| //===- DWARFVerifier.cpp --------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/DebugInfo/DWARF/DWARFVerifier.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" |
| #include "llvm/DebugInfo/DWARF/DWARFContext.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDie.h" |
| #include "llvm/DebugInfo/DWARF/DWARFExpression.h" |
| #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" |
| #include "llvm/DebugInfo/DWARF/DWARFSection.h" |
| #include "llvm/Support/DJB.h" |
| #include "llvm/Support/FormatVariadic.h" |
| #include "llvm/Support/WithColor.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <map> |
| #include <set> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace dwarf; |
| using namespace object; |
| |
| DWARFVerifier::DieRangeInfo::address_range_iterator |
| DWARFVerifier::DieRangeInfo::insert(const DWARFAddressRange &R) { |
| auto Begin = Ranges.begin(); |
| auto End = Ranges.end(); |
| auto Pos = std::lower_bound(Begin, End, R); |
| |
| if (Pos != End) { |
| if (Pos->intersects(R)) |
| return Pos; |
| if (Pos != Begin) { |
| auto Iter = Pos - 1; |
| if (Iter->intersects(R)) |
| return Iter; |
| } |
| } |
| |
| Ranges.insert(Pos, R); |
| return Ranges.end(); |
| } |
| |
| DWARFVerifier::DieRangeInfo::die_range_info_iterator |
| DWARFVerifier::DieRangeInfo::insert(const DieRangeInfo &RI) { |
| auto End = Children.end(); |
| auto Iter = Children.begin(); |
| while (Iter != End) { |
| if (Iter->intersects(RI)) |
| return Iter; |
| ++Iter; |
| } |
| Children.insert(RI); |
| return Children.end(); |
| } |
| |
| bool DWARFVerifier::DieRangeInfo::contains(const DieRangeInfo &RHS) const { |
| // Both list of ranges are sorted so we can make this fast. |
| |
| if (Ranges.empty() || RHS.Ranges.empty()) |
| return false; |
| |
| // Since the ranges are sorted we can advance where we start searching with |
| // this object's ranges as we traverse RHS.Ranges. |
| auto End = Ranges.end(); |
| auto Iter = findRange(RHS.Ranges.front()); |
| |
| // Now linearly walk the ranges in this object and see if they contain each |
| // ranges from RHS.Ranges. |
| for (const auto &R : RHS.Ranges) { |
| while (Iter != End) { |
| if (Iter->contains(R)) |
| break; |
| ++Iter; |
| } |
| if (Iter == End) |
| return false; |
| } |
| return true; |
| } |
| |
| bool DWARFVerifier::DieRangeInfo::intersects(const DieRangeInfo &RHS) const { |
| if (Ranges.empty() || RHS.Ranges.empty()) |
| return false; |
| |
| auto End = Ranges.end(); |
| auto Iter = findRange(RHS.Ranges.front()); |
| for (const auto &R : RHS.Ranges) { |
| if(Iter == End) |
| return false; |
| if (R.HighPC <= Iter->LowPC) |
| continue; |
| while (Iter != End) { |
| if (Iter->intersects(R)) |
| return true; |
| ++Iter; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool DWARFVerifier::verifyUnitHeader(const DWARFDataExtractor DebugInfoData, |
| uint32_t *Offset, unsigned UnitIndex, |
| uint8_t &UnitType, bool &isUnitDWARF64) { |
| uint32_t AbbrOffset, Length; |
| uint8_t AddrSize = 0; |
| uint16_t Version; |
| bool Success = true; |
| |
| bool ValidLength = false; |
| bool ValidVersion = false; |
| bool ValidAddrSize = false; |
| bool ValidType = true; |
| bool ValidAbbrevOffset = true; |
| |
| uint32_t OffsetStart = *Offset; |
| Length = DebugInfoData.getU32(Offset); |
| if (Length == UINT32_MAX) { |
| isUnitDWARF64 = true; |
| OS << format( |
| "Unit[%d] is in 64-bit DWARF format; cannot verify from this point.\n", |
| UnitIndex); |
| return false; |
| } |
| Version = DebugInfoData.getU16(Offset); |
| |
| if (Version >= 5) { |
| UnitType = DebugInfoData.getU8(Offset); |
| AddrSize = DebugInfoData.getU8(Offset); |
| AbbrOffset = DebugInfoData.getU32(Offset); |
| ValidType = dwarf::isUnitType(UnitType); |
| } else { |
| UnitType = 0; |
| AbbrOffset = DebugInfoData.getU32(Offset); |
| AddrSize = DebugInfoData.getU8(Offset); |
| } |
| |
| if (!DCtx.getDebugAbbrev()->getAbbreviationDeclarationSet(AbbrOffset)) |
| ValidAbbrevOffset = false; |
| |
| ValidLength = DebugInfoData.isValidOffset(OffsetStart + Length + 3); |
| ValidVersion = DWARFContext::isSupportedVersion(Version); |
| ValidAddrSize = AddrSize == 4 || AddrSize == 8; |
| if (!ValidLength || !ValidVersion || !ValidAddrSize || !ValidAbbrevOffset || |
| !ValidType) { |
| Success = false; |
| error() << format("Units[%d] - start offset: 0x%08x \n", UnitIndex, |
| OffsetStart); |
| if (!ValidLength) |
| note() << "The length for this unit is too " |
| "large for the .debug_info provided.\n"; |
| if (!ValidVersion) |
| note() << "The 16 bit unit header version is not valid.\n"; |
| if (!ValidType) |
| note() << "The unit type encoding is not valid.\n"; |
| if (!ValidAbbrevOffset) |
| note() << "The offset into the .debug_abbrev section is " |
| "not valid.\n"; |
| if (!ValidAddrSize) |
| note() << "The address size is unsupported.\n"; |
| } |
| *Offset = OffsetStart + Length + 4; |
| return Success; |
| } |
| |
| bool DWARFVerifier::verifyUnitContents(DWARFUnit &Unit, uint8_t UnitType) { |
| uint32_t NumUnitErrors = 0; |
| unsigned NumDies = Unit.getNumDIEs(); |
| for (unsigned I = 0; I < NumDies; ++I) { |
| auto Die = Unit.getDIEAtIndex(I); |
| if (Die.getTag() == DW_TAG_null) |
| continue; |
| for (auto AttrValue : Die.attributes()) { |
| NumUnitErrors += verifyDebugInfoAttribute(Die, AttrValue); |
| NumUnitErrors += verifyDebugInfoForm(Die, AttrValue); |
| } |
| } |
| |
| DWARFDie Die = Unit.getUnitDIE(/* ExtractUnitDIEOnly = */ false); |
| if (!Die) { |
| error() << "Compilation unit without DIE.\n"; |
| NumUnitErrors++; |
| return NumUnitErrors == 0; |
| } |
| |
| if (!dwarf::isUnitType(Die.getTag())) { |
| error() << "Compilation unit root DIE is not a unit DIE: " |
| << dwarf::TagString(Die.getTag()) << ".\n"; |
| NumUnitErrors++; |
| } |
| |
| if (UnitType != 0 && |
