| //===- Object.cpp ---------------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Object.h" |
| #include "llvm-objcopy.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/Object/ELFObjectFile.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/FileOutputBuffer.h" |
| #include "llvm/Support/Path.h" |
| #include <algorithm> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::objcopy; |
| using namespace object; |
| using namespace ELF; |
| |
| Buffer::~Buffer() {} |
| |
| void FileBuffer::allocate(size_t Size) { |
| Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr = |
| FileOutputBuffer::create(getName(), Size, FileOutputBuffer::F_executable); |
| handleAllErrors(BufferOrErr.takeError(), [this](const ErrorInfoBase &E) { |
| error("failed to open " + getName() + ": " + E.message()); |
| }); |
| Buf = std::move(*BufferOrErr); |
| } |
| |
| Error FileBuffer::commit() { return Buf->commit(); } |
| |
| uint8_t *FileBuffer::getBufferStart() { |
| return reinterpret_cast<uint8_t *>(Buf->getBufferStart()); |
| } |
| |
| void MemBuffer::allocate(size_t Size) { |
| Buf = WritableMemoryBuffer::getNewMemBuffer(Size, getName()); |
| } |
| |
| Error MemBuffer::commit() { return Error::success(); } |
| |
| uint8_t *MemBuffer::getBufferStart() { |
| return reinterpret_cast<uint8_t *>(Buf->getBufferStart()); |
| } |
| |
| std::unique_ptr<WritableMemoryBuffer> MemBuffer::releaseMemoryBuffer() { |
| return std::move(Buf); |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) { |
| using Elf_Phdr = typename ELFT::Phdr; |
| |
| uint8_t *B = Buf.getBufferStart(); |
| B += Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr); |
| Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B); |
| Phdr.p_type = Seg.Type; |
| Phdr.p_flags = Seg.Flags; |
| Phdr.p_offset = Seg.Offset; |
| Phdr.p_vaddr = Seg.VAddr; |
| Phdr.p_paddr = Seg.PAddr; |
| Phdr.p_filesz = Seg.FileSize; |
| Phdr.p_memsz = Seg.MemSize; |
| Phdr.p_align = Seg.Align; |
| } |
| |
| void SectionBase::removeSectionReferences(const SectionBase *Sec) {} |
| void SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {} |
| void SectionBase::initialize(SectionTableRef SecTable) {} |
| void SectionBase::finalize() {} |
| void SectionBase::markSymbols() {} |
| |
| template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) { |
| uint8_t *B = Buf.getBufferStart(); |
| B += Sec.HeaderOffset; |
| typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(B); |
| Shdr.sh_name = Sec.NameIndex; |
| Shdr.sh_type = Sec.Type; |
| Shdr.sh_flags = Sec.Flags; |
| Shdr.sh_addr = Sec.Addr; |
| Shdr.sh_offset = Sec.Offset; |
| Shdr.sh_size = Sec.Size; |
| Shdr.sh_link = Sec.Link; |
| Shdr.sh_info = Sec.Info; |
| Shdr.sh_addralign = Sec.Align; |
| Shdr.sh_entsize = Sec.EntrySize; |
| } |
| |
| SectionVisitor::~SectionVisitor() {} |
| |
| void BinarySectionWriter::visit(const SectionIndexSection &Sec) { |
| error("Cannot write symbol section index table '" + Sec.Name + "' "); |
| } |
| |
| void BinarySectionWriter::visit(const SymbolTableSection &Sec) { |
| error("Cannot write symbol table '" + Sec.Name + "' out to binary"); |
| } |
| |
| void BinarySectionWriter::visit(const RelocationSection &Sec) { |
| error("Cannot write relocation section '" + Sec.Name + "' out to binary"); |
| } |
| |
| void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) { |
| error("Cannot write '" + Sec.Name + "' out to binary"); |
| } |
| |
| void BinarySectionWriter::visit(const GroupSection &Sec) { |
| error("Cannot write '" + Sec.Name + "' out to binary"); |
| } |
| |
| void SectionWriter::visit(const Section &Sec) { |
| if (Sec.Type == SHT_NOBITS) |
| return; |
| uint8_t *Buf = Out.getBufferStart() + Sec.Offset; |
| std::copy(std::begin(Sec.Contents), std::end(Sec.Contents), Buf); |
| } |
| |
| void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } |
| |
| void SectionWriter::visit(const OwnedDataSection &Sec) { |
| uint8_t *Buf = Out.getBufferStart() + Sec.Offset; |
| std::copy(std::begin(Sec.Data), std::end(Sec.Data), Buf); |
| } |
| |
| void OwnedDataSection::accept(SectionVisitor &Visitor) const { |
| Visitor.visit(*this); |
| } |
| |
| void StringTableSection::addString(StringRef Name) { |
| StrTabBuilder.add(Name); |
| Size = StrTabBuilder.getSize(); |
| } |
| |
| uint32_t StringTableSection::findIndex(StringRef Name) const { |
| return StrTabBuilder.getOffset(Name); |
| } |
| |
| void StringTableSection::finalize() { StrTabBuilder.finalize(); } |
| |
| void SectionWriter::visit(const StringTableSection &Sec) { |
| Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset); |
| } |
| |
| void StringTableSection::accept(SectionVisitor &Visitor) const { |
| Visitor.visit(*this); |
| } |
| |
| template <class ELFT> |
| void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) { |
| uint8_t *Buf = Out.getBufferStart() + Sec.Offset; |
| auto *IndexesBuffer = reinterpret_cast<typename ELFT::Word *>(Buf); |
| std::copy(std::begin(Sec.Indexes), std::end(Sec.Indexes), IndexesBuffer); |
| } |
| |
| void SectionIndexSection::initialize(SectionTableRef SecTable) { |
| Size = 0; |
| setSymTab(SecTable.getSectionOfType<SymbolTableSection>( |
| Link, |
| "Link field value " + Twine(Link) + " in section " + Name + " is invalid", |
| "Link field value " + Twine(Link) + " in section " + Name + |
| " is not a symbol table")); |
| Symbols->setShndxTable(this); |
| } |
| |
| void SectionIndexSection::finalize() { Link = Symbols->Index; } |
| |
| void SectionIndexSection::accept(SectionVisitor &Visitor) const { |
| Visitor.visit(*this); |
| } |
| |
| static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { |
| switch (Index) { |
| case SHN_ABS: |
| case SHN_COMMON: |
| return true; |
| } |
| if (Machine == EM_HEXAGON) { |
| switch (Index) { |
| case SHN_HEXAGON_SCOMMON: |
| case SHN_HEXAGON_SCOMMON_2: |
| case SHN_HEXAGON_SCOMMON_4: |
| case SHN_HEXAGON_SCOMMON_8: |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Large indexes force us to clarify exactly what this function should do. This |
| // function should return the value that will appear in st_shndx when written |
| // out. |
| uint16_t Symbol::getShndx() const { |
| if (DefinedIn != nullptr) { |
| if (DefinedIn->Index >= SHN_LORESERVE) |
| return SHN_XINDEX; |
| return DefinedIn->Index; |
| } |
| switch (ShndxType) { |
