StartBlock->getTerminator()->eraseFromParent(); |
| |
| // Move any debug/pseudo instructions that were in-between the select |
| // group to the newly-created end block. |
| SmallVector<Instruction *, 2> DebugPseudoINS; |
| auto DIt = SI->getIterator(); |
| while (&*DIt != LastSI) { |
| if (DIt->isDebugOrPseudoInst()) |
| DebugPseudoINS.push_back(&*DIt); |
| DIt++; |
| } |
| for (auto *DI : DebugPseudoINS) { |
| DI->moveBefore(&*EndBlock->getFirstInsertionPt()); |
| } |
| |
| // These are the new basic blocks for the conditional branch. |
| // At least one will become an actual new basic block. |
| BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr; |
| BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr; |
| if (!TrueSlicesInterleaved.empty()) { |
| TrueBlock = BasicBlock::Create(LastSI->getContext(), "select.true.sink", |
| EndBlock->getParent(), EndBlock); |
| TrueBranch = BranchInst::Create(EndBlock, TrueBlock); |
| TrueBranch->setDebugLoc(LastSI->getDebugLoc()); |
| for (Instruction *TrueInst : TrueSlicesInterleaved) |
| TrueInst->moveBefore(TrueBranch); |
| } |
| if (!FalseSlicesInterleaved.empty()) { |
| FalseBlock = BasicBlock::Create(LastSI->getContext(), "select.false.sink", |
| EndBlock->getParent(), EndBlock); |
| FalseBranch = BranchInst::Create(EndBlock, FalseBlock); |
| FalseBranch->setDebugLoc(LastSI->getDebugLoc()); |
| for (Instruction *FalseInst : FalseSlicesInterleaved) |
| FalseInst->moveBefore(FalseBranch); |
| } |
| // If there was nothing to sink, then arbitrarily choose the 'false' side |
| // for a new input value to the PHI. |
| if (TrueBlock == FalseBlock) { |
| assert(TrueBlock == nullptr && |
| "Unexpected basic block transform while optimizing select"); |
| |
| FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", |
| EndBlock->getParent(), EndBlock); |
| auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); |
| FalseBranch->setDebugLoc(SI->getDebugLoc()); |
| } |
| |
| // Insert the real conditional branch based on the original condition. |
| // If we did not create a new block for one of the 'true' or 'false' paths |
| // of the condition, it means that side of the branch goes to the end block |
| // directly and the path originates from the start block from the point of |
| // view of the new PHI. |
| BasicBlock *TT, *FT; |
| if (TrueBlock == nullptr) { |
| TT = EndBlock; |
| FT = FalseBlock; |
| TrueBlock = StartBlock; |
| } else if (FalseBlock == nullptr) { |
| TT = TrueBlock; |
| FT = EndBlock; |
| FalseBlock = StartBlock; |
| } else { |
| TT = TrueBlock; |
| FT = FalseBlock; |
| } |
| IRBuilder<> IB(SI); |
| auto *CondFr = |
| IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); |
| IB.CreateCondBr(CondFr, TT, FT, SI); |
| |
| SmallPtrSet<const Instruction *, 2> INS; |
| INS.insert(ASI.begin(), ASI.end()); |
| // Use reverse iterator because later select may use the value of the |
| // earlier select, and we need to propagate value through earlier select |
| // to get the PHI operand. |
| for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { |
| SelectInst *SI = *It; |
| // The select itself is replaced with a PHI Node. |
| PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); |
| PN->takeName(SI); |
| PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); |
| PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); |
| PN->setDebugLoc(SI->getDebugLoc()); |
| |
| SI->replaceAllUsesWith(PN); |
| SI->eraseFromParent(); |
| INS.erase(SI); |
| ++NumSelectsConverted; |
| } |
| } |
| } |
| |
| static bool isSpecialSelect(SelectInst *SI) { |
| using namespace llvm::PatternMatch; |
| |
| // If the select is a logical-and/logical-or then it is better treated as a |
| // and/or by the backend. |
| if (match(SI, m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), |
| m_LogicalOr(m_Value(), m_Value())))) |
| return true; |
| |
| return false; |
| } |
| |
| void SelectOptimize::collectSelectGroups(BasicBlock &BB, |