| !DWARFUnit::isMatchingUnitTypeAndTag(UnitType, Die.getTag())) { |
| error() << "Compilation unit type (" << dwarf::UnitTypeString(UnitType) |
| << ") and root DIE (" << dwarf::TagString(Die.getTag()) |
| << ") do not match.\n"; |
| NumUnitErrors++; |
| } |
| |
| DieRangeInfo RI; |
| NumUnitErrors += verifyDieRanges(Die, RI); |
| |
| return NumUnitErrors == 0; |
| } |
| |
| unsigned DWARFVerifier::verifyAbbrevSection(const DWARFDebugAbbrev *Abbrev) { |
| unsigned NumErrors = 0; |
| if (Abbrev) { |
| const DWARFAbbreviationDeclarationSet *AbbrDecls = |
| Abbrev->getAbbreviationDeclarationSet(0); |
| for (auto AbbrDecl : *AbbrDecls) { |
| SmallDenseSet<uint16_t> AttributeSet; |
| for (auto Attribute : AbbrDecl.attributes()) { |
| auto Result = AttributeSet.insert(Attribute.Attr); |
| if (!Result.second) { |
| error() << "Abbreviation declaration contains multiple " |
| << AttributeString(Attribute.Attr) << " attributes.\n"; |
| AbbrDecl.dump(OS); |
| ++NumErrors; |
| } |
| } |
| } |
| } |
| return NumErrors; |
| } |
| |
| bool DWARFVerifier::handleDebugAbbrev() { |
| OS << "Verifying .debug_abbrev...\n"; |
| |
| const DWARFObject &DObj = DCtx.getDWARFObj(); |
| bool noDebugAbbrev = DObj.getAbbrevSection().empty(); |
| bool noDebugAbbrevDWO = DObj.getAbbrevDWOSection().empty(); |
| |
| if (noDebugAbbrev && noDebugAbbrevDWO) { |
| return true; |
| } |
| |
| unsigned NumErrors = 0; |
| if (!noDebugAbbrev) |
| NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrev()); |
| |
| if (!noDebugAbbrevDWO) |
| NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrevDWO()); |
| return NumErrors == 0; |
| } |
| |
| bool DWARFVerifier::handleDebugInfo() { |
| OS << "Verifying .debug_info Unit Header Chain...\n"; |
| |
| const DWARFObject &DObj = DCtx.getDWARFObj(); |
| DWARFDataExtractor DebugInfoData(DObj, DObj.getInfoSection(), |
| DCtx.isLittleEndian(), 0); |
| uint32_t NumDebugInfoErrors = 0; |
| uint32_t OffsetStart = 0, Offset = 0, UnitIdx = 0; |
| uint8_t UnitType = 0; |
| bool isUnitDWARF64 = false; |
| bool isHeaderChainValid = true; |
| bool hasDIE = DebugInfoData.isValidOffset(Offset); |
| DWARFUnitSection<DWARFTypeUnit> TUSection{}; |
| DWARFUnitSection<DWARFCompileUnit> CUSection{}; |
| while (hasDIE) { |
| OffsetStart = Offset; |
| if (!verifyUnitHeader(DebugInfoData, &Offset, UnitIdx, UnitType, |
| isUnitDWARF64)) { |
| isHeaderChainValid = false; |
| if (isUnitDWARF64) |
| break; |
| } else { |
| DWARFUnitHeader Header; |
| Header.extract(DCtx, DebugInfoData, &OffsetStart); |
| std::unique_ptr<DWARFUnit> Unit; |
| switch (UnitType) { |
| case dwarf::DW_UT_type: |
| case dwarf::DW_UT_split_type: { |
| Unit.reset(new DWARFTypeUnit( |
| DCtx, DObj.getInfoSection(), Header, DCtx.getDebugAbbrev(), |
| &DObj.getRangeSection(), DObj.getStringSection(), |
| DObj.getStringOffsetSection(), &DObj.getAppleObjCSection(), |
| DObj.getLineSection(), DCtx.isLittleEndian(), false, TUSection)); |
| break; |
| } |
| case dwarf::DW_UT_skeleton: |
| case dwarf::DW_UT_split_compile: |
| case dwarf::DW_UT_compile: |
| case dwarf::DW_UT_partial: |
| // UnitType = 0 means that we are |
| // verifying a compile unit in DWARF v4. |
| case 0: { |
| Unit.reset(new DWARFCompileUnit( |
| DCtx, DObj.getInfoSection(), Header, DCtx.getDebugAbbrev(), |
| &DObj.getRangeSection(), DObj.getStringSection(), |
| DObj.getStringOffsetSection(), &DObj.getAppleObjCSection(), |
| DObj.getLineSection(), DCtx.isLittleEndian(), false, CUSection)); |
| break; |
| } |
| default: { llvm_unreachable("Invalid UnitType."); } |
| } |
| if (!verifyUnitContents(*Unit, UnitType)) |
| ++NumDebugInfoErrors; |
| } |
| hasDIE = DebugInfoData.isValidOffset(Offset); |
| ++UnitIdx; |
| } |
| if (UnitIdx == 0 && !hasDIE) { |
| warn() << ".debug_info is empty.\n"; |
| isHeaderChainValid = true; |
| } |
| NumDebugInfoErrors += verifyDebugInfoReferences(); |
| return (isHeaderChainValid && NumDebugInfoErrors == 0); |
| } |
| |
| unsigned DWARFVerifier::verifyDieRanges(const DWARFDie &Die, |
| DieRangeInfo &ParentRI) { |
| unsigned NumErrors = 0; |
| |
| if (!Die.isValid()) |
| return NumErrors; |
| |
| auto RangesOrError = Die.getAddressRanges(); |
| if (!RangesOrError) { |
| // FIXME: Report the error. |
| ++NumErrors; |
| llvm::consumeError(RangesOrError.takeError()); |
| return NumErrors; |
| } |
| |
| DWARFAddressRangesVector Ranges = RangesOrError.get(); |
| // Build RI for this DIE and check that ranges within this DIE do not |
| // overlap. |
| DieRangeInfo RI(Die); |
| for (auto Range : Ranges) { |
| if (!Range.valid()) { |
| ++NumErrors; |
| error() << "Invalid address range " << Range << "\n"; |
| continue; |
| } |
| |
| // Verify that ranges don't intersect. |
| const auto IntersectingRange = RI.insert(Range); |
| if (IntersectingRange != RI.Ranges.end()) { |
| ++NumErrors; |
| error() << "DIE has overlapping address ranges: " << Range << " and " |
| << *IntersectingRange << "\n"; |
| break; |
| } |
| } |
| |
| // Verify that children don't intersect. |
| const auto IntersectingChild = ParentRI.insert(RI); |
| if (IntersectingChild != ParentRI.Children.end()) { |
| ++NumErrors; |
| error() << "DIEs have overlapping address ranges:"; |
| Die.dump(OS, 0); |
| IntersectingChild->Die.dump(OS, 0); |
| OS << "\n"; |
| } |
| |
| // Verify that ranges are contained within their parent. |
| bool ShouldBeContained = !Ranges.empty() && !ParentRI.Ranges.empty() && |
| !(Die.getTag() == DW_TAG_subprogram && |
| ParentRI.Die.getTag() == DW_TAG_subprogram); |
| if (ShouldBeContained && !ParentRI.contains(RI)) { |
| ++NumErrors; |
| error() << "DIE address ranges are not contained in its parent's ranges:"; |
| ParentRI.Die.dump(OS, 0); |
| Die.dump(OS, 2); |
| OS << "\n"; |
| } |
| |
| // Recursively check children. |
| for (DWARFDie Child : Die) |