| // This means that we don't have a defined section but we do need to |
| // output a legitimate section index. |
| case SYMBOL_SIMPLE_INDEX: |
| return SHN_UNDEF; |
| case SYMBOL_ABS: |
| case SYMBOL_COMMON: |
| case SYMBOL_HEXAGON_SCOMMON: |
| case SYMBOL_HEXAGON_SCOMMON_2: |
| case SYMBOL_HEXAGON_SCOMMON_4: |
| case SYMBOL_HEXAGON_SCOMMON_8: |
| case SYMBOL_XINDEX: |
| return static_cast<uint16_t>(ShndxType); |
| } |
| llvm_unreachable("Symbol with invalid ShndxType encountered"); |
| } |
| |
| void SymbolTableSection::assignIndices() { |
| uint32_t Index = 0; |
| for (auto &Sym : Symbols) |
| Sym->Index = Index++; |
| } |
| |
| void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type, |
| SectionBase *DefinedIn, uint64_t Value, |
| uint8_t Visibility, uint16_t Shndx, |
| uint64_t Sz) { |
| Symbol Sym; |
| Sym.Name = Name; |
| Sym.Binding = Bind; |
| Sym.Type = Type; |
| Sym.DefinedIn = DefinedIn; |
| if (DefinedIn != nullptr) |
| DefinedIn->HasSymbol = true; |
| if (DefinedIn == nullptr) { |
| if (Shndx >= SHN_LORESERVE) |
| Sym.ShndxType = static_cast<SymbolShndxType>(Shndx); |
| else |
| Sym.ShndxType = SYMBOL_SIMPLE_INDEX; |
| } |
| Sym.Value = Value; |
| Sym.Visibility = Visibility; |
| Sym.Size = Sz; |
| Sym.Index = Symbols.size(); |
| Symbols.emplace_back(llvm::make_unique<Symbol>(Sym)); |
| Size += this->EntrySize; |
| } |
| |
| void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) { |
| if (SectionIndexTable == Sec) |
| SectionIndexTable = nullptr; |
| if (SymbolNames == Sec) { |
| error("String table " + SymbolNames->Name + |
| " cannot be removed because it is referenced by the symbol table " + |
| this->Name); |
| } |
| removeSymbols([Sec](const Symbol &Sym) { return Sym.DefinedIn == Sec; }); |
| } |
| |
| void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) { |
| std::for_each(std::begin(Symbols) + 1, std::end(Symbols), |
| [Callable](SymPtr &Sym) { Callable(*Sym); }); |
| std::stable_partition( |
| std::begin(Symbols), std::end(Symbols), |
| [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; }); |
| assignIndices(); |
| } |
| |
| void SymbolTableSection::removeSymbols( |
| function_ref<bool(const Symbol &)> ToRemove) { |
| Symbols.erase( |
| std::remove_if(std::begin(Symbols) + 1, std::end(Symbols), |
| [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }), |
| std::end(Symbols)); |
| Size = Symbols.size() * EntrySize; |
| assignIndices(); |
| } |
| |
| void SymbolTableSection::initialize(SectionTableRef SecTable) { |
| Size = 0; |
| setStrTab(SecTable.getSectionOfType<StringTableSection>( |
| Link, |
| "Symbol table has link index of " + Twine(Link) + |
| " which is not a valid index", |
| "Symbol table has link index of " + Twine(Link) + |
| " which is not a string table")); |
| } |
| |
| void SymbolTableSection::finalize() { |
| // Make sure SymbolNames is finalized before getting name indexes. |
| SymbolNames->finalize(); |
| |
| uint32_t MaxLocalIndex = 0; |
| for (auto &Sym : Symbols) { |
| Sym->NameIndex = SymbolNames->findIndex(Sym->Name); |
| if (Sym->Binding == STB_LOCAL) |
| MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); |
| } |
| // Now we need to set the Link and Info fields. |
| Link = SymbolNames->Index; |
| Info = MaxLocalIndex + 1; |
| } |
| |
| void SymbolTableSection::prepareForLayout() { |
| // Add all potential section indexes before file layout so that the section |
| // index section has the approprite size. |
| if (SectionIndexTable != nullptr) { |
| for (const auto &Sym : Symbols) { |
| if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE) |
| SectionIndexTable->addIndex(Sym->DefinedIn->Index); |
| else |
| SectionIndexTable->addIndex(SHN_UNDEF); |
| } |
| } |
| // Add all of our strings to SymbolNames so that SymbolNames has the right |
| // size before layout is decided. |
| for (auto &Sym : Symbols) |
| SymbolNames->addString(Sym->Name); |
| } |
| |
| const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const { |
| if (Symbols.size() <= Index) |
| error("Invalid symbol index: " + Twine(Index)); |
| return Symbols[Index].get(); |
| } |
| |
| Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) { |
| return const_cast<Symbol *>( |
| static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index)); |
| } |
| |
| template <class ELFT> |
| void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) { |
| uint8_t *Buf = Out.getBufferStart(); |
| Buf += Sec.Offset; |
| typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf); |
| // Loop though symbols setting each entry of the symbol table. |
| for (auto &Symbol : Sec.Symbols) { |
| Sym->st_name = Symbol->NameIndex; |
| Sym->st_value = Symbol->Value; |
| Sym->st_size = Symbol->Size; |
| Sym->st_other = Symbol->Visibility; |
| Sym->setBinding(Symbol->Binding); |
| Sym->setType(Symbol->Type); |
| Sym->st_shndx = Symbol->getShndx(); |
| ++Sym; |
| } |
| } |
| |
| void SymbolTableSection::accept(SectionVisitor &Visitor) const { |
| Visitor.visit(*this); |
| } |
| |
| template <class SymTabType> |
| void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences( |
| const SectionBase *Sec) { |
| if (Symbols == Sec) { |
| error("Symbol table " + Symbols->Name + |
| " cannot be removed because it is " |
| "referenced by the relocation " |
| "section " + |
| this->Name); |
| } |
| } |
| |
| template <class SymTabType> |
| void RelocSectionWithSymtabBase<SymTabType>::initialize( |
| SectionTableRef SecTable) { |
| setSymTab(SecTable.getSectionOfType<SymTabType>( |
| Link, |
| "Link field value " + Twine(Link) + " in section " + Name + " is invalid", |
| "Link field value " + Twine(Link) + " in section " + Name + |
| " is not a symbol table")); |
| |
| if (Info != SHN_UNDEF) |
| setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) + |
| " in section " + Name + |
| " is invalid")); |
| else |
| setSection(nullptr); |
| } |
| |
| template <class SymTabType> |
| void RelocSectionWithSymtabBase<SymTabType>::finalize() { |
| this->Link = Symbols->Index; |
| if (SecToApplyRel != nullptr) |
| this->Info = SecToApplyRel->Index; |
| } |
| |
| template <class ELFT> |
| static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {} |
| |
| template <class ELFT> |
| static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) { |
| Rela.r_addend = Addend; |
