|  | // Copyright (c) 2018 Google LLC | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #ifndef SOURCE_UTIL_SMALL_VECTOR_H_ | 
|  | #define SOURCE_UTIL_SMALL_VECTOR_H_ | 
|  |  | 
|  | #include <cassert> | 
|  | #include <iostream> | 
|  | #include <memory> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "source/util/make_unique.h" | 
|  |  | 
|  | namespace spvtools { | 
|  | namespace utils { | 
|  |  | 
|  | // The |SmallVector| class is intended to be a drop-in replacement for | 
|  | // |std::vector|.  The difference is in the implementation. A |SmallVector| is | 
|  | // optimized for when the number of elements in the vector are small.  Small is | 
|  | // defined by the template parameter |small_size|. | 
|  | // | 
|  | // Note that |SmallVector| is not always faster than an |std::vector|, so you | 
|  | // should experiment with different values for |small_size| and compare to | 
|  | // using and |std::vector|. | 
|  | // | 
|  | // TODO: I have implemented the public member functions from |std::vector| that | 
|  | // I needed.  If others are needed they should be implemented. Do not implement | 
|  | // public member functions that are not defined by std::vector. | 
|  | template <class T, size_t small_size> | 
|  | class SmallVector { | 
|  | public: | 
|  | using iterator = T*; | 
|  | using const_iterator = const T*; | 
|  |  | 
|  | SmallVector() | 
|  | : size_(0), | 
|  | small_data_(reinterpret_cast<T*>(buffer)), | 
|  | large_data_(nullptr) {} | 
|  |  | 
|  | SmallVector(const SmallVector& that) : SmallVector() { *this = that; } | 
|  |  | 
|  | SmallVector(SmallVector&& that) : SmallVector() { *this = std::move(that); } | 
|  |  | 
|  | SmallVector(const std::vector<T>& vec) : SmallVector() { | 
|  | if (vec.size() > small_size) { | 
|  | large_data_ = MakeUnique<std::vector<T>>(vec); | 
|  | } else { | 
|  | size_ = vec.size(); | 
|  | for (uint32_t i = 0; i < size_; i++) { | 
|  | new (small_data_ + i) T(vec[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class InputIt> | 
|  | SmallVector(InputIt first, InputIt last) : SmallVector() { | 
|  | insert(end(), first, last); | 
|  | } | 
|  |  | 
|  | SmallVector(std::vector<T>&& vec) : SmallVector() { | 
|  | if (vec.size() > small_size) { | 
|  | large_data_ = MakeUnique<std::vector<T>>(std::move(vec)); | 
|  | } else { | 
|  | size_ = vec.size(); | 
|  | for (uint32_t i = 0; i < size_; i++) { | 
|  | new (small_data_ + i) T(std::move(vec[i])); | 
|  | } | 
|  | } | 
|  | vec.clear(); | 
|  | } | 
|  |  | 
|  | SmallVector(std::initializer_list<T> init_list) : SmallVector() { | 
|  | if (init_list.size() < small_size) { | 
|  | for (auto it = init_list.begin(); it != init_list.end(); ++it) { | 
|  | new (small_data_ + (size_++)) T(std::move(*it)); | 
|  | } | 
|  | } else { | 
|  | large_data_ = MakeUnique<std::vector<T>>(std::move(init_list)); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector(size_t s, const T& v) : SmallVector() { resize(s, v); } | 
|  |  | 
|  | virtual ~SmallVector() { | 
|  | for (T* p = small_data_; p < small_data_ + size_; ++p) { | 
|  | p->~T(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector& operator=(const SmallVector& that) { | 
|  | assert(small_data_); | 
|  | if (that.large_data_) { | 
|  | if (large_data_) { | 
|  | *large_data_ = *that.large_data_; | 
|  | } else { | 
|  | large_data_ = MakeUnique<std::vector<T>>(*that.large_data_); | 
|  | } | 
|  | } else { | 
|  | large_data_.reset(nullptr); | 
|  | size_t i = 0; | 
|  | // Do a copy for any element in |this| that is already constructed. | 
|  | for (; i < size_ && i < that.size_; ++i) { | 