| NumErrors += verifyDieRanges(Child, RI); |
| |
| return NumErrors; |
| } |
| |
| unsigned DWARFVerifier::verifyDebugInfoAttribute(const DWARFDie &Die, |
| DWARFAttribute &AttrValue) { |
| unsigned NumErrors = 0; |
| auto ReportError = [&](const Twine &TitleMsg) { |
| ++NumErrors; |
| error() << TitleMsg << '\n'; |
| Die.dump(OS, 0, DumpOpts); |
| OS << "\n"; |
| }; |
| |
| const DWARFObject &DObj = DCtx.getDWARFObj(); |
| const auto Attr = AttrValue.Attr; |
| switch (Attr) { |
| case DW_AT_ranges: |
| // Make sure the offset in the DW_AT_ranges attribute is valid. |
| if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) { |
| if (*SectionOffset >= DObj.getRangeSection().Data.size()) |
| ReportError("DW_AT_ranges offset is beyond .debug_ranges bounds:"); |
| break; |
| } |
| ReportError("DIE has invalid DW_AT_ranges encoding:"); |
| break; |
| case DW_AT_stmt_list: |
| // Make sure the offset in the DW_AT_stmt_list attribute is valid. |
| if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) { |
| if (*SectionOffset >= DObj.getLineSection().Data.size()) |
| ReportError("DW_AT_stmt_list offset is beyond .debug_line bounds: " + |
| llvm::formatv("{0:x8}", *SectionOffset)); |
| break; |
| } |
| ReportError("DIE has invalid DW_AT_stmt_list encoding:"); |
| break; |
| case DW_AT_location: { |
| auto VerifyLocationExpr = [&](StringRef D) { |
| DWARFUnit *U = Die.getDwarfUnit(); |
| DataExtractor Data(D, DCtx.isLittleEndian(), 0); |
| DWARFExpression Expression(Data, U->getVersion(), |
| U->getAddressByteSize()); |
| bool Error = llvm::any_of(Expression, [](DWARFExpression::Operation &Op) { |
| return Op.isError(); |
| }); |
| if (Error) |
| ReportError("DIE contains invalid DWARF expression:"); |
| }; |
| if (Optional<ArrayRef<uint8_t>> Expr = AttrValue.Value.getAsBlock()) { |
| // Verify inlined location. |
| VerifyLocationExpr(llvm::toStringRef(*Expr)); |
| } else if (auto LocOffset = AttrValue.Value.getAsSectionOffset()) { |
| // Verify location list. |
| if (auto DebugLoc = DCtx.getDebugLoc()) |
| if (auto LocList = DebugLoc->getLocationListAtOffset(*LocOffset)) |
| for (const auto &Entry : LocList->Entries) |
| VerifyLocationExpr({Entry.Loc.data(), Entry.Loc.size()}); |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| return NumErrors; |
| } |
| |
| unsigned DWARFVerifier::verifyDebugInfoForm(const DWARFDie &Die, |
| DWARFAttribute &AttrValue) { |
| const DWARFObject &DObj = DCtx.getDWARFObj(); |
| unsigned NumErrors = 0; |
| const auto Form = AttrValue.Value.getForm(); |
| switch (Form) { |
| case DW_FORM_ref1: |
| case DW_FORM_ref2: |
| case DW_FORM_ref4: |
| case DW_FORM_ref8: |
| case DW_FORM_ref_udata: { |
| // Verify all CU relative references are valid CU offsets. |
| Optional<uint64_t> RefVal = AttrValue.Value.getAsReference(); |
| assert(RefVal); |
| if (RefVal) { |
| auto DieCU = Die.getDwarfUnit(); |
| auto CUSize = DieCU->getNextUnitOffset() - DieCU->getOffset(); |
| auto CUOffset = AttrValue.Value.getRawUValue(); |
| if (CUOffset >= CUSize) { |
| ++NumErrors; |
| error() << FormEncodingString(Form) << " CU offset " |
| << format("0x%08" PRIx64, CUOffset) |
| << " is invalid (must be less than CU size of " |
| << format("0x%08" PRIx32, CUSize) << "):\n"; |
| Die.dump(OS, 0, DumpOpts); |
| OS << "\n"; |
| } else { |
| // Valid reference, but we will verify it points to an actual |
| // DIE later. |
| ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset()); |
| } |
| } |
| break; |
| } |
| case DW_FORM_ref_addr: { |
| // Verify all absolute DIE references have valid offsets in the |
| // .debug_info section. |
| Optional<uint64_t> RefVal = AttrValue.Value.getAsReference(); |
| assert(RefVal); |
| if (RefVal) { |
| if (*RefVal >= DObj.getInfoSection().Data.size()) { |
| ++NumErrors; |
| error() << "DW_FORM_ref_addr offset beyond .debug_info " |
| "bounds:\n"; |
| Die.dump(OS, 0, DumpOpts); |
| OS << "\n"; |
| } else { |
| // Valid reference, but we will verify it points to an actual |
| // DIE later. |
| ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset()); |
| } |
| } |
| break; |
| } |
| case DW_FORM_strp: { |
| auto SecOffset = AttrValue.Value.getAsSectionOffset(); |
| assert(SecOffset); // DW_FORM_strp is a section offset. |
| if (SecOffset && *SecOffset >= DObj.getStringSection().size()) { |
| ++NumErrors; |
| error() << "DW_FORM_strp offset beyond .debug_str bounds:\n"; |
| Die.dump(OS, 0, DumpOpts); |
| OS << "\n"; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| return NumErrors; |
| } |
| |
| unsigned DWARFVerifier::verifyDebugInfoReferences() { |
| // Take all references and make sure they point to an actual DIE by |
| // getting the DIE by offset and emitting an error |
| OS << "Verifying .debug_info references...\n"; |
| unsigned NumErrors = 0; |
| for (auto Pair : ReferenceToDIEOffsets) { |
| auto Die = DCtx.getDIEForOffset(Pair.first); |
| if (Die) |
| continue; |
| ++NumErrors; |
| error() << "invalid DIE reference " << format("0x%08" PRIx64, Pair.first) |
| << ". Offset is in between DIEs:\n"; |
| for (auto Offset : Pair.second) { |
| auto ReferencingDie = DCtx.getDIEForOffset(Offset); |
| ReferencingDie.dump(OS, 0, DumpOpts); |
| OS << "\n"; |
| } |
| OS << "\n"; |
| } |
| return NumErrors; |
| } |
| |
| void DWARFVerifier::verifyDebugLineStmtOffsets() { |
| std::map<uint64_t, DWARFDie> StmtListToDie; |
| for (const auto &CU : DCtx.compile_units()) { |
| auto Die = CU->getUnitDIE(); |
| // Get the attribute value as a section offset. No need to produce an |
| // error here if the encoding isn't correct because we validate this in |
| // the .debug_info verifier. |
| auto StmtSectionOffset = toSectionOffset(Die.find(DW_AT_stmt_list)); |
| if (!StmtSectionOffset) |
| continue; |
| const uint32_t LineTableOffset = *StmtSectionOffset; |