| SelectGroups &SIGroups) { |
| BasicBlock::iterator BBIt = BB.begin(); |
| while (BBIt != BB.end()) { |
| Instruction *I = &*BBIt++; |
| if (SelectInst *SI = dyn_cast<SelectInst>(I)) { |
| if (isSpecialSelect(SI)) |
| continue; |
| |
| SelectGroup SIGroup; |
| SIGroup.push_back(SI); |
| while (BBIt != BB.end()) { |
| Instruction *NI = &*BBIt; |
| SelectInst *NSI = dyn_cast<SelectInst>(NI); |
| if (NSI && SI->getCondition() == NSI->getCondition()) { |
| SIGroup.push_back(NSI); |
| } else if (!NI->isDebugOrPseudoInst()) { |
| // Debug/pseudo instructions should be skipped and not prevent the |
| // formation of a select group. |
| break; |
| } |
| ++BBIt; |
| } |
| |
| // If the select type is not supported, no point optimizing it. |
| // Instruction selection will take care of it. |
| if (!isSelectKindSupported(SI)) |
| continue; |
| |
| SIGroups.push_back(SIGroup); |
| } |
| } |
| } |
| |
| void SelectOptimize::findProfitableSIGroupsBase(SelectGroups &SIGroups, |
| SelectGroups &ProfSIGroups) { |
| for (SelectGroup &ASI : SIGroups) { |
| ++NumSelectOptAnalyzed; |
| if (isConvertToBranchProfitableBase(ASI)) |
| ProfSIGroups.push_back(ASI); |
| } |
| } |
| |
| static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE, |
| DiagnosticInfoOptimizationBase &Rem) { |
| LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n"); |
| ORE->emit(Rem); |
| } |
| |
| void SelectOptimize::findProfitableSIGroupsInnerLoops( |
| const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) { |
| NumSelectOptAnalyzed += SIGroups.size(); |
| // For each select group in an inner-most loop, |
| // a branch is more preferable than a select/conditional-move if: |
| // i) conversion to branches for all the select groups of the loop satisfies |
| // loop-level heuristics including reducing the loop's critical path by |
| // some threshold (see SelectOptimize::checkLoopHeuristics); and |
| // ii) the total cost of the select group is cheaper with a branch compared |
| // to its predicated version. The cost is in terms of latency and the cost |
| // of a select group is the cost of its most expensive select instruction |
| // (assuming infinite resources and thus fully leveraging available ILP). |
| |
| DenseMap<const Instruction *, CostInfo> InstCostMap; |
| CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()}, |
| {Scaled64::getZero(), Scaled64::getZero()}}; |
| if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) || |
| !checkLoopHeuristics(L, LoopCost)) { |
| return; |
| } |
| |
| for (SelectGroup &ASI : SIGroups) { |
| // Assuming infinite resources, the cost of a group of instructions is the |
| // cost of the most expensive instruction of the group. |
| Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero(); |
| for (SelectInst *SI : ASI) { |
| SelectCost = std::max(SelectCost, InstCostMap[SI].PredCost); |
| BranchCost = std::max(BranchCost, InstCostMap[SI].NonPredCost); |
| } |
| if (BranchCost < SelectCost) { |
| OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front()); |
| OR << "Profitable to convert to branch (loop analysis). BranchCost=" |
| << BranchCost.toString() << ", SelectCost=" << SelectCost.toString() |
| << ". "; |
| EmitAndPrintRemark(ORE, OR); |
| ++NumSelectConvertedLoop; |
| ProfSIGroups.push_back(ASI); |
| } else { |
| OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front()); |
| ORmiss << "Select is more profitable (loop analysis). BranchCost=" |
| << BranchCost.toString() |
| << ", SelectCost=" << SelectCost.toString() << ". "; |
| EmitAndPrintRemark(ORE, ORmiss); |
| } |
| } |
| } |
| |
| bool SelectOptimize::isConvertToBranchProfitableBase( |
| const SmallVector<SelectInst *, 2> &ASI) { |
| SelectInst *SI = ASI.front(); |
| LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI << "\n"); |
| OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI); |
| OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI); |
| |