| } |
| |
| template <class RelRange, class T> |
| static void writeRel(const RelRange &Relocations, T *Buf) { |
| for (const auto &Reloc : Relocations) { |
| Buf->r_offset = Reloc.Offset; |
| setAddend(*Buf, Reloc.Addend); |
| Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false); |
| ++Buf; |
| } |
| } |
| |
| template <class ELFT> |
| void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) { |
| uint8_t *Buf = Out.getBufferStart() + Sec.Offset; |
| if (Sec.Type == SHT_REL) |
| writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf)); |
| else |
| writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf)); |
| } |
| |
| void RelocationSection::accept(SectionVisitor &Visitor) const { |
| Visitor.visit(*this); |
| } |
| |
| void RelocationSection::removeSymbols( |
| function_ref<bool(const Symbol &)> ToRemove) { |
| for (const Relocation &Reloc : Relocations) |
| if (ToRemove(*Reloc.RelocSymbol)) |
| error("not stripping symbol `" + Reloc.RelocSymbol->Name + |
| "' because it is named in a relocation"); |
| } |
| |
| void RelocationSection::markSymbols() { |
| for (const Relocation &Reloc : Relocations) |
| Reloc.RelocSymbol->Referenced = true; |
| } |
| |
| void SectionWriter::visit(const DynamicRelocationSection &Sec) { |
| std::copy(std::begin(Sec.Contents), std::end(Sec.Contents), |
| Out.getBufferStart() + Sec.Offset); |
| } |
| |
| void DynamicRelocationSection::accept(SectionVisitor &Visitor) const { |
| Visitor.visit(*this); |
| } |
| |
| void Section::removeSectionReferences(const SectionBase *Sec) { |
| if (LinkSection == Sec) { |
| error("Section " + LinkSection->Name + |
| " cannot be removed because it is " |
| "referenced by the section " + |
| this->Name); |
| } |
| } |
| |
| void GroupSection::finalize() { |
| this->Info = Sym->Index; |
| this->Link = SymTab->Index; |
| } |
| |
| void GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { |
| if (ToRemove(*Sym)) { |
| error("Symbol " + Sym->Name + |
| " cannot be removed because it is " |
| "referenced by the section " + |
| this->Name + "[" + Twine(this->Index) + "]"); |
| } |
| } |
| |
| void GroupSection::markSymbols() { |
| if (Sym) |
| Sym->Referenced = true; |
| } |
| |
| void Section::initialize(SectionTableRef SecTable) { |
| if (Link != ELF::SHN_UNDEF) { |
| LinkSection = |
| SecTable.getSection(Link, "Link field value " + Twine(Link) + |
| " in section " + Name + " is invalid"); |
| if (LinkSection->Type == ELF::SHT_SYMTAB) |
| LinkSection = nullptr; |
| } |
| } |
| |
| void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; } |
| |
| void GnuDebugLinkSection::init(StringRef File, StringRef Data) { |
| FileName = sys::path::filename(File); |
| // The format for the .gnu_debuglink starts with the file name and is |
| // followed by a null terminator and then the CRC32 of the file. The CRC32 |
| // should be 4 byte aligned. So we add the FileName size, a 1 for the null |
| // byte, and then finally push the size to alignment and add 4. |
| Size = alignTo(FileName.size() + 1, 4) + 4; |
| // The CRC32 will only be aligned if we align the whole section. |
| Align = 4; |
| Type = ELF::SHT_PROGBITS; |
| Name = ".gnu_debuglink"; |
| // For sections not found in segments, OriginalOffset is only used to |
| // establish the order that sections should go in. By using the maximum |
| // possible offset we cause this section to wind up at the end. |
| OriginalOffset = std::numeric_limits<uint64_t>::max(); |
| JamCRC crc; |
| crc.update(ArrayRef<char>(Data.data(), Data.size())); |
| // The CRC32 value needs to be complemented because the JamCRC dosn't |
| // finalize the CRC32 value. It also dosn't negate the initial CRC32 value |
| // but it starts by default at 0xFFFFFFFF which is the complement of zero. |
| CRC32 = ~crc.getCRC(); |
| } |
| |
| GnuDebugLinkSection::GnuDebugLinkSection(StringRef File) : FileName(File) { |
| // Read in the file to compute the CRC of it. |
| auto DebugOrErr = MemoryBuffer::getFile(File); |
| if (!DebugOrErr) |
| error("'" + File + "': " + DebugOrErr.getError().message()); |
| auto Debug = std::move(*DebugOrErr); |
| init(File, Debug->getBuffer()); |
| } |
| |
| template <class ELFT> |
| void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) { |
| auto Buf = Out.getBufferStart() + Sec.Offset; |
| char *File = reinterpret_cast<char *>(Buf); |
| Elf_Word *CRC = |
| reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word)); |
| *CRC = Sec.CRC32; |
| std::copy(std::begin(Sec.FileName), std::end(Sec.FileName), File); |
| } |
| |
| void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const { |
| Visitor.visit(*this); |
| } |
| |
| template <class ELFT> |
| void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) { |
| ELF::Elf32_Word *Buf = |
| reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset); |
| *Buf++ = Sec.FlagWord; |
| for (const auto *S : Sec.GroupMembers) |
| support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index); |
| } |
| |
| void GroupSection::accept(SectionVisitor &Visitor) const { |
| Visitor.visit(*this); |
| } |
| |
| // Returns true IFF a section is wholly inside the range of a segment |
| static bool sectionWithinSegment(const SectionBase &Section, |
| const Segment &Segment) { |
| // If a section is empty it should be treated like it has a size of 1. This is |
| // to clarify the case when an empty section lies on a boundary between two |
| // segments and ensures that the section "belongs" to the second segment and |
| // not the first. |
| uint64_t SecSize = Section.Size ? Section.Size : 1; |
| return Segment.Offset <= Section.OriginalOffset && |
| Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize; |
| } |
| |
| // Returns true IFF a segment's original offset is inside of another segment's |
| // range. |
| static bool segmentOverlapsSegment(const Segment &Child, |
| const Segment &Parent) { |
| |
| return Parent.OriginalOffset <= Child.OriginalOffset && |
| Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; |
| } |
| |
| static bool compareSegmentsByOffset(const Segment *A, const Segment *B) { |
| // Any segment without a parent segment should come before a segment |
| // that has a parent segment. |
| if (A->OriginalOffset < B->OriginalOffset) |
| return true; |
| if (A->OriginalOffset > B->OriginalOffset) |
