|  | // Copyright (c) 2015-2016 The Khronos Group Inc. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #ifndef SOURCE_UTIL_HEX_FLOAT_H_ | 
|  | #define SOURCE_UTIL_HEX_FLOAT_H_ | 
|  |  | 
|  | #include <cassert> | 
|  | #include <cctype> | 
|  | #include <cmath> | 
|  | #include <cstdint> | 
|  | #include <iomanip> | 
|  | #include <limits> | 
|  | #include <sstream> | 
|  | #include <vector> | 
|  |  | 
|  | #include "source/util/bitutils.h" | 
|  |  | 
|  | #ifndef __GNUC__ | 
|  | #define GCC_VERSION 0 | 
|  | #else | 
|  | #define GCC_VERSION \ | 
|  | (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) | 
|  | #endif | 
|  |  | 
|  | namespace spvtools { | 
|  | namespace utils { | 
|  |  | 
|  | class Float16 { | 
|  | public: | 
|  | Float16(uint16_t v) : val(v) {} | 
|  | Float16() = default; | 
|  | static bool isNan(const Float16& val) { | 
|  | return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0); | 
|  | } | 
|  | // Returns true if the given value is any kind of infinity. | 
|  | static bool isInfinity(const Float16& val) { | 
|  | return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0); | 
|  | } | 
|  | Float16(const Float16& other) { val = other.val; } | 
|  | uint16_t get_value() const { return val; } | 
|  |  | 
|  | // Returns the maximum normal value. | 
|  | static Float16 max() { return Float16(0x7bff); } | 
|  | // Returns the lowest normal value. | 
|  | static Float16 lowest() { return Float16(0xfbff); } | 
|  |  | 
|  | private: | 
|  | uint16_t val; | 
|  | }; | 
|  |  | 
|  | // To specialize this type, you must override uint_type to define | 
|  | // an unsigned integer that can fit your floating point type. | 
|  | // You must also add a isNan function that returns true if | 
|  | // a value is Nan. | 
|  | template <typename T> | 
|  | struct FloatProxyTraits { | 
|  | using uint_type = void; | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct FloatProxyTraits<float> { | 
|  | using uint_type = uint32_t; | 
|  | static bool isNan(float f) { return std::isnan(f); } | 
|  | // Returns true if the given value is any kind of infinity. | 
|  | static bool isInfinity(float f) { return std::isinf(f); } | 
|  | // Returns the maximum normal value. | 
|  | static float max() { return std::numeric_limits<float>::max(); } | 
|  | // Returns the lowest normal value. | 
|  | static float lowest() { return std::numeric_limits<float>::lowest(); } | 
|  | // Returns the value as the native floating point format. | 
|  | static float getAsFloat(const uint_type& t) { return BitwiseCast<float>(t); } | 
|  | // Returns the bits from the given floating pointer number. | 
|  | static uint_type getBitsFromFloat(const float& t) { | 
|  | return BitwiseCast<uint_type>(t); | 
|  | } | 
|  | // Returns the bitwidth. | 
|  | static uint32_t width() { return 32u; } | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct FloatProxyTraits<double> { | 
|  | using uint_type = uint64_t; | 
|  | static bool isNan(double f) { return std::isnan(f); } | 
|  | // Returns true if the given value is any kind of infinity. | 
|  | static bool isInfinity(double f) { return std::isinf(f); } | 
|  | // Returns the maximum normal value. | 
|  | static double max() { return std::numeric_limits<double>::max(); } | 
|  | // Returns the lowest normal value. | 
|  | static double lowest() { return std::numeric_limits<double>::lowest(); } | 
|  | // Returns the value as the native floating point format. | 
|  | static double getAsFloat(const uint_type& t) { | 
|  | return BitwiseCast<double>(t); | 
|  | } | 
|  | // Returns the bits from the given floating pointer number. | 
|  | static uint_type getBitsFromFloat(const double& t) { | 