| // Skip cold basic blocks. Better to optimize for size for cold blocks. |
| if (PSI->isColdBlock(SI->getParent(), BFI.get())) { |
| ++NumSelectColdBB; |
| ORmiss << "Not converted to branch because of cold basic block. "; |
| EmitAndPrintRemark(ORE, ORmiss); |
| return false; |
| } |
| |
| // If unpredictable, branch form is less profitable. |
| if (SI->getMetadata(LLVMContext::MD_unpredictable)) { |
| ++NumSelectUnPred; |
| ORmiss << "Not converted to branch because of unpredictable branch. "; |
| EmitAndPrintRemark(ORE, ORmiss); |
| return false; |
| } |
| |
| // If highly predictable, branch form is more profitable, unless a |
| // predictable select is inexpensive in the target architecture. |
| if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) { |
| ++NumSelectConvertedHighPred; |
| OR << "Converted to branch because of highly predictable branch. "; |
| EmitAndPrintRemark(ORE, OR); |
| return true; |
| } |
| |
| // Look for expensive instructions in the cold operand's (if any) dependence |
| // slice of any of the selects in the group. |
| if (hasExpensiveColdOperand(ASI)) { |
| ++NumSelectConvertedExpColdOperand; |
| OR << "Converted to branch because of expensive cold operand."; |
| EmitAndPrintRemark(ORE, OR); |
| return true; |
| } |
| |
| ORmiss << "Not profitable to convert to branch (base heuristic)."; |
| EmitAndPrintRemark(ORE, ORmiss); |
| return false; |
| } |
| |
| static InstructionCost divideNearest(InstructionCost Numerator, |
| uint64_t Denominator) { |
| return (Numerator + (Denominator / 2)) / Denominator; |
| } |
| |
| bool SelectOptimize::hasExpensiveColdOperand( |
| const SmallVector<SelectInst *, 2> &ASI) { |
| bool ColdOperand = false; |
| uint64_t TrueWeight, FalseWeight, TotalWeight; |
| if (extractBranchWeights(*ASI.front(), TrueWeight, FalseWeight)) { |
| uint64_t MinWeight = std::min(TrueWeight, FalseWeight); |
| TotalWeight = TrueWeight + FalseWeight; |
| // Is there a path with frequency <ColdOperandThreshold% (default:20%) ? |
| ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight; |
| } else if (PSI->hasProfileSummary()) { |
| OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front()); |
| ORmiss << "Profile data available but missing branch-weights metadata for " |
| "select instruction. "; |
| EmitAndPrintRemark(ORE, ORmiss); |
| } |
| if (!ColdOperand) |
| return false; |
| // Check if the cold path's dependence slice is expensive for any of the |
| // selects of the group. |
| for (SelectInst *SI : ASI) { |
| Instruction *ColdI = nullptr; |
| uint64_t HotWeight; |
| if (TrueWeight < FalseWeight) { |
| ColdI = dyn_cast<Instruction>(SI->getTrueValue()); |
| HotWeight = FalseWeight; |
| } else { |
| ColdI = dyn_cast<Instruction>(SI->getFalseValue()); |
| HotWeight = TrueWeight; |
| } |
| if (ColdI) { |
| std::stack<Instruction *> ColdSlice; |
| getExclBackwardsSlice(ColdI, ColdSlice, SI); |
| InstructionCost SliceCost = 0; |
| while (!ColdSlice.empty()) { |
| SliceCost += TTI->getInstructionCost(ColdSlice.top(), |
| TargetTransformInfo::TCK_Latency); |
| ColdSlice.pop(); |
| } |
| // The colder the cold value operand of the select is the more expensive |
| // the cmov becomes for computing the cold value operand every time. Thus, |
| // the colder the cold operand is the more its cost counts. |
| // Get nearest integer cost adjusted for coldness. |
| InstructionCost AdjSliceCost = |
| divideNearest(SliceCost * HotWeight, TotalWeight); |
| if (AdjSliceCost >= |
| ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Check if it is safe to move LoadI next to the SI. |
| // Conservatively assume it is safe only if there is no instruction |
| // modifying memory in-between the load and the select instruction. |
| static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) { |
| // Assume loads from different basic blocks are unsafe to move. |
| if (LoadI->getParent() != SI->getParent()) |
| return false; |
| auto It = LoadI->getIterator(); |
| while (&*It != SI) { |