| return false; |
| return A->Index < B->Index; |
| } |
| |
| static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) { |
| if (A->PAddr < B->PAddr) |
| return true; |
| if (A->PAddr > B->PAddr) |
| return false; |
| return A->Index < B->Index; |
| } |
| |
| template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) { |
| for (auto &Parent : Obj.segments()) { |
| // Every segment will overlap with itself but we don't want a segment to |
| // be it's own parent so we avoid that situation. |
| if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) { |
| // We want a canonical "most parental" segment but this requires |
| // inspecting the ParentSegment. |
| if (compareSegmentsByOffset(&Parent, &Child)) |
| if (Child.ParentSegment == nullptr || |
| compareSegmentsByOffset(&Parent, Child.ParentSegment)) { |
| Child.ParentSegment = &Parent; |
| } |
| } |
| } |
| } |
| |
| template <class ELFT> void ELFBuilder<ELFT>::readProgramHeaders() { |
| uint32_t Index = 0; |
| for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) { |
| ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset, |
| (size_t)Phdr.p_filesz}; |
| Segment &Seg = Obj.addSegment(Data); |
| Seg.Type = Phdr.p_type; |
| Seg.Flags = Phdr.p_flags; |
| Seg.OriginalOffset = Phdr.p_offset; |
| Seg.Offset = Phdr.p_offset; |
| Seg.VAddr = Phdr.p_vaddr; |
| Seg.PAddr = Phdr.p_paddr; |
| Seg.FileSize = Phdr.p_filesz; |
| Seg.MemSize = Phdr.p_memsz; |
| Seg.Align = Phdr.p_align; |
| Seg.Index = Index++; |
| for (auto &Section : Obj.sections()) { |
| if (sectionWithinSegment(Section, Seg)) { |
| Seg.addSection(&Section); |
| if (!Section.ParentSegment || |
| Section.ParentSegment->Offset > Seg.Offset) { |
| Section.ParentSegment = &Seg; |
| } |
| } |
| } |
| } |
| |
| auto &ElfHdr = Obj.ElfHdrSegment; |
| // Creating multiple PT_PHDR segments technically is not valid, but PT_LOAD |
| // segments must not overlap, and other types fit even less. |
| ElfHdr.Type = PT_PHDR; |
| ElfHdr.Flags = 0; |
| ElfHdr.OriginalOffset = ElfHdr.Offset = 0; |
| ElfHdr.VAddr = 0; |
| ElfHdr.PAddr = 0; |
| ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr); |
| ElfHdr.Align = 0; |
| ElfHdr.Index = Index++; |
| |
| const auto &Ehdr = *ElfFile.getHeader(); |
| auto &PrHdr = Obj.ProgramHdrSegment; |
| PrHdr.Type = PT_PHDR; |
| PrHdr.Flags = 0; |
| // The spec requires us to have p_vaddr % p_align == p_offset % p_align. |
| // Whereas this works automatically for ElfHdr, here OriginalOffset is |
| // always non-zero and to ensure the equation we assign the same value to |
| // VAddr as well. |
| PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = Ehdr.e_phoff; |
| PrHdr.PAddr = 0; |
| PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum; |
| // The spec requires us to naturally align all the fields. |
| PrHdr.Align = sizeof(Elf_Addr); |
| PrHdr.Index = Index++; |
| |
| // Now we do an O(n^2) loop through the segments in order to match up |
| // segments. |
| for (auto &Child : Obj.segments()) |
| setParentSegment(Child); |
| setParentSegment(ElfHdr); |
| setParentSegment(PrHdr); |
| } |
| |
| template <class ELFT> |
| void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) { |
| auto SecTable = Obj.sections(); |
| auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>( |
| GroupSec->Link, |
| "Link field value " + Twine(GroupSec->Link) + " in section " + |
| GroupSec->Name + " is invalid", |
| "Link field value " + Twine(GroupSec->Link) + " in section " + |
| GroupSec->Name + " is not a symbol table"); |
| auto Sym = SymTab->getSymbolByIndex(GroupSec->Info); |
| if (!Sym) |
| error("Info field value " + Twine(GroupSec->Info) + " in section " + |
| GroupSec->Name + " is not a valid symbol index"); |
| GroupSec->setSymTab(SymTab); |
| GroupSec->setSymbol(Sym); |
| if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) || |
| GroupSec->Contents.empty()) |
| error("The content of the section " + GroupSec->Name + " is malformed"); |
| const ELF::Elf32_Word *Word = |
| reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data()); |
| const ELF::Elf32_Word *End = |
| Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word); |
| GroupSec->setFlagWord(*Word++); |
| for (; Word != End; ++Word) { |
| uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word); |
| GroupSec->addMember(SecTable.getSection( |
| Index, "Group member index " + Twine(Index) + " in section " + |
| GroupSec->Name + " is invalid")); |
| } |
| } |
| |
| template <class ELFT> |
| void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) { |
| const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index)); |
| StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr)); |
| ArrayRef<Elf_Word> ShndxData; |
| |
| auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr)); |
| for (const auto &Sym : Symbols) { |
| SectionBase *DefSection = nullptr; |
| StringRef Name = unwrapOrError(Sym.getName(StrTabData)); |
| |
| if (Sym.st_shndx == SHN_XINDEX) { |
| if (SymTab->getShndxTable() == nullptr) |
| error("Symbol '" + Name + |
| "' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists."); |
| if (ShndxData.data() == nullptr) { |
| const Elf_Shdr &ShndxSec = |
| *unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index)); |
| ShndxData = unwrapOrError( |
| ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec)); |
| if (ShndxData.size() != Symbols.size()) |
| error("Symbol section index table does not have the same number of " |
| "entries as the symbol table."); |
| } |
| Elf_Word Index = ShndxData[&Sym - Symbols.begin()]; |
| DefSection = Obj.sections().getSection( |
| Index, |
| "Symbol '" + Name + "' has invalid section index " + |
| Twine(Index)); |
| } else if (Sym.st_shndx >= SHN_LORESERVE) { |
| if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) { |
| error( |
| "Symbol '" + Name + |
| "' has unsupported value greater than or equal to SHN_LORESERVE: " + |
| Twine(Sym.st_shndx)); |
| } |
| } else if (Sym.st_shndx != SHN_UNDEF) { |
| DefSection = Obj.sections().getSection( |
| Sym.st_shndx, "Symbol '" + Name + |
| "' is defined has invalid section index " + |
| Twine(Sym.st_shndx)); |
| } |
| |
| SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection, |
| Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size); |
| } |
| } |
| |