| auto LineTable = DCtx.getLineTableForUnit(CU.get()); |
| if (LineTableOffset < DCtx.getDWARFObj().getLineSection().Data.size()) { |
| if (!LineTable) { |
| ++NumDebugLineErrors; |
| error() << ".debug_line[" << format("0x%08" PRIx32, LineTableOffset) |
| << "] was not able to be parsed for CU:\n"; |
| Die.dump(OS, 0, DumpOpts); |
| OS << '\n'; |
| continue; |
| } |
| } else { |
| // Make sure we don't get a valid line table back if the offset is wrong. |
| assert(LineTable == nullptr); |
| // Skip this line table as it isn't valid. No need to create an error |
| // here because we validate this in the .debug_info verifier. |
| continue; |
| } |
| auto Iter = StmtListToDie.find(LineTableOffset); |
| if (Iter != StmtListToDie.end()) { |
| ++NumDebugLineErrors; |
| error() << "two compile unit DIEs, " |
| << format("0x%08" PRIx32, Iter->second.getOffset()) << " and " |
| << format("0x%08" PRIx32, Die.getOffset()) |
| << ", have the same DW_AT_stmt_list section offset:\n"; |
| Iter->second.dump(OS, 0, DumpOpts); |
| Die.dump(OS, 0, DumpOpts); |
| OS << '\n'; |
| // Already verified this line table before, no need to do it again. |
| continue; |
| } |
| StmtListToDie[LineTableOffset] = Die; |
| } |
| } |
| |
| void DWARFVerifier::verifyDebugLineRows() { |
| for (const auto &CU : DCtx.compile_units()) { |
| auto Die = CU->getUnitDIE(); |
| auto LineTable = DCtx.getLineTableForUnit(CU.get()); |
| // If there is no line table we will have created an error in the |
| // .debug_info verifier or in verifyDebugLineStmtOffsets(). |
| if (!LineTable) |
| continue; |
| |
| // Verify prologue. |
| uint32_t MaxFileIndex = LineTable->Prologue.FileNames.size(); |
| uint32_t MaxDirIndex = LineTable->Prologue.IncludeDirectories.size(); |
| uint32_t FileIndex = 1; |
| StringMap<uint16_t> FullPathMap; |
| for (const auto &FileName : LineTable->Prologue.FileNames) { |
| // Verify directory index. |
| if (FileName.DirIdx > MaxDirIndex) { |
| ++NumDebugLineErrors; |
| error() << ".debug_line[" |
| << format("0x%08" PRIx64, |
| *toSectionOffset(Die.find(DW_AT_stmt_list))) |
| << "].prologue.file_names[" << FileIndex |
| << "].dir_idx contains an invalid index: " << FileName.DirIdx |
| << "\n"; |
| } |
| |
| // Check file paths for duplicates. |
| std::string FullPath; |
| const bool HasFullPath = LineTable->getFileNameByIndex( |
| FileIndex, CU->getCompilationDir(), |
| DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FullPath); |
| assert(HasFullPath && "Invalid index?"); |
| (void)HasFullPath; |
| auto It = FullPathMap.find(FullPath); |
| if (It == FullPathMap.end()) |
| FullPathMap[FullPath] = FileIndex; |
| else if (It->second != FileIndex) { |
| warn() << ".debug_line[" |
| << format("0x%08" PRIx64, |
| *toSectionOffset(Die.find(DW_AT_stmt_list))) |
| << "].prologue.file_names[" << FileIndex |
| << "] is a duplicate of file_names[" << It->second << "]\n"; |
| } |
| |
| FileIndex++; |
| } |
| |
| // Verify rows. |
| uint64_t PrevAddress = 0; |
| uint32_t RowIndex = 0; |
| for (const auto &Row : LineTable->Rows) { |
| // Verify row address. |
| if (Row.Address < PrevAddress) { |
| ++NumDebugLineErrors; |
| error() << ".debug_line[" |
| << format("0x%08" PRIx64, |
| *toSectionOffset(Die.find(DW_AT_stmt_list))) |
| << "] row[" << RowIndex |
| << "] decreases in address from previous row:\n"; |
| |
| DWARFDebugLine::Row::dumpTableHeader(OS); |
| if (RowIndex > 0) |
| LineTable->Rows[RowIndex - 1].dump(OS); |
| Row.dump(OS); |
| OS << '\n'; |
| } |
| |
| // Verify file index. |
| if (Row.File > MaxFileIndex) { |
| ++NumDebugLineErrors; |
| error() << ".debug_line[" |
| << format("0x%08" PRIx64, |
| *toSectionOffset(Die.find(DW_AT_stmt_list))) |
| << "][" << RowIndex << "] has invalid file index " << Row.File |
| << " (valid values are [1," << MaxFileIndex << "]):\n"; |
| DWARFDebugLine::Row::dumpTableHeader(OS); |
| Row.dump(OS); |
| OS << '\n'; |
| } |
| if (Row.EndSequence) |
| PrevAddress = 0; |
| else |
| PrevAddress = Row.Address; |
| ++RowIndex; |
| } |
| } |
| } |
| |
| bool DWARFVerifier::handleDebugLine() { |
| NumDebugLineErrors = 0; |
| OS << "Verifying .debug_line...\n"; |
| verifyDebugLineStmtOffsets(); |
| verifyDebugLineRows(); |
| return NumDebugLineErrors == 0; |
| } |
| |
| unsigned DWARFVerifier::verifyAppleAccelTable(const DWARFSection *AccelSection, |
| DataExtractor *StrData, |
| const char *SectionName) { |
| unsigned NumErrors = 0; |
| DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), *AccelSection, |
| DCtx.isLittleEndian(), 0); |
| AppleAcceleratorTable AccelTable(AccelSectionData, *StrData); |
| |
| OS << "Verifying " << SectionName << "...\n"; |
| |
| // Verify that the fixed part of the header is not too short. |
| if (!AccelSectionData.isValidOffset(AccelTable.getSizeHdr())) { |
| error() << "Section is too small to fit a section header.\n"; |
| return 1; |
| } |
| |
| // Verify that the section is not too short. |
| if (Error E = AccelTable.extract()) { |
| error() << toString(std::move(E)) << '\n'; |
| return 1; |
| } |
| |
| // Verify that all buckets have a valid hash index or are empty. |
| uint32_t NumBuckets = AccelTable.getNumBuckets(); |
| uint32_t NumHashes = AccelTable.getNumHashes(); |
| |
| uint32_t BucketsOffset = |
| AccelTable.getSizeHdr() + AccelTable.getHeaderDataLength(); |
| uint32_t HashesBase = BucketsOffset + NumBuckets * 4; |
| uint32_t OffsetsBase = HashesBase + NumHashes * 4; |
| for (uint32_t BucketIdx = 0; BucketIdx < NumBuckets; ++BucketIdx) { |
| uint32_t HashIdx = AccelSectionData.getU32(&BucketsOffset); |
| if (HashIdx >= NumHashes && HashIdx != UINT32_MAX) { |
| error() << format("Bucket[%d] has invalid hash index: %u.\n", BucketIdx, |
| HashIdx); |
| ++NumErrors; |
| } |
| } |
| uint32_t NumAtoms = AccelTable.getAtomsDesc().size(); |