|  | return BitwiseCast<uint_type>(t); | 
|  | } | 
|  | // Returns the bitwidth. | 
|  | static uint32_t width() { return 64u; } | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct FloatProxyTraits<Float16> { | 
|  | using uint_type = uint16_t; | 
|  | static bool isNan(Float16 f) { return Float16::isNan(f); } | 
|  | // Returns true if the given value is any kind of infinity. | 
|  | static bool isInfinity(Float16 f) { return Float16::isInfinity(f); } | 
|  | // Returns the maximum normal value. | 
|  | static Float16 max() { return Float16::max(); } | 
|  | // Returns the lowest normal value. | 
|  | static Float16 lowest() { return Float16::lowest(); } | 
|  | // Returns the value as the native floating point format. | 
|  | static Float16 getAsFloat(const uint_type& t) { return Float16(t); } | 
|  | // Returns the bits from the given floating pointer number. | 
|  | static uint_type getBitsFromFloat(const Float16& t) { return t.get_value(); } | 
|  | // Returns the bitwidth. | 
|  | static uint32_t width() { return 16u; } | 
|  | }; | 
|  |  | 
|  | // Since copying a floating point number (especially if it is NaN) | 
|  | // does not guarantee that bits are preserved, this class lets us | 
|  | // store the type and use it as a float when necessary. | 
|  | template <typename T> | 
|  | class FloatProxy { | 
|  | public: | 
|  | using uint_type = typename FloatProxyTraits<T>::uint_type; | 
|  |  | 
|  | // Since this is to act similar to the normal floats, | 
|  | // do not initialize the data by default. | 
|  | FloatProxy() = default; | 
|  |  | 
|  | // Intentionally non-explicit. This is a proxy type so | 
|  | // implicit conversions allow us to use it more transparently. | 
|  | FloatProxy(T val) { data_ = FloatProxyTraits<T>::getBitsFromFloat(val); } | 
|  |  | 
|  | // Intentionally non-explicit. This is a proxy type so | 
|  | // implicit conversions allow us to use it more transparently. | 
|  | FloatProxy(uint_type val) { data_ = val; } | 
|  |  | 
|  | // This is helpful to have and is guaranteed not to stomp bits. | 
|  | FloatProxy<T> operator-() const { | 
|  | return static_cast<uint_type>(data_ ^ | 
|  | (uint_type(0x1) << (sizeof(T) * 8 - 1))); | 
|  | } | 
|  |  | 
|  | // Returns the data as a floating point value. | 
|  | T getAsFloat() const { return FloatProxyTraits<T>::getAsFloat(data_); } | 
|  |  | 
|  | // Returns the raw data. | 
|  | uint_type data() const { return data_; } | 
|  |  | 
|  | // Returns a vector of words suitable for use in an Operand. | 
|  | std::vector<uint32_t> GetWords() const { | 
|  | std::vector<uint32_t> words; | 
|  | if (FloatProxyTraits<T>::width() == 64) { | 
|  | FloatProxyTraits<double>::uint_type d = data(); | 
|  | words.push_back(static_cast<uint32_t>(d)); | 
|  | words.push_back(static_cast<uint32_t>(d >> 32)); | 
|  | } else { | 
|  | words.push_back(static_cast<uint32_t>(data())); | 
|  | } | 
|  | return words; | 
|  | } | 
|  |  | 
|  | // Returns true if the value represents any type of NaN. | 
|  | bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); } | 
|  | // Returns true if the value represents any type of infinity. | 
|  | bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); } | 
|  |  | 
|  | // Returns the maximum normal value. | 
|  | static FloatProxy<T> max() { | 
|  | return FloatProxy<T>(FloatProxyTraits<T>::max()); | 
|  | } | 
|  | // Returns the lowest normal value. | 
|  | static FloatProxy<T> lowest() { | 
|  | return FloatProxy<T>(FloatProxyTraits<T>::lowest()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | uint_type data_; | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) { | 