|  | small_data_[i] = that.small_data_[i]; | 
|  | } | 
|  |  | 
|  | if (i >= that.size_) { | 
|  | // If the size of |this| becomes smaller after the assignment, then | 
|  | // destroy any extra elements. | 
|  | for (; i < size_; ++i) { | 
|  | small_data_[i].~T(); | 
|  | } | 
|  | } else { | 
|  | // If the size of |this| becomes larger after the assignement, copy | 
|  | // construct the new elements that are needed. | 
|  | for (; i < that.size_; ++i) { | 
|  | new (small_data_ + i) T(that.small_data_[i]); | 
|  | } | 
|  | } | 
|  | size_ = that.size_; | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | SmallVector& operator=(SmallVector&& that) { | 
|  | if (that.large_data_) { | 
|  | large_data_.reset(that.large_data_.release()); | 
|  | } else { | 
|  | large_data_.reset(nullptr); | 
|  | size_t i = 0; | 
|  | // Do a move for any element in |this| that is already constructed. | 
|  | for (; i < size_ && i < that.size_; ++i) { | 
|  | small_data_[i] = std::move(that.small_data_[i]); | 
|  | } | 
|  |  | 
|  | if (i >= that.size_) { | 
|  | // If the size of |this| becomes smaller after the assignment, then | 
|  | // destroy any extra elements. | 
|  | for (; i < size_; ++i) { | 
|  | small_data_[i].~T(); | 
|  | } | 
|  | } else { | 
|  | // If the size of |this| becomes larger after the assignement, move | 
|  | // construct the new elements that are needed. | 
|  | for (; i < that.size_; ++i) { | 
|  | new (small_data_ + i) T(std::move(that.small_data_[i])); | 
|  | } | 
|  | } | 
|  | size_ = that.size_; | 
|  | } | 
|  |  | 
|  | // Reset |that| because all of the data has been moved to |this|. | 
|  | that.DestructSmallData(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <class OtherVector> | 
|  | friend bool operator==(const SmallVector& lhs, const OtherVector& rhs) { | 
|  | if (lhs.size() != rhs.size()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto rit = rhs.begin(); | 
|  | for (auto lit = lhs.begin(); lit != lhs.end(); ++lit, ++rit) { | 
|  | if (*lit != *rit) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Avoid infinite recursion from rewritten operators in C++20 | 
|  | #if __cplusplus <= 201703L | 
|  | friend bool operator==(const std::vector<T>& lhs, const SmallVector& rhs) { | 
|  | return rhs == lhs; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | friend bool operator!=(const SmallVector& lhs, const std::vector<T>& rhs) { | 
|  | return !(lhs == rhs); | 
|  | } | 
|  |  | 
|  | friend bool operator!=(const std::vector<T>& lhs, const SmallVector& rhs) { | 
|  | return rhs != lhs; | 
|  | } | 
|  |  | 
|  | T& operator[](size_t i) { | 
|  | if (!large_data_) { | 
|  | return small_data_[i]; | 
|  | } else { | 
|  | return (*large_data_)[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | const T& operator[](size_t i) const { | 
|  | if (!large_data_) { | 
|  | return small_data_[i]; | 
|  | } else { | 
|  | return (*large_data_)[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t size() const { | 
|  | if (!large_data_) { | 
|  | return size_; | 
|  | } else { | 
|  | return large_data_->size(); | 
|  | } | 
|  | } | 
|  |  | 
|  | iterator begin() { | 
|  | if (large_data_) { | 
|  | return large_data_->data(); | 
|  | } else { | 
|  | return small_data_; | 
|  | } | 
|  | } | 
|  |  | 
|  | const_iterator begin() const { | 
|  | if (large_data_) { | 
|  | return large_data_->data(); | 
|  | } else { | 
|  | return small_data_; | 
|  | } | 
|  | } | 
|  |  | 
|  | const_iterator cbegin() const { return begin(); } | 
|  |  | 
|  | iterator end() { | 
|  | if (large_data_) { | 
|  | return large_data_->data() + large_data_->size(); | 
|  | } else { | 