| if (NumAtoms == 0) { |
| error() << "No atoms: failed to read HashData.\n"; |
| return 1; |
| } |
| if (!AccelTable.validateForms()) { |
| error() << "Unsupported form: failed to read HashData.\n"; |
| return 1; |
| } |
| |
| for (uint32_t HashIdx = 0; HashIdx < NumHashes; ++HashIdx) { |
| uint32_t HashOffset = HashesBase + 4 * HashIdx; |
| uint32_t DataOffset = OffsetsBase + 4 * HashIdx; |
| uint32_t Hash = AccelSectionData.getU32(&HashOffset); |
| uint32_t HashDataOffset = AccelSectionData.getU32(&DataOffset); |
| if (!AccelSectionData.isValidOffsetForDataOfSize(HashDataOffset, |
| sizeof(uint64_t))) { |
| error() << format("Hash[%d] has invalid HashData offset: 0x%08x.\n", |
| HashIdx, HashDataOffset); |
| ++NumErrors; |
| } |
| |
| uint32_t StrpOffset; |
| uint32_t StringOffset; |
| uint32_t StringCount = 0; |
| unsigned Offset; |
| unsigned Tag; |
| while ((StrpOffset = AccelSectionData.getU32(&HashDataOffset)) != 0) { |
| const uint32_t NumHashDataObjects = |
| AccelSectionData.getU32(&HashDataOffset); |
| for (uint32_t HashDataIdx = 0; HashDataIdx < NumHashDataObjects; |
| ++HashDataIdx) { |
| std::tie(Offset, Tag) = AccelTable.readAtoms(HashDataOffset); |
| auto Die = DCtx.getDIEForOffset(Offset); |
| if (!Die) { |
| const uint32_t BucketIdx = |
| NumBuckets ? (Hash % NumBuckets) : UINT32_MAX; |
| StringOffset = StrpOffset; |
| const char *Name = StrData->getCStr(&StringOffset); |
| if (!Name) |
| Name = "<NULL>"; |
| |
| error() << format( |
| "%s Bucket[%d] Hash[%d] = 0x%08x " |
| "Str[%u] = 0x%08x " |
| "DIE[%d] = 0x%08x is not a valid DIE offset for \"%s\".\n", |
| SectionName, BucketIdx, HashIdx, Hash, StringCount, StrpOffset, |
| HashDataIdx, Offset, Name); |
| |
| ++NumErrors; |
| continue; |
| } |
| if ((Tag != dwarf::DW_TAG_null) && (Die.getTag() != Tag)) { |
| error() << "Tag " << dwarf::TagString(Tag) |
| << " in accelerator table does not match Tag " |
| << dwarf::TagString(Die.getTag()) << " of DIE[" << HashDataIdx |
| << "].\n"; |
| ++NumErrors; |
| } |
| } |
| ++StringCount; |
| } |
| } |
| return NumErrors; |
| } |
| |
| unsigned |
| DWARFVerifier::verifyDebugNamesCULists(const DWARFDebugNames &AccelTable) { |
| // A map from CU offset to the (first) Name Index offset which claims to index |
| // this CU. |
| DenseMap<uint32_t, uint32_t> CUMap; |
| const uint32_t NotIndexed = std::numeric_limits<uint32_t>::max(); |
| |
| CUMap.reserve(DCtx.getNumCompileUnits()); |
| for (const auto &CU : DCtx.compile_units()) |
| CUMap[CU->getOffset()] = NotIndexed; |
| |
| unsigned NumErrors = 0; |
| for (const DWARFDebugNames::NameIndex &NI : AccelTable) { |
| if (NI.getCUCount() == 0) { |
| error() << formatv("Name Index @ {0:x} does not index any CU\n", |
| NI.getUnitOffset()); |
| ++NumErrors; |
| continue; |
| } |
| for (uint32_t CU = 0, End = NI.getCUCount(); CU < End; ++CU) { |
| uint32_t Offset = NI.getCUOffset(CU); |
| auto Iter = CUMap.find(Offset); |
| |
| if (Iter == CUMap.end()) { |
| error() << formatv( |
| "Name Index @ {0:x} references a non-existing CU @ {1:x}\n", |
| NI.getUnitOffset(), Offset); |
| ++NumErrors; |
| continue; |
| } |
| |
| if (Iter->second != NotIndexed) { |
| error() << formatv("Name Index @ {0:x} references a CU @ {1:x}, but " |
| "this CU is already indexed by Name Index @ {2:x}\n", |
| NI.getUnitOffset(), Offset, Iter->second); |
| continue; |
| } |
| Iter->second = NI.getUnitOffset(); |
| } |
| } |
| |
| for (const auto &KV : CUMap) { |
| if (KV.second == NotIndexed) |
| warn() << formatv("CU @ {0:x} not covered by any Name Index\n", KV.first); |
| } |
| |
| return NumErrors; |
| } |
| |
| unsigned |
| DWARFVerifier::verifyNameIndexBuckets(const DWARFDebugNames::NameIndex &NI, |
| const DataExtractor &StrData) { |
| struct BucketInfo { |
| uint32_t Bucket; |
| uint32_t Index; |
| |
| constexpr BucketInfo(uint32_t Bucket, uint32_t Index) |
| : Bucket(Bucket), Index(Index) {} |
| bool operator<(const BucketInfo &RHS) const { return Index < RHS.Index; }; |
| }; |
| |
| uint32_t NumErrors = 0; |
| if (NI.getBucketCount() == 0) { |
| warn() << formatv("Name Index @ {0:x} does not contain a hash table.\n", |
| NI.getUnitOffset()); |
| return NumErrors; |
| } |
| |
| // Build up a list of (Bucket, Index) pairs. We use this later to verify that |
| // each Name is reachable from the appropriate bucket. |
| std::vector<BucketInfo> BucketStarts; |
| BucketStarts.reserve(NI.getBucketCount() + 1); |
| for (uint32_t Bucket = 0, End = NI.getBucketCount(); Bucket < End; ++Bucket) { |
| uint32_t Index = NI.getBucketArrayEntry(Bucket); |
| if (Index > NI.getNameCount()) { |
| error() << formatv("Bucket {0} of Name Index @ {1:x} contains invalid " |
| "value {2}. Valid range is [0, {3}].\n", |
| Bucket, NI.getUnitOffset(), Index, NI.getNameCount()); |
| ++NumErrors; |
| continue; |
| } |
| if (Index > 0) |
| BucketStarts.emplace_back(Bucket, Index); |
| } |
| |
| // If there were any buckets with invalid values, skip further checks as they |
| // will likely produce many errors which will only confuse the actual root |
| // problem. |
| if (NumErrors > 0) |
| return NumErrors; |
| |
| // Sort the list in the order of increasing "Index" entries. |
| array_pod_sort(BucketStarts.begin(), BucketStarts.end()); |
| |
| // Insert a sentinel entry at the end, so we can check that the end of the |
| // table is covered in the loop below. |
| BucketStarts.emplace_back(NI.getBucketCount(), NI.getNameCount() + 1); |
| |
| // Loop invariant: NextUncovered is the (1-based) index of the first Name |
| // which is not reachable by any of the buckets we processed so far (and |
| // hasn't been reported as uncovered). |
| uint32_t NextUncovered = 1; |
| for (const BucketInfo &B : BucketStarts) { |
| // Under normal circumstances B.Index be equal to NextUncovered, but it can |