| if (It->mayWriteToMemory()) |
| return false; |
| It++; |
| } |
| return true; |
| } |
| |
| // For a given source instruction, collect its backwards dependence slice |
| // consisting of instructions exclusively computed for the purpose of producing |
| // the operands of the source instruction. As an approximation |
| // (sufficiently-accurate in practice), we populate this set with the |
| // instructions of the backwards dependence slice that only have one-use and |
| // form an one-use chain that leads to the source instruction. |
| void SelectOptimize::getExclBackwardsSlice(Instruction *I, |
| std::stack<Instruction *> &Slice, |
| Instruction *SI, bool ForSinking) { |
| SmallPtrSet<Instruction *, 2> Visited; |
| std::queue<Instruction *> Worklist; |
| Worklist.push(I); |
| while (!Worklist.empty()) { |
| Instruction *II = Worklist.front(); |
| Worklist.pop(); |
| |
| // Avoid cycles. |
| if (!Visited.insert(II).second) |
| continue; |
| |
| if (!II->hasOneUse()) |
| continue; |
| |
| // Cannot soundly sink instructions with side-effects. |
| // Terminator or phi instructions cannot be sunk. |
| // Avoid sinking other select instructions (should be handled separetely). |
| if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() || |
| isa<SelectInst>(II) || isa<PHINode>(II))) |
| continue; |
| |
| // Avoid sinking loads in order not to skip state-modifying instructions, |
| // that may alias with the loaded address. |
| // Only allow sinking of loads within the same basic block that are |
| // conservatively proven to be safe. |
| if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI)) |
| continue; |
| |
| // Avoid considering instructions with less frequency than the source |
| // instruction (i.e., avoid colder code regions of the dependence slice). |
| if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent())) |
| continue; |
| |
| // Eligible one-use instruction added to the dependence slice. |
| Slice.push(II); |
| |
| // Explore all the operands of the current instruction to expand the slice. |
| for (unsigned k = 0; k < II->getNumOperands(); ++k) |
| if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k))) |
| Worklist.push(OpI); |
| } |
| } |
| |
| bool SelectOptimize::isSelectHighlyPredictable(const SelectInst *SI) { |
| uint64_t TrueWeight, FalseWeight; |
| if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { |
| uint64_t Max = std::max(TrueWeight, FalseWeight); |
| uint64_t Sum = TrueWeight + FalseWeight; |
| if (Sum != 0) { |
| auto Probability = BranchProbability::getBranchProbability(Max, Sum); |
| if (Probability > TTI->getPredictableBranchThreshold()) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool SelectOptimize::checkLoopHeuristics(const Loop *L, |
| const CostInfo LoopCost[2]) { |
| // Loop-level checks to determine if a non-predicated version (with branches) |
| // of the loop is more profitable than its predicated version. |
| |
| if (DisableLoopLevelHeuristics) |
| return true; |
| |
| OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", |
| L->getHeader()->getFirstNonPHI()); |
| |
| if (LoopCost[0].NonPredCost > LoopCost[0].PredCost || |
| LoopCost[1].NonPredCost >= LoopCost[1].PredCost) { |
| ORmissL << "No select conversion in the loop due to no reduction of loop's " |
| "critical path. "; |
| EmitAndPrintRemark(ORE, ORmissL); |
| return false; |
| } |
| |
| Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost, |
| LoopCost[1].PredCost - LoopCost[1].NonPredCost}; |
| |
| // Profitably converting to branches need to reduce the loop's critical path |
| // by at least some threshold (absolute gain of GainCycleThreshold cycles and |
| // relative gain of 12.5%). |
| if (Gain[1] < Scaled64::get(GainCycleThreshold) || |
| Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) { |
| Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost; |
| ORmissL << "No select conversion in the loop due to small reduction of " |