| template <class ELFT> |
| static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {} |
| |
| template <class ELFT> |
| static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) { |
| ToSet = Rela.r_addend; |
| } |
| |
| template <class T> |
| static void initRelocations(RelocationSection *Relocs, |
| SymbolTableSection *SymbolTable, T RelRange) { |
| for (const auto &Rel : RelRange) { |
| Relocation ToAdd; |
| ToAdd.Offset = Rel.r_offset; |
| getAddend(ToAdd.Addend, Rel); |
| ToAdd.Type = Rel.getType(false); |
| ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false)); |
| Relocs->addRelocation(ToAdd); |
| } |
| } |
| |
| SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) { |
| if (Index == SHN_UNDEF || Index > Sections.size()) |
| error(ErrMsg); |
| return Sections[Index - 1].get(); |
| } |
| |
| template <class T> |
| T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg, |
| Twine TypeErrMsg) { |
| if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg))) |
| return Sec; |
| error(TypeErrMsg); |
| } |
| |
| template <class ELFT> |
| SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) { |
| ArrayRef<uint8_t> Data; |
| switch (Shdr.sh_type) { |
| case SHT_REL: |
| case SHT_RELA: |
| if (Shdr.sh_flags & SHF_ALLOC) { |
| Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); |
| return Obj.addSection<DynamicRelocationSection>(Data); |
| } |
| return Obj.addSection<RelocationSection>(); |
| case SHT_STRTAB: |
| // If a string table is allocated we don't want to mess with it. That would |
| // mean altering the memory image. There are no special link types or |
| // anything so we can just use a Section. |
| if (Shdr.sh_flags & SHF_ALLOC) { |
| Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); |
| return Obj.addSection<Section>(Data); |
| } |
| return Obj.addSection<StringTableSection>(); |
| case SHT_HASH: |
| case SHT_GNU_HASH: |
| // Hash tables should refer to SHT_DYNSYM which we're not going to change. |
| // Because of this we don't need to mess with the hash tables either. |
| Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); |
| return Obj.addSection<Section>(Data); |
| case SHT_GROUP: |
| Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); |
| return Obj.addSection<GroupSection>(Data); |
| case SHT_DYNSYM: |
| Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); |
| return Obj.addSection<DynamicSymbolTableSection>(Data); |
| case SHT_DYNAMIC: |
| Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); |
| return Obj.addSection<DynamicSection>(Data); |
| case SHT_SYMTAB: { |
| auto &SymTab = Obj.addSection<SymbolTableSection>(); |
| Obj.SymbolTable = &SymTab; |
| return SymTab; |
| } |
| case SHT_SYMTAB_SHNDX: { |
| auto &ShndxSection = Obj.addSection<SectionIndexSection>(); |
| Obj.SectionIndexTable = &ShndxSection; |
| return ShndxSection; |
| } |
| case SHT_NOBITS: |
| return Obj.addSection<Section>(Data); |
| default: |
| Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); |
| return Obj.addSection<Section>(Data); |
| } |
| } |
| |
| template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() { |
| uint32_t Index = 0; |
| for (const auto &Shdr : unwrapOrError(ElfFile.sections())) { |
| if (Index == 0) { |
| ++Index; |
| continue; |
| } |
| auto &Sec = makeSection(Shdr); |
| Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr)); |
| Sec.Type = Shdr.sh_type; |
| Sec.Flags = Shdr.sh_flags; |
| Sec.Addr = Shdr.sh_addr; |
| Sec.Offset = Shdr.sh_offset; |
| Sec.OriginalOffset = Shdr.sh_offset; |
| Sec.Size = Shdr.sh_size; |
| Sec.Link = Shdr.sh_link; |
| Sec.Info = Shdr.sh_info; |
| Sec.Align = Shdr.sh_addralign; |
| Sec.EntrySize = Shdr.sh_entsize; |
| Sec.Index = Index++; |
| } |
| |
| // If a section index table exists we'll need to initialize it before we |
| // initialize the symbol table because the symbol table might need to |
| // reference it. |
| if (Obj.SectionIndexTable) |
| Obj.SectionIndexTable->initialize(Obj.sections()); |
| |
| // Now that all of the sections have been added we can fill out some extra |
| // details about symbol tables. We need the symbol table filled out before |
| // any relocations. |
| if (Obj.SymbolTable) { |
| Obj.SymbolTable->initialize(Obj.sections()); |
| initSymbolTable(Obj.SymbolTable); |
| } |
| |
| // Now that all sections and symbols have been added we can add |
| // relocations that reference symbols and set the link and info fields for |
| // relocation sections. |
| for (auto &Section : Obj.sections()) { |
| if (&Section == Obj.SymbolTable) |
| continue; |
| Section.initialize(Obj.sections()); |
| if (auto RelSec = dyn_cast<RelocationSection>(&Section)) { |
| auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index; |
| if (RelSec->Type == SHT_REL) |
| initRelocations(RelSec, Obj.SymbolTable, |
| unwrapOrError(ElfFile.rels(Shdr))); |
| else |
| initRelocations(RelSec, Obj.SymbolTable, |
| unwrapOrError(ElfFile.relas(Shdr))); |
| } else if (auto GroupSec = dyn_cast<GroupSection>(&Section)) { |
| initGroupSection(GroupSec); |
| } |
| } |
| } |
| |
| template <class ELFT> void ELFBuilder<ELFT>::build() { |
| const auto &Ehdr = *ElfFile.getHeader(); |
| |
| std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Obj.Ident); |
| Obj.Type = Ehdr.e_type; |
| Obj.Machine = Ehdr.e_machine; |
| Obj.Version = Ehdr.e_version; |
| Obj.Entry = Ehdr.e_entry; |
| Obj.Flags = Ehdr.e_flags; |
| |
| readSectionHeaders(); |
| readProgramHeaders(); |
| |
| uint32_t ShstrIndex = Ehdr.e_shstrndx; |
| if (ShstrIndex == SHN_XINDEX) |
| ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link; |
| |
| Obj.SectionNames = |
| Obj.sections().template getSectionOfType<StringTableSection>( |
| ShstrIndex, |
| "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + |
| " in elf header " + " is invalid", |
| "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + |
| " in elf header " + " is not a string table"); |
| } |
| |
| // A generic size function which computes sizes of any random access range. |
| template <class R> size_t size(R &&Range) { |
| return static_cast<size_t>(std::end(Range) - std::begin(Range)); |
| } |
| |
| Writer::~Writer() {} |
| |
| Reader::~Reader() {} |
| |
| ElfType ELFReader::getElfType() const { |
| if (isa<ELFObjectFile<ELF32LE>>(Bin)) |
| return ELFT_ELF32LE; |