| // be less if a bucket points to names which are already known to be in some |
| // bucket we processed earlier. In that case, we won't trigger this error, |
| // but report the mismatched hash value error instead. (We know the hash |
| // will not match because we have already verified that the name's hash |
| // puts it into the previous bucket.) |
| if (B.Index > NextUncovered) { |
| error() << formatv("Name Index @ {0:x}: Name table entries [{1}, {2}] " |
| "are not covered by the hash table.\n", |
| NI.getUnitOffset(), NextUncovered, B.Index - 1); |
| ++NumErrors; |
| } |
| uint32_t Idx = B.Index; |
| |
| // The rest of the checks apply only to non-sentinel entries. |
| if (B.Bucket == NI.getBucketCount()) |
| break; |
| |
| // This triggers if a non-empty bucket points to a name with a mismatched |
| // hash. Clients are likely to interpret this as an empty bucket, because a |
| // mismatched hash signals the end of a bucket, but if this is indeed an |
| // empty bucket, the producer should have signalled this by marking the |
| // bucket as empty. |
| uint32_t FirstHash = NI.getHashArrayEntry(Idx); |
| if (FirstHash % NI.getBucketCount() != B.Bucket) { |
| error() << formatv( |
| "Name Index @ {0:x}: Bucket {1} is not empty but points to a " |
| "mismatched hash value {2:x} (belonging to bucket {3}).\n", |
| NI.getUnitOffset(), B.Bucket, FirstHash, |
| FirstHash % NI.getBucketCount()); |
| ++NumErrors; |
| } |
| |
| // This find the end of this bucket and also verifies that all the hashes in |
| // this bucket are correct by comparing the stored hashes to the ones we |
| // compute ourselves. |
| while (Idx <= NI.getNameCount()) { |
| uint32_t Hash = NI.getHashArrayEntry(Idx); |
| if (Hash % NI.getBucketCount() != B.Bucket) |
| break; |
| |
| const char *Str = NI.getNameTableEntry(Idx).getString(); |
| if (caseFoldingDjbHash(Str) != Hash) { |
| error() << formatv("Name Index @ {0:x}: String ({1}) at index {2} " |
| "hashes to {3:x}, but " |
| "the Name Index hash is {4:x}\n", |
| NI.getUnitOffset(), Str, Idx, |
| caseFoldingDjbHash(Str), Hash); |
| ++NumErrors; |
| } |
| |
| ++Idx; |
| } |
| NextUncovered = std::max(NextUncovered, Idx); |
| } |
| return NumErrors; |
| } |
| |
| unsigned DWARFVerifier::verifyNameIndexAttribute( |
| const DWARFDebugNames::NameIndex &NI, const DWARFDebugNames::Abbrev &Abbr, |
| DWARFDebugNames::AttributeEncoding AttrEnc) { |
| StringRef FormName = dwarf::FormEncodingString(AttrEnc.Form); |
| if (FormName.empty()) { |
| error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x}: {2} uses an " |
| "unknown form: {3}.\n", |
| NI.getUnitOffset(), Abbr.Code, AttrEnc.Index, |
| AttrEnc.Form); |
| return 1; |
| } |
| |
| if (AttrEnc.Index == DW_IDX_type_hash) { |
| if (AttrEnc.Form != dwarf::DW_FORM_data8) { |
| error() << formatv( |
| "NameIndex @ {0:x}: Abbreviation {1:x}: DW_IDX_type_hash " |
| "uses an unexpected form {2} (should be {3}).\n", |
| NI.getUnitOffset(), Abbr.Code, AttrEnc.Form, dwarf::DW_FORM_data8); |
| return 1; |
| } |
| } |
| |
| // A list of known index attributes and their expected form classes. |
| // DW_IDX_type_hash is handled specially in the check above, as it has a |
| // specific form (not just a form class) we should expect. |
| struct FormClassTable { |
| dwarf::Index Index; |
| DWARFFormValue::FormClass Class; |
| StringLiteral ClassName; |
| }; |
| static constexpr FormClassTable Table[] = { |
| {dwarf::DW_IDX_compile_unit, DWARFFormValue::FC_Constant, {"constant"}}, |
| {dwarf::DW_IDX_type_unit, DWARFFormValue::FC_Constant, {"constant"}}, |
| {dwarf::DW_IDX_die_offset, DWARFFormValue::FC_Reference, {"reference"}}, |
| {dwarf::DW_IDX_parent, DWARFFormValue::FC_Constant, {"constant"}}, |
| }; |
| |
| ArrayRef<FormClassTable> TableRef(Table); |
| auto Iter = find_if(TableRef, [AttrEnc](const FormClassTable &T) { |
| return T.Index == AttrEnc.Index; |
| }); |
| if (Iter == TableRef.end()) { |
| warn() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} contains an " |
| "unknown index attribute: {2}.\n", |
| NI.getUnitOffset(), Abbr.Code, AttrEnc.Index); |
| return 0; |
| } |
| |
| if (!DWARFFormValue(AttrEnc.Form).isFormClass(Iter->Class)) { |
| error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x}: {2} uses an " |
| "unexpected form {3} (expected form class {4}).\n", |
| NI.getUnitOffset(), Abbr.Code, AttrEnc.Index, |
| AttrEnc.Form, Iter->ClassName); |
| return 1; |
| } |
| return 0; |
| } |
| |
| unsigned |
| DWARFVerifier::verifyNameIndexAbbrevs(const DWARFDebugNames::NameIndex &NI) { |
| if (NI.getLocalTUCount() + NI.getForeignTUCount() > 0) { |
| warn() << formatv("Name Index @ {0:x}: Verifying indexes of type units is " |
| "not currently supported.\n", |
| NI.getUnitOffset()); |
| return 0; |
| } |
| |
| unsigned NumErrors = 0; |
| for (const auto &Abbrev : NI.getAbbrevs()) { |
| StringRef TagName = dwarf::TagString(Abbrev.Tag); |
| if (TagName.empty()) { |
| warn() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} references an " |
| "unknown tag: {2}.\n", |
| NI.getUnitOffset(), Abbrev.Code, Abbrev.Tag); |
| } |
| SmallSet<unsigned, 5> Attributes; |
| for (const auto &AttrEnc : Abbrev.Attributes) { |
| if (!Attributes.insert(AttrEnc.Index).second) { |
| error() << formatv("NameIndex @ {0:x}: Abbreviation {1:x} contains " |
| "multiple {2} attributes.\n", |
| NI.getUnitOffset(), Abbrev.Code, AttrEnc.Index); |
| ++NumErrors; |
| continue; |
| } |
| NumErrors += verifyNameIndexAttribute(NI, Abbrev, AttrEnc); |
| } |
| |
| if (NI.getCUCount() > 1 && !Attributes.count(dwarf::DW_IDX_compile_unit)) { |
| error() << formatv("NameIndex @ {0:x}: Indexing multiple compile units " |
| "and abbreviation {1:x} has no {2} attribute.\n", |
| NI.getUnitOffset(), Abbrev.Code, |
| dwarf::DW_IDX_compile_unit); |