| "loop's critical path. Gain=" |
| << Gain[1].toString() |
| << ", RelativeGain=" << RelativeGain.toString() << "%. "; |
| EmitAndPrintRemark(ORE, ORmissL); |
| return false; |
| } |
| |
| // If the loop's critical path involves loop-carried dependences, the gradient |
| // of the gain needs to be at least GainGradientThreshold% (defaults to 25%). |
| // This check ensures that the latency reduction for the loop's critical path |
| // keeps decreasing with sufficient rate beyond the two analyzed loop |
| // iterations. |
| if (Gain[1] > Gain[0]) { |
| Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) / |
| (LoopCost[1].PredCost - LoopCost[0].PredCost); |
| if (GradientGain < Scaled64::get(GainGradientThreshold)) { |
| ORmissL << "No select conversion in the loop due to small gradient gain. " |
| "GradientGain=" |
| << GradientGain.toString() << "%. "; |
| EmitAndPrintRemark(ORE, ORmissL); |
| return false; |
| } |
| } |
| // If the gain decreases it is not profitable to convert. |
| else if (Gain[1] < Gain[0]) { |
| ORmissL |
| << "No select conversion in the loop due to negative gradient gain. "; |
| EmitAndPrintRemark(ORE, ORmissL); |
| return false; |
| } |
| |
| // Non-predicated version of the loop is more profitable than its |
| // predicated version. |
| return true; |
| } |
| |
| // Computes instruction and loop-critical-path costs for both the predicated |
| // and non-predicated version of the given loop. |
| // Returns false if unable to compute these costs due to invalid cost of loop |
| // instruction(s). |
| bool SelectOptimize::computeLoopCosts( |
| const Loop *L, const SelectGroups &SIGroups, |
| DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) { |
| LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop " |
| << L->getHeader()->getName() << "\n"); |
| const auto &SIset = getSIset(SIGroups); |
| // Compute instruction and loop-critical-path costs across two iterations for |
| // both predicated and non-predicated version. |
| const unsigned Iterations = 2; |
| for (unsigned Iter = 0; Iter < Iterations; ++Iter) { |
| // Cost of the loop's critical path. |
| CostInfo &MaxCost = LoopCost[Iter]; |
| for (BasicBlock *BB : L->getBlocks()) { |
| for (const Instruction &I : *BB) { |
| if (I.isDebugOrPseudoInst()) |
| continue; |
| // Compute the predicated and non-predicated cost of the instruction. |
| Scaled64 IPredCost = Scaled64::getZero(), |
| INonPredCost = Scaled64::getZero(); |
| |
| // Assume infinite resources that allow to fully exploit the available |
| // instruction-level parallelism. |
| // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost) |
| for (const Use &U : I.operands()) { |
| auto UI = dyn_cast<Instruction>(U.get()); |
| if (!UI) |
| continue; |
| if (InstCostMap.count(UI)) { |
| IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost); |
| INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost); |
| } |
| } |
| auto ILatency = computeInstCost(&I); |
| if (!ILatency) { |
| OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I); |
| ORmissL << "Invalid instruction cost preventing analysis and " |
| "optimization of the inner-most loop containing this " |
| "instruction. "; |
| EmitAndPrintRemark(ORE, ORmissL); |
| return false; |
| } |
| IPredCost += Scaled64::get(*ILatency); |
| INonPredCost += Scaled64::get(*ILatency); |
| |
| // For a select that can be converted to branch, |
| // compute its cost as a branch (non-predicated cost). |
| // |
| // BranchCost = PredictedPathCost + MispredictCost |
| // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb |
| // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate |
| if (SIset.contains(&I)) { |
| auto SI = cast<SelectInst>(&I); |
| |
| Scaled64 TrueOpCost = Scaled64::getZero(), |
| FalseOpCost = Scaled64::getZero(); |
| if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue())) |
| if (InstCostMap.count(TI)) |
| TrueOpCost = InstCostMap[TI].NonPredCost; |