| if (isa<ELFObjectFile<ELF64LE>>(Bin)) |
| return ELFT_ELF64LE; |
| if (isa<ELFObjectFile<ELF32BE>>(Bin)) |
| return ELFT_ELF32BE; |
| if (isa<ELFObjectFile<ELF64BE>>(Bin)) |
| return ELFT_ELF64BE; |
| llvm_unreachable("Invalid ELFType"); |
| } |
| |
| std::unique_ptr<Object> ELFReader::create() const { |
| auto Obj = llvm::make_unique<Object>(); |
| if (auto *o = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) { |
| ELFBuilder<ELF32LE> Builder(*o, *Obj); |
| Builder.build(); |
| return Obj; |
| } else if (auto *o = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) { |
| ELFBuilder<ELF64LE> Builder(*o, *Obj); |
| Builder.build(); |
| return Obj; |
| } else if (auto *o = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) { |
| ELFBuilder<ELF32BE> Builder(*o, *Obj); |
| Builder.build(); |
| return Obj; |
| } else if (auto *o = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) { |
| ELFBuilder<ELF64BE> Builder(*o, *Obj); |
| Builder.build(); |
| return Obj; |
| } |
| error("Invalid file type"); |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::writeEhdr() { |
| uint8_t *B = Buf.getBufferStart(); |
| Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(B); |
| std::copy(Obj.Ident, Obj.Ident + 16, Ehdr.e_ident); |
| Ehdr.e_type = Obj.Type; |
| Ehdr.e_machine = Obj.Machine; |
| Ehdr.e_version = Obj.Version; |
| Ehdr.e_entry = Obj.Entry; |
| Ehdr.e_phoff = Obj.ProgramHdrSegment.Offset; |
| Ehdr.e_flags = Obj.Flags; |
| Ehdr.e_ehsize = sizeof(Elf_Ehdr); |
| Ehdr.e_phentsize = sizeof(Elf_Phdr); |
| Ehdr.e_phnum = size(Obj.segments()); |
| Ehdr.e_shentsize = sizeof(Elf_Shdr); |
| if (WriteSectionHeaders) { |
| Ehdr.e_shoff = Obj.SHOffset; |
| // """ |
| // If the number of sections is greater than or equal to |
| // SHN_LORESERVE (0xff00), this member has the value zero and the actual |
| // number of section header table entries is contained in the sh_size field |
| // of the section header at index 0. |
| // """ |
| auto Shnum = size(Obj.sections()) + 1; |
| if (Shnum >= SHN_LORESERVE) |
| Ehdr.e_shnum = 0; |
| else |
| Ehdr.e_shnum = Shnum; |
| // """ |
| // If the section name string table section index is greater than or equal |
| // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff) |
| // and the actual index of the section name string table section is |
| // contained in the sh_link field of the section header at index 0. |
| // """ |
| if (Obj.SectionNames->Index >= SHN_LORESERVE) |
| Ehdr.e_shstrndx = SHN_XINDEX; |
| else |
| Ehdr.e_shstrndx = Obj.SectionNames->Index; |
| } else { |
| Ehdr.e_shoff = 0; |
| Ehdr.e_shnum = 0; |
| Ehdr.e_shstrndx = 0; |
| } |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::writePhdrs() { |
| for (auto &Seg : Obj.segments()) |
| writePhdr(Seg); |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::writeShdrs() { |
| uint8_t *B = Buf.getBufferStart() + Obj.SHOffset; |
| // This reference serves to write the dummy section header at the begining |
| // of the file. It is not used for anything else |
| Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B); |
| Shdr.sh_name = 0; |
| Shdr.sh_type = SHT_NULL; |
| Shdr.sh_flags = 0; |
| Shdr.sh_addr = 0; |
| Shdr.sh_offset = 0; |
| // See writeEhdr for why we do this. |
| uint64_t Shnum = size(Obj.sections()) + 1; |
| if (Shnum >= SHN_LORESERVE) |
| Shdr.sh_size = Shnum; |
| else |
| Shdr.sh_size = 0; |
| // See writeEhdr for why we do this. |
| if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE) |
| Shdr.sh_link = Obj.SectionNames->Index; |
| else |
| Shdr.sh_link = 0; |
| Shdr.sh_info = 0; |
| Shdr.sh_addralign = 0; |
| Shdr.sh_entsize = 0; |
| |
| for (auto &Sec : Obj.sections()) |
| writeShdr(Sec); |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::writeSectionData() { |
| for (auto &Sec : Obj.sections()) |
| Sec.accept(*SecWriter); |
| } |
| |
| void Object::removeSections(std::function<bool(const SectionBase &)> ToRemove) { |
| |
| auto Iter = std::stable_partition( |
| std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { |
| if (ToRemove(*Sec)) |
| return false; |
| if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) { |
| if (auto ToRelSec = RelSec->getSection()) |
| return !ToRemove(*ToRelSec); |
| } |
| return true; |
| }); |
| if (SymbolTable != nullptr && ToRemove(*SymbolTable)) |
| SymbolTable = nullptr; |
| if (SectionNames != nullptr && ToRemove(*SectionNames)) |
| SectionNames = nullptr; |
| if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable)) |
| SectionIndexTable = nullptr; |
| // Now make sure there are no remaining references to the sections that will |
| // be removed. Sometimes it is impossible to remove a reference so we emit |
| // an error here instead. |
| for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { |
| for (auto &Segment : Segments) |
| Segment->removeSection(RemoveSec.get()); |
| for (auto &KeepSec : make_range(std::begin(Sections), Iter)) |
| KeepSec->removeSectionReferences(RemoveSec.get()); |
| } |
| // Now finally get rid of them all togethor. |
| Sections.erase(Iter, std::end(Sections)); |
| } |
| |
| void Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { |
| if (!SymbolTable) |
| return; |
| |
| for (const SecPtr &Sec : Sections) |
| Sec->removeSymbols(ToRemove); |
| } |
| |
| void Object::sortSections() { |
| // Put all sections in offset order. Maintain the ordering as closely as |
| // possible while meeting that demand however. |
| auto CompareSections = [](const SecPtr &A, const SecPtr &B) { |
| return A->OriginalOffset < B->OriginalOffset; |
| }; |
| std::stable_sort(std::begin(this->Sections), std::end(this->Sections), |
| CompareSections); |
| } |
| |
| static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) { |
| // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align. |
| if (Align == 0) |
| Align = 1; |
| auto Diff = |
| static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align); |
| // We only want to add to Offset, however, so if Diff < 0 we can add Align and |
| // (Offset + Diff) & -Align == Addr & -Align will still hold. |
| if (Diff < 0) |
| Diff += Align; |
| return Offset + Diff; |
| } |
| |
| // Orders segments such that if x = y->ParentSegment then y comes before x. |
| static void OrderSegments(std::vector<Segment *> &Segments) { |