|  | return small_data_ + size_; | 
|  | } | 
|  | } | 
|  |  | 
|  | const_iterator end() const { | 
|  | if (large_data_) { | 
|  | return large_data_->data() + large_data_->size(); | 
|  | } else { | 
|  | return small_data_ + size_; | 
|  | } | 
|  | } | 
|  |  | 
|  | const_iterator cend() const { return end(); } | 
|  |  | 
|  | T* data() { return begin(); } | 
|  |  | 
|  | const T* data() const { return cbegin(); } | 
|  |  | 
|  | T& front() { return (*this)[0]; } | 
|  |  | 
|  | const T& front() const { return (*this)[0]; } | 
|  |  | 
|  | iterator erase(const_iterator pos) { return erase(pos, pos + 1); } | 
|  |  | 
|  | iterator erase(const_iterator first, const_iterator last) { | 
|  | if (large_data_) { | 
|  | size_t start_index = first - large_data_->data(); | 
|  | size_t end_index = last - large_data_->data(); | 
|  | auto r = large_data_->erase(large_data_->begin() + start_index, | 
|  | large_data_->begin() + end_index); | 
|  | return large_data_->data() + (r - large_data_->begin()); | 
|  | } | 
|  |  | 
|  | // Since C++11, std::vector has |const_iterator| for the parameters, so I | 
|  | // follow that.  However, I need iterators to modify the current container, | 
|  | // which is not const.  This is why I cast away the const. | 
|  | iterator f = const_cast<iterator>(first); | 
|  | iterator l = const_cast<iterator>(last); | 
|  | iterator e = end(); | 
|  |  | 
|  | size_t num_of_del_elements = last - first; | 
|  | iterator ret = f; | 
|  | if (first == last) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Move |last| and any elements after it their earlier position. | 
|  | while (l != e) { | 
|  | *f = std::move(*l); | 
|  | ++f; | 
|  | ++l; | 
|  | } | 
|  |  | 
|  | // Destroy the elements that were supposed to be deleted. | 
|  | while (f != l) { | 
|  | f->~T(); | 
|  | ++f; | 
|  | } | 
|  |  | 
|  | // Update the size. | 
|  | size_ -= num_of_del_elements; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void push_back(const T& value) { | 
|  | if (!large_data_ && size_ == small_size) { | 
|  | MoveToLargeData(); | 
|  | } | 
|  |  | 
|  | if (large_data_) { | 
|  | large_data_->push_back(value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | new (small_data_ + size_) T(value); | 
|  | ++size_; | 
|  | } | 
|  |  | 
|  | void push_back(T&& value) { | 
|  | if (!large_data_ && size_ == small_size) { | 
|  | MoveToLargeData(); | 
|  | } | 
|  |  | 
|  | if (large_data_) { | 
|  | large_data_->push_back(std::move(value)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | new (small_data_ + size_) T(std::move(value)); | 
|  | ++size_; | 
|  | } | 
|  |  | 
|  | void pop_back() { | 
|  | if (large_data_) { | 
|  | large_data_->pop_back(); | 
|  | } else { | 
|  | --size_; | 
|  | small_data_[size_].~T(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class InputIt> | 
|  | iterator insert(iterator pos, InputIt first, InputIt last) { | 
|  | size_t element_idx = (pos - begin()); | 
|  | size_t num_of_new_elements = std::distance(first, last); | 
|  | size_t new_size = size_ + num_of_new_elements; | 
|  | if (!large_data_ && new_size > small_size) { | 
|  | MoveToLargeData(); | 
|  | } | 
|  |  | 
|  | if (large_data_) { | 
|  | typename std::vector<T>::iterator new_pos = | 
|  | large_data_->begin() + element_idx; | 
|  | large_data_->insert(new_pos, first, last); | 
|  | return begin() + element_idx; | 
|  | } | 
|  |  | 
|  | // Move |pos| and all of the elements after it over |num_of_new_elements| | 
|  | // places.  We start at the end and work backwards, to make sure we do not | 
|  | // overwrite data that we have not moved yet. | 