| ++NumErrors; |
| } |
| if (!Attributes.count(dwarf::DW_IDX_die_offset)) { |
| error() << formatv( |
| "NameIndex @ {0:x}: Abbreviation {1:x} has no {2} attribute.\n", |
| NI.getUnitOffset(), Abbrev.Code, dwarf::DW_IDX_die_offset); |
| ++NumErrors; |
| } |
| } |
| return NumErrors; |
| } |
| |
| static SmallVector<StringRef, 2> getNames(const DWARFDie &DIE) { |
| SmallVector<StringRef, 2> Result; |
| if (const char *Str = DIE.getName(DINameKind::ShortName)) |
| Result.emplace_back(Str); |
| else if (DIE.getTag() == dwarf::DW_TAG_namespace) |
| Result.emplace_back("(anonymous namespace)"); |
| |
| if (const char *Str = DIE.getName(DINameKind::LinkageName)) { |
| if (Result.empty() || Result[0] != Str) |
| Result.emplace_back(Str); |
| } |
| |
| return Result; |
| } |
| |
| unsigned DWARFVerifier::verifyNameIndexEntries( |
| const DWARFDebugNames::NameIndex &NI, |
| const DWARFDebugNames::NameTableEntry &NTE) { |
| // Verifying type unit indexes not supported. |
| if (NI.getLocalTUCount() + NI.getForeignTUCount() > 0) |
| return 0; |
| |
| const char *CStr = NTE.getString(); |
| if (!CStr) { |
| error() << formatv( |
| "Name Index @ {0:x}: Unable to get string associated with name {1}.\n", |
| NI.getUnitOffset(), NTE.getIndex()); |
| return 1; |
| } |
| StringRef Str(CStr); |
| |
| unsigned NumErrors = 0; |
| unsigned NumEntries = 0; |
| uint32_t EntryID = NTE.getEntryOffset(); |
| uint32_t NextEntryID = EntryID; |
| Expected<DWARFDebugNames::Entry> EntryOr = NI.getEntry(&NextEntryID); |
| for (; EntryOr; ++NumEntries, EntryID = NextEntryID, |
| EntryOr = NI.getEntry(&NextEntryID)) { |
| uint32_t CUIndex = *EntryOr->getCUIndex(); |
| if (CUIndex > NI.getCUCount()) { |
| error() << formatv("Name Index @ {0:x}: Entry @ {1:x} contains an " |
| "invalid CU index ({2}).\n", |
| NI.getUnitOffset(), EntryID, CUIndex); |
| ++NumErrors; |
| continue; |
| } |
| uint32_t CUOffset = NI.getCUOffset(CUIndex); |
| uint64_t DIEOffset = CUOffset + *EntryOr->getDIEUnitOffset(); |
| DWARFDie DIE = DCtx.getDIEForOffset(DIEOffset); |
| if (!DIE) { |
| error() << formatv("Name Index @ {0:x}: Entry @ {1:x} references a " |
| "non-existing DIE @ {2:x}.\n", |
| NI.getUnitOffset(), EntryID, DIEOffset); |
| ++NumErrors; |
| continue; |
| } |
| if (DIE.getDwarfUnit()->getOffset() != CUOffset) { |
| error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched CU of " |
| "DIE @ {2:x}: index - {3:x}; debug_info - {4:x}.\n", |
| NI.getUnitOffset(), EntryID, DIEOffset, CUOffset, |
| DIE.getDwarfUnit()->getOffset()); |
| ++NumErrors; |
| } |
| if (DIE.getTag() != EntryOr->tag()) { |
| error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched Tag of " |
| "DIE @ {2:x}: index - {3}; debug_info - {4}.\n", |
| NI.getUnitOffset(), EntryID, DIEOffset, EntryOr->tag(), |
| DIE.getTag()); |
| ++NumErrors; |
| } |
| |
| auto EntryNames = getNames(DIE); |
| if (!is_contained(EntryNames, Str)) { |
| error() << formatv("Name Index @ {0:x}: Entry @ {1:x}: mismatched Name " |
| "of DIE @ {2:x}: index - {3}; debug_info - {4}.\n", |
| NI.getUnitOffset(), EntryID, DIEOffset, Str, |
| make_range(EntryNames.begin(), EntryNames.end())); |
| ++NumErrors; |
| } |
| } |
| handleAllErrors(EntryOr.takeError(), |
| [&](const DWARFDebugNames::SentinelError &) { |
| if (NumEntries > 0) |
| return; |
| error() << formatv("Name Index @ {0:x}: Name {1} ({2}) is " |
| "not associated with any entries.\n", |
| NI.getUnitOffset(), NTE.getIndex(), Str); |
| ++NumErrors; |
| }, |
| [&](const ErrorInfoBase &Info) { |
| error() |
| << formatv("Name Index @ {0:x}: Name {1} ({2}): {3}\n", |
| NI.getUnitOffset(), NTE.getIndex(), Str, |
| Info.message()); |
| ++NumErrors; |
| }); |
| return NumErrors; |
| } |
| |
| static bool isVariableIndexable(const DWARFDie &Die, DWARFContext &DCtx) { |
| Optional<DWARFFormValue> Location = Die.findRecursively(DW_AT_location); |
| if (!Location) |
| return false; |
| |
| auto ContainsInterestingOperators = [&](StringRef D) { |
| DWARFUnit *U = Die.getDwarfUnit(); |
| DataExtractor Data(D, DCtx.isLittleEndian(), U->getAddressByteSize()); |
| DWARFExpression Expression(Data, U->getVersion(), U->getAddressByteSize()); |
| return any_of(Expression, [](DWARFExpression::Operation &Op) { |
| return !Op.isError() && (Op.getCode() == DW_OP_addr || |
| Op.getCode() == DW_OP_form_tls_address || |
| Op.getCode() == DW_OP_GNU_push_tls_address); |
| }); |
| }; |
| |
| if (Optional<ArrayRef<uint8_t>> Expr = Location->getAsBlock()) { |
| // Inlined location. |
| if (ContainsInterestingOperators(toStringRef(*Expr))) |
| return true; |
| } else if (Optional<uint64_t> Offset = Location->getAsSectionOffset()) { |
| // Location list. |
| if (const DWARFDebugLoc *DebugLoc = DCtx.getDebugLoc()) { |
| if (const DWARFDebugLoc::LocationList *LocList = |
| DebugLoc->getLocationListAtOffset(*Offset)) { |
| if (any_of(LocList->Entries, [&](const DWARFDebugLoc::Entry &E) { |
| return ContainsInterestingOperators({E.Loc.data(), E.Loc.size()}); |
| })) |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| unsigned DWARFVerifier::verifyNameIndexCompleteness( |
| const DWARFDie &Die, const DWARFDebugNames::NameIndex &NI) { |
| |
| // First check, if the Die should be indexed. The code follows the DWARF v5 |
| // wording as closely as possible. |
| |
| // "All non-defining declarations (that is, debugging information entries |
| // with a DW_AT_declaration attribute) are excluded." |
| if (Die.find(DW_AT_declaration)) |
| return 0; |
| |
| // "DW_TAG_namespace debugging information entries without a DW_AT_name |
| // attribute are included with the name “(anonymous namespace)”. |
| // All other debugging information entries without a DW_AT_name attribute |
| // are excluded." |
| // "If a subprogram or inlined subroutine is included, and has a |