| std::stable_sort(std::begin(Segments), std::end(Segments), |
| compareSegmentsByOffset); |
| } |
| |
| // This function finds a consistent layout for a list of segments starting from |
| // an Offset. It assumes that Segments have been sorted by OrderSegments and |
| // returns an Offset one past the end of the last segment. |
| static uint64_t LayoutSegments(std::vector<Segment *> &Segments, |
| uint64_t Offset) { |
| assert(std::is_sorted(std::begin(Segments), std::end(Segments), |
| compareSegmentsByOffset)); |
| // The only way a segment should move is if a section was between two |
| // segments and that section was removed. If that section isn't in a segment |
| // then it's acceptable, but not ideal, to simply move it to after the |
| // segments. So we can simply layout segments one after the other accounting |
| // for alignment. |
| for (auto &Segment : Segments) { |
| // We assume that segments have been ordered by OriginalOffset and Index |
| // such that a parent segment will always come before a child segment in |
| // OrderedSegments. This means that the Offset of the ParentSegment should |
| // already be set and we can set our offset relative to it. |
| if (Segment->ParentSegment != nullptr) { |
| auto Parent = Segment->ParentSegment; |
| Segment->Offset = |
| Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset; |
| } else { |
| Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align); |
| Segment->Offset = Offset; |
| } |
| Offset = std::max(Offset, Segment->Offset + Segment->FileSize); |
| } |
| return Offset; |
| } |
| |
| // This function finds a consistent layout for a list of sections. It assumes |
| // that the ->ParentSegment of each section has already been laid out. The |
| // supplied starting Offset is used for the starting offset of any section that |
| // does not have a ParentSegment. It returns either the offset given if all |
| // sections had a ParentSegment or an offset one past the last section if there |
| // was a section that didn't have a ParentSegment. |
| template <class Range> |
| static uint64_t LayoutSections(Range Sections, uint64_t Offset) { |
| // Now the offset of every segment has been set we can assign the offsets |
| // of each section. For sections that are covered by a segment we should use |
| // the segment's original offset and the section's original offset to compute |
| // the offset from the start of the segment. Using the offset from the start |
| // of the segment we can assign a new offset to the section. For sections not |
| // covered by segments we can just bump Offset to the next valid location. |
| uint32_t Index = 1; |
| for (auto &Section : Sections) { |
| Section.Index = Index++; |
| if (Section.ParentSegment != nullptr) { |
| auto Segment = *Section.ParentSegment; |
| Section.Offset = |
| Segment.Offset + (Section.OriginalOffset - Segment.OriginalOffset); |
| } else { |
| Offset = alignTo(Offset, Section.Align == 0 ? 1 : Section.Align); |
| Section.Offset = Offset; |
| if (Section.Type != SHT_NOBITS) |
| Offset += Section.Size; |
| } |
| } |
| return Offset; |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::assignOffsets() { |
| // We need a temporary list of segments that has a special order to it |
| // so that we know that anytime ->ParentSegment is set that segment has |
| // already had its offset properly set. |
| std::vector<Segment *> OrderedSegments; |
| for (auto &Segment : Obj.segments()) |
| OrderedSegments.push_back(&Segment); |
| OrderedSegments.push_back(&Obj.ElfHdrSegment); |
| OrderedSegments.push_back(&Obj.ProgramHdrSegment); |
| OrderSegments(OrderedSegments); |
| // Offset is used as the start offset of the first segment to be laid out. |
| // Since the ELF Header (ElfHdrSegment) must be at the start of the file, |
| // we start at offset 0. |
| uint64_t Offset = 0; |
| Offset = LayoutSegments(OrderedSegments, Offset); |
| Offset = LayoutSections(Obj.sections(), Offset); |
| // If we need to write the section header table out then we need to align the |
| // Offset so that SHOffset is valid. |
| if (WriteSectionHeaders) |
| Offset = alignTo(Offset, sizeof(typename ELFT::Addr)); |
| Obj.SHOffset = Offset; |
| } |
| |
| template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const { |
| // We already have the section header offset so we can calculate the total |
| // size by just adding up the size of each section header. |
| auto NullSectionSize = WriteSectionHeaders ? sizeof(Elf_Shdr) : 0; |
| return Obj.SHOffset + size(Obj.sections()) * sizeof(Elf_Shdr) + |
| NullSectionSize; |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::write() { |
| writeEhdr(); |
| writePhdrs(); |
| writeSectionData(); |
| if (WriteSectionHeaders) |
| writeShdrs(); |
| if (auto E = Buf.commit()) |
| reportError(Buf.getName(), errorToErrorCode(std::move(E))); |
| } |
| |
| template <class ELFT> void ELFWriter<ELFT>::finalize() { |
| // It could happen that SectionNames has been removed and yet the user wants |
| // a section header table output. We need to throw an error if a user tries |
| // to do that. |
| if (Obj.SectionNames == nullptr && WriteSectionHeaders) |
| error("Cannot write section header table because section header string " |
| "table was removed."); |
| |
| Obj.sortSections(); |
| |
| // We need to assign indexes before we perform layout because we need to know |
| // if we need large indexes or not. We can assign indexes first and check as |
| // we go to see if we will actully need large indexes. |
| bool NeedsLargeIndexes = false; |
| if (size(Obj.sections()) >= SHN_LORESERVE) { |
| auto Sections = Obj.sections(); |
| NeedsLargeIndexes = |
| std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(), |
| [](const SectionBase &Sec) { return Sec.HasSymbol; }); |
| // TODO: handle case where only one section needs the large index table but |
| // only needs it because the large index table hasn't been removed yet. |
| } |
| |
| if (NeedsLargeIndexes) { |
| // This means we definitely need to have a section index table but if we |
| // already have one then we should use it instead of making a new one. |
| if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) { |
| // Addition of a section to the end does not invalidate the indexes of |
| // other sections and assigns the correct index to the new section. |