|  | for (iterator i = begin() + new_size - 1, j = end() - 1; j >= pos; | 
|  | --i, --j) { | 
|  | if (i >= begin() + size_) { | 
|  | new (i) T(std::move(*j)); | 
|  | } else { | 
|  | *i = std::move(*j); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy the new elements into position. | 
|  | iterator p = pos; | 
|  | for (; first != last; ++p, ++first) { | 
|  | if (p >= small_data_ + size_) { | 
|  | new (p) T(*first); | 
|  | } else { | 
|  | *p = *first; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update the size. | 
|  | size_ += num_of_new_elements; | 
|  | return pos; | 
|  | } | 
|  |  | 
|  | bool empty() const { | 
|  | if (large_data_) { | 
|  | return large_data_->empty(); | 
|  | } | 
|  | return size_ == 0; | 
|  | } | 
|  |  | 
|  | void clear() { | 
|  | if (large_data_) { | 
|  | large_data_->clear(); | 
|  | } else { | 
|  | DestructSmallData(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class... Args> | 
|  | void emplace_back(Args&&... args) { | 
|  | if (!large_data_ && size_ == small_size) { | 
|  | MoveToLargeData(); | 
|  | } | 
|  |  | 
|  | if (large_data_) { | 
|  | large_data_->emplace_back(std::forward<Args>(args)...); | 
|  | } else { | 
|  | new (small_data_ + size_) T(std::forward<Args>(args)...); | 
|  | ++size_; | 
|  | } | 
|  | } | 
|  |  | 
|  | void resize(size_t new_size, const T& v) { | 
|  | if (!large_data_ && new_size > small_size) { | 
|  | MoveToLargeData(); | 
|  | } | 
|  |  | 
|  | if (large_data_) { | 
|  | large_data_->resize(new_size, v); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If |new_size| < |size_|, then destroy the extra elements. | 
|  | for (size_t i = new_size; i < size_; ++i) { | 
|  | small_data_[i].~T(); | 
|  | } | 
|  |  | 
|  | // If |new_size| > |size_|, the copy construct the new elements. | 
|  | for (size_t i = size_; i < new_size; ++i) { | 
|  | new (small_data_ + i) T(v); | 
|  | } | 
|  |  | 
|  | // Update the size. | 
|  | size_ = new_size; | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Moves all of the element from |small_data_| into a new std::vector that can | 
|  | // be access through |large_data|. | 
|  | void MoveToLargeData() { | 
|  | assert(!large_data_); | 
|  | large_data_ = MakeUnique<std::vector<T>>(); | 
|  | for (size_t i = 0; i < size_; ++i) { | 
|  | large_data_->emplace_back(std::move(small_data_[i])); | 
|  | } | 
|  | DestructSmallData(); | 
|  | } | 
|  |  | 
|  | // Destroys all of the elements in |small_data_| that have been constructed. | 
|  | void DestructSmallData() { | 
|  | for (size_t i = 0; i < size_; ++i) { | 
|  | small_data_[i].~T(); | 
|  | } | 
|  | size_ = 0; | 
|  | } | 
|  |  | 
|  | // The number of elements in |small_data_| that have been constructed. | 
|  | size_t size_; | 
|  |  | 
|  | // The pointed used to access the array of elements when the number of | 
|  | // elements is small. | 
|  | T* small_data_; | 
|  |  | 
|  | // The actual data used to store the array elements.  It must never be used | 
|  | // directly, but must only be accessed through |small_data_|. | 
|  | typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type | 
|  | buffer[small_size]; | 
|  |  | 
|  | // A pointer to a vector that is used to store the elements of the vector when | 
|  | // this size exceeds |small_size|.  If |large_data_| is nullptr, then the data | 
|  | // is stored in |small_data_|.  Otherwise, the data is stored in | 
|  | // |large_data_|. | 
|  | std::unique_ptr<std::vector<T>> large_data_; | 
|  | };  // namespace utils | 
|  |  | 
|  | }  // namespace utils | 
|  | }  // namespace spvtools | 
|  |  | 
|  | #endif  // SOURCE_UTIL_SMALL_VECTOR_H_ |