| if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue())) |
| if (InstCostMap.count(FI)) |
| FalseOpCost = InstCostMap[FI].NonPredCost; |
| Scaled64 PredictedPathCost = |
| getPredictedPathCost(TrueOpCost, FalseOpCost, SI); |
| |
| Scaled64 CondCost = Scaled64::getZero(); |
| if (auto *CI = dyn_cast<Instruction>(SI->getCondition())) |
| if (InstCostMap.count(CI)) |
| CondCost = InstCostMap[CI].NonPredCost; |
| Scaled64 MispredictCost = getMispredictionCost(SI, CondCost); |
| |
| INonPredCost = PredictedPathCost + MispredictCost; |
| } |
| LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/" |
| << INonPredCost << " for " << I << "\n"); |
| |
| InstCostMap[&I] = {IPredCost, INonPredCost}; |
| MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost); |
| MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost); |
| } |
| } |
| LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1 |
| << " MaxCost = " << MaxCost.PredCost << " " |
| << MaxCost.NonPredCost << "\n"); |
| } |
| return true; |
| } |
| |
| SmallPtrSet<const Instruction *, 2> |
| SelectOptimize::getSIset(const SelectGroups &SIGroups) { |
| SmallPtrSet<const Instruction *, 2> SIset; |
| for (const SelectGroup &ASI : SIGroups) |
| for (const SelectInst *SI : ASI) |
| SIset.insert(SI); |
| return SIset; |
| } |
| |
| std::optional<uint64_t> SelectOptimize::computeInstCost(const Instruction *I) { |
| InstructionCost ICost = |
| TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency); |
| if (auto OC = ICost.getValue()) |
| return std::optional<uint64_t>(*OC); |
| return std::nullopt; |
| } |
| |
| ScaledNumber<uint64_t> |
| SelectOptimize::getMispredictionCost(const SelectInst *SI, |
| const Scaled64 CondCost) { |
| uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; |
| |
| // Account for the default misprediction rate when using a branch |
| // (conservatively set to 25% by default). |
| uint64_t MispredictRate = MispredictDefaultRate; |
| // If the select condition is obviously predictable, then the misprediction |
| // rate is zero. |
| if (isSelectHighlyPredictable(SI)) |
| MispredictRate = 0; |
| |
| // CondCost is included to account for cases where the computation of the |
| // condition is part of a long dependence chain (potentially loop-carried) |
| // that would delay detection of a misprediction and increase its cost. |
| Scaled64 MispredictCost = |
| std::max(Scaled64::get(MispredictPenalty), CondCost) * |
| Scaled64::get(MispredictRate); |
| MispredictCost /= Scaled64::get(100); |
| |
| return MispredictCost; |
| } |
| |
| // Returns the cost of a branch when the prediction is correct. |
| // TrueCost * TrueProbability + FalseCost * FalseProbability. |
| ScaledNumber<uint64_t> |
| SelectOptimize::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost, |
| const SelectInst *SI) { |
| Scaled64 PredPathCost; |
| uint64_t TrueWeight, FalseWeight; |
| if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) { |
| uint64_t SumWeight = TrueWeight + FalseWeight; |
| if (SumWeight != 0) { |
| PredPathCost = TrueCost * Scaled64::get(TrueWeight) + |
| FalseCost * Scaled64::get(FalseWeight); |
| PredPathCost /= Scaled64::get(SumWeight); |
| return PredPathCost; |
| } |
| } |
| // Without branch weight metadata, we assume 75% for the one path and 25% for |
| // the other, and pick the result with the biggest cost. |
| PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost, |
| FalseCost * Scaled64::get(3) + TrueCost); |
| PredPathCost /= Scaled64::get(4); |
| return PredPathCost; |
| } |
| |
| bool SelectOptimize::isSelectKindSupported(SelectInst *SI) { |
| bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); |
| if (VectorCond) |
| return false; |
| TargetLowering::SelectSupportKind SelectKind; |
| if (SI->getType()->isVectorTy()) |
| SelectKind = TargetLowering::ScalarCondVectorVal; |
| else |
| SelectKind = TargetLowering::ScalarValSelect; |
| return TLI->isSelectSupported(SelectKind); |
| } |