| auto &Shndx = Obj.addSection<SectionIndexSection>(); |
| Obj.SymbolTable->setShndxTable(&Shndx); |
| Shndx.setSymTab(Obj.SymbolTable); |
| } |
| } else { |
| // Since we don't need SectionIndexTable we should remove it and all |
| // references to it. |
| if (Obj.SectionIndexTable != nullptr) { |
| Obj.removeSections([this](const SectionBase &Sec) { |
| return &Sec == Obj.SectionIndexTable; |
| }); |
| } |
| } |
| |
| // Make sure we add the names of all the sections. Importantly this must be |
| // done after we decide to add or remove SectionIndexes. |
| if (Obj.SectionNames != nullptr) |
| for (const auto &Section : Obj.sections()) { |
| Obj.SectionNames->addString(Section.Name); |
| } |
| |
| // Before we can prepare for layout the indexes need to be finalized. |
| uint64_t Index = 0; |
| for (auto &Sec : Obj.sections()) |
| Sec.Index = Index++; |
| |
| // The symbol table does not update all other sections on update. For |
| // instance, symbol names are not added as new symbols are added. This means |
| // that some sections, like .strtab, don't yet have their final size. |
| if (Obj.SymbolTable != nullptr) |
| Obj.SymbolTable->prepareForLayout(); |
| |
| assignOffsets(); |
| |
| // Finalize SectionNames first so that we can assign name indexes. |
| if (Obj.SectionNames != nullptr) |
| Obj.SectionNames->finalize(); |
| // Finally now that all offsets and indexes have been set we can finalize any |
| // remaining issues. |
| uint64_t Offset = Obj.SHOffset + sizeof(Elf_Shdr); |
| for (auto &Section : Obj.sections()) { |
| Section.HeaderOffset = Offset; |
| Offset += sizeof(Elf_Shdr); |
| if (WriteSectionHeaders) |
| Section.NameIndex = Obj.SectionNames->findIndex(Section.Name); |
| Section.finalize(); |
| } |
| |
| Buf.allocate(totalSize()); |
| SecWriter = llvm::make_unique<ELFSectionWriter<ELFT>>(Buf); |
| } |
| |
| void BinaryWriter::write() { |
| for (auto &Section : Obj.sections()) { |
| if ((Section.Flags & SHF_ALLOC) == 0) |
| continue; |
| Section.accept(*SecWriter); |
| } |
| if (auto E = Buf.commit()) |
| reportError(Buf.getName(), errorToErrorCode(std::move(E))); |
| } |
| |
| void BinaryWriter::finalize() { |
| // TODO: Create a filter range to construct OrderedSegments from so that this |
| // code can be deduped with assignOffsets above. This should also solve the |
| // todo below for LayoutSections. |
| // We need a temporary list of segments that has a special order to it |
| // so that we know that anytime ->ParentSegment is set that segment has |
| // already had it's offset properly set. We only want to consider the segments |
| // that will affect layout of allocated sections so we only add those. |
| std::vector<Segment *> OrderedSegments; |
| for (auto &Section : Obj.sections()) { |
| if ((Section.Flags & SHF_ALLOC) != 0 && Section.ParentSegment != nullptr) { |
| OrderedSegments.push_back(Section.ParentSegment); |
| } |
| } |
| |
| // For binary output, we're going to use physical addresses instead of |
| // virtual addresses, since a binary output is used for cases like ROM |
| // loading and physical addresses are intended for ROM loading. |
| // However, if no segment has a physical address, we'll fallback to using |
| // virtual addresses for all. |
| if (std::all_of(std::begin(OrderedSegments), std::end(OrderedSegments), |
| [](const Segment *Segment) { return Segment->PAddr == 0; })) |
| for (const auto &Segment : OrderedSegments) |
| Segment->PAddr = Segment->VAddr; |
| |
| std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments), |
| compareSegmentsByPAddr); |
| |
| // Because we add a ParentSegment for each section we might have duplicate |
| // segments in OrderedSegments. If there were duplicates then LayoutSegments |
| // would do very strange things. |
| auto End = |
| std::unique(std::begin(OrderedSegments), std::end(OrderedSegments)); |
| OrderedSegments.erase(End, std::end(OrderedSegments)); |
| |
| uint64_t Offset = 0; |
| |
| // Modify the first segment so that there is no gap at the start. This allows |
| // our layout algorithm to proceed as expected while not out writing out the |
| // gap at the start. |
| if (!OrderedSegments.empty()) { |
| auto Seg = OrderedSegments[0]; |
| auto Sec = Seg->firstSection(); |
| auto Diff = Sec->OriginalOffset - Seg->OriginalOffset; |
| Seg->OriginalOffset += Diff; |
| // The size needs to be shrunk as well. |
| Seg->FileSize -= Diff; |
| // The PAddr needs to be increased to remove the gap before the first |
| // section. |
| Seg->PAddr += Diff; |
| uint64_t LowestPAddr = Seg->PAddr; |
| for (auto &Segment : OrderedSegments) { |
| Segment->Offset = Segment->PAddr - LowestPAddr; |
| Offset = std::max(Offset, Segment->Offset + Segment->FileSize); |
| } |
| } |
| |
| // TODO: generalize LayoutSections to take a range. Pass a special range |
| // constructed from an iterator that skips values for which a predicate does |
| // not hold. Then pass such a range to LayoutSections instead of constructing |
| // AllocatedSections here. |
| std::vector<SectionBase *> AllocatedSections; |
| for (auto &Section : Obj.sections()) { |
| if ((Section.Flags & SHF_ALLOC) == 0) |
| continue; |
| AllocatedSections.push_back(&Section); |
| } |
| LayoutSections(make_pointee_range(AllocatedSections), Offset); |
| |
| // Now that every section has been laid out we just need to compute the total |
| // file size. This might not be the same as the offset returned by |
| // LayoutSections, because we want to truncate the last segment to the end of |
| // its last section, to match GNU objcopy's behaviour. |
| TotalSize = 0; |
| for (const auto &Section : AllocatedSections) { |
| if (Section->Type != SHT_NOBITS) |
| TotalSize = std::max(TotalSize, Section->Offset + Section->Size); |
| } |
| |
| Buf.allocate(TotalSize); |
| SecWriter = llvm::make_unique<BinarySectionWriter>(Buf); |
| } |
| |
| namespace llvm { |
| namespace objcopy { |
| |
| template class ELFBuilder<ELF64LE>; |
| template class ELFBuilder<ELF64BE>; |
| template class ELFBuilder<ELF32LE>; |
| template class ELFBuilder<ELF32BE>; |
| |
| template class ELFWriter<ELF64LE>; |
| template class ELFWriter<ELF64BE>; |
| template class ELFWriter<ELF32LE>; |
| template class ELFWriter<ELF32BE>; |
| } // end namespace objcopy |
| } // end namespace llvm |