| // DW_AT_linkage_name attribute, there will be an additional index entry for |
| // the linkage name." |
| auto EntryNames = getNames(Die); |
| if (EntryNames.empty()) |
| return 0; |
| |
| // We deviate from the specification here, which says: |
| // "The name index must contain an entry for each debugging information entry |
| // that defines a named subprogram, label, variable, type, or namespace, |
| // subject to ..." |
| // Instead whitelisting all TAGs representing a "type" or a "subprogram", to |
| // make sure we catch any missing items, we instead blacklist all TAGs that we |
| // know shouldn't be indexed. |
| switch (Die.getTag()) { |
| // Compile unit has a name but it shouldn't be indexed. |
| case DW_TAG_compile_unit: |
| return 0; |
| |
| // Function and template parameters are not globally visible, so we shouldn't |
| // index them. |
| case DW_TAG_formal_parameter: |
| case DW_TAG_template_value_parameter: |
| case DW_TAG_template_type_parameter: |
| case DW_TAG_GNU_template_parameter_pack: |
| case DW_TAG_GNU_template_template_param: |
| return 0; |
| |
| // Object members aren't globally visible. |
| case DW_TAG_member: |
| return 0; |
| |
| // According to a strict reading of the specification, enumerators should not |
| // be indexed (and LLVM currently does not do that). However, this causes |
| // problems for the debuggers, so we may need to reconsider this. |
| case DW_TAG_enumerator: |
| return 0; |
| |
| // Imported declarations should not be indexed according to the specification |
| // and LLVM currently does not do that. |
| case DW_TAG_imported_declaration: |
| return 0; |
| |
| // "DW_TAG_subprogram, DW_TAG_inlined_subroutine, and DW_TAG_label debugging |
| // information entries without an address attribute (DW_AT_low_pc, |
| // DW_AT_high_pc, DW_AT_ranges, or DW_AT_entry_pc) are excluded." |
| case DW_TAG_subprogram: |
| case DW_TAG_inlined_subroutine: |
| case DW_TAG_label: |
| if (Die.findRecursively( |
| {DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_entry_pc})) |
| break; |
| return 0; |
| |
| // "DW_TAG_variable debugging information entries with a DW_AT_location |
| // attribute that includes a DW_OP_addr or DW_OP_form_tls_address operator are |
| // included; otherwise, they are excluded." |
| // |
| // LLVM extension: We also add DW_OP_GNU_push_tls_address to this list. |
| case DW_TAG_variable: |
| if (isVariableIndexable(Die, DCtx)) |
| break; |
| return 0; |
| |
| default: |
| break; |
| } |
| |
| // Now we know that our Die should be present in the Index. Let's check if |
| // that's the case. |
| unsigned NumErrors = 0; |
| uint64_t DieUnitOffset = Die.getOffset() - Die.getDwarfUnit()->getOffset(); |
| for (StringRef Name : EntryNames) { |
| if (none_of(NI.equal_range(Name), [&](const DWARFDebugNames::Entry &E) { |
| return E.getDIEUnitOffset() == DieUnitOffset; |
| })) { |
| error() << formatv("Name Index @ {0:x}: Entry for DIE @ {1:x} ({2}) with " |
| "name {3} missing.\n", |
| NI.getUnitOffset(), Die.getOffset(), Die.getTag(), |
| Name); |
| ++NumErrors; |
| } |
| } |
| return NumErrors; |
| } |
| |
| unsigned DWARFVerifier::verifyDebugNames(const DWARFSection &AccelSection, |
| const DataExtractor &StrData) { |
| unsigned NumErrors = 0; |
| DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), AccelSection, |
| DCtx.isLittleEndian(), 0); |
| DWARFDebugNames AccelTable(AccelSectionData, StrData); |
| |
| OS << "Verifying .debug_names...\n"; |
| |
| // This verifies that we can read individual name indices and their |
| // abbreviation tables. |
| if (Error E = AccelTable.extract()) { |
| error() << toString(std::move(E)) << '\n'; |
| return 1; |
| } |
| |
| NumErrors += verifyDebugNamesCULists(AccelTable); |
| for (const auto &NI : AccelTable) |
| NumErrors += verifyNameIndexBuckets(NI, StrData); |
| for (const auto &NI : AccelTable) |
| NumErrors += verifyNameIndexAbbrevs(NI); |
| |
| // Don't attempt Entry validation if any of the previous checks found errors |
| if (NumErrors > 0) |
| return NumErrors; |
| for (const auto &NI : AccelTable) |
| for (DWARFDebugNames::NameTableEntry NTE : NI) |
| NumErrors += verifyNameIndexEntries(NI, NTE); |
| |
| if (NumErrors > 0) |
| return NumErrors; |
| |
| for (const std::unique_ptr<DWARFCompileUnit> &CU : DCtx.compile_units()) { |
| if (const DWARFDebugNames::NameIndex *NI = |
| AccelTable.getCUNameIndex(CU->getOffset())) { |
| for (const DWARFDebugInfoEntry &Die : CU->dies()) |
| NumErrors += verifyNameIndexCompleteness(DWARFDie(CU.get(), &Die), *NI); |
| } |
| } |
| return NumErrors; |
| } |
| |
| bool DWARFVerifier::handleAccelTables() { |
| const DWARFObject &D = DCtx.getDWARFObj(); |
| DataExtractor StrData(D.getStringSection(), DCtx.isLittleEndian(), 0); |
| unsigned NumErrors = 0; |
| if (!D.getAppleNamesSection().Data.empty()) |
| NumErrors += |
| verifyAppleAccelTable(&D.getAppleNamesSection(), &StrData, ".apple_names"); |
| if (!D.getAppleTypesSection().Data.empty()) |
| NumErrors += |
| verifyAppleAccelTable(&D.getAppleTypesSection(), &StrData, ".apple_types"); |
| if (!D.getAppleNamespacesSection().Data.empty()) |
| NumErrors += verifyAppleAccelTable(&D.getAppleNamespacesSection(), &StrData, |
| ".apple_namespaces"); |
| if (!D.getAppleObjCSection().Data.empty()) |
| NumErrors += |
| verifyAppleAccelTable(&D.getAppleObjCSection(), &StrData, ".apple_objc"); |
| |
| if (!D.getDebugNamesSection().Data.empty()) |
| NumErrors += verifyDebugNames(D.getDebugNamesSection(), StrData); |
| return NumErrors == 0; |
| } |
| |
| raw_ostream &DWARFVerifier::error() const { return WithColor::error(OS); } |
| |
| raw_ostream &DWARFVerifier::warn() const { return WithColor::warning(OS); } |
| |
| raw_ostream &DWARFVerifier::note() const { return WithColor::note(OS); } |