|  | return first.data() == second.data(); | 
|  | } | 
|  |  | 
|  | // Reads a FloatProxy value as a normal float from a stream. | 
|  | template <typename T> | 
|  | std::istream& operator>>(std::istream& is, FloatProxy<T>& value) { | 
|  | T float_val = static_cast<T>(0.0); | 
|  | is >> float_val; | 
|  | value = FloatProxy<T>(float_val); | 
|  | return is; | 
|  | } | 
|  |  | 
|  | // This is an example traits. It is not meant to be used in practice, but will | 
|  | // be the default for any non-specialized type. | 
|  | template <typename T> | 
|  | struct HexFloatTraits { | 
|  | // Integer type that can store the bit representation of this hex-float. | 
|  | using uint_type = void; | 
|  | // Signed integer type that can store the bit representation of this | 
|  | // hex-float. | 
|  | using int_type = void; | 
|  | // The numerical type that this HexFloat represents. | 
|  | using underlying_type = void; | 
|  | // The type needed to construct the underlying type. | 
|  | using native_type = void; | 
|  | // The number of bits that are actually relevant in the uint_type. | 
|  | // This allows us to deal with, for example, 24-bit values in a 32-bit | 
|  | // integer. | 
|  | static const uint32_t num_used_bits = 0; | 
|  | // Number of bits that represent the exponent. | 
|  | static const uint32_t num_exponent_bits = 0; | 
|  | // Number of bits that represent the fractional part. | 
|  | static const uint32_t num_fraction_bits = 0; | 
|  | // The bias of the exponent. (How much we need to subtract from the stored | 
|  | // value to get the correct value.) | 
|  | static const uint32_t exponent_bias = 0; | 
|  | }; | 
|  |  | 
|  | // Traits for IEEE float. | 
|  | // 1 sign bit, 8 exponent bits, 23 fractional bits. | 
|  | template <> | 
|  | struct HexFloatTraits<FloatProxy<float>> { | 
|  | using uint_type = uint32_t; | 
|  | using int_type = int32_t; | 
|  | using underlying_type = FloatProxy<float>; | 
|  | using native_type = float; | 
|  | static const uint_type num_used_bits = 32; | 
|  | static const uint_type num_exponent_bits = 8; | 
|  | static const uint_type num_fraction_bits = 23; | 
|  | static const uint_type exponent_bias = 127; | 
|  | }; | 
|  |  | 
|  | // Traits for IEEE double. | 
|  | // 1 sign bit, 11 exponent bits, 52 fractional bits. | 
|  | template <> | 
|  | struct HexFloatTraits<FloatProxy<double>> { | 
|  | using uint_type = uint64_t; | 
|  | using int_type = int64_t; | 
|  | using underlying_type = FloatProxy<double>; | 
|  | using native_type = double; | 
|  | static const uint_type num_used_bits = 64; | 
|  | static const uint_type num_exponent_bits = 11; | 
|  | static const uint_type num_fraction_bits = 52; | 
|  | static const uint_type exponent_bias = 1023; | 
|  | }; | 
|  |  | 
|  | // Traits for IEEE half. | 
|  | // 1 sign bit, 5 exponent bits, 10 fractional bits. | 
|  | template <> | 
|  | struct HexFloatTraits<FloatProxy<Float16>> { | 
|  | using uint_type = uint16_t; | 
|  | using int_type = int16_t; | 
|  | using underlying_type = uint16_t; | 
|  | using native_type = uint16_t; | 
|  | static const uint_type num_used_bits = 16; | 
|  | static const uint_type num_exponent_bits = 5; | 
|  | static const uint_type num_fraction_bits = 10; | 
|  | static const uint_type exponent_bias = 15; | 
|  | }; | 
|  |  | 
|  | enum class round_direction { | 
|  | kToZero, | 
|  | kToNearestEven, | 
|  | kToPositiveInfinity, | 
|  | kToNegativeInfinity, | 
|  | max = kToNegativeInfinity | 
|  | }; | 
|  |  | 
|  | // Template class that houses a floating pointer number. | 
|  | // It exposes a number of constants based on the provided traits to | 
|  | // assist in interpreting the bits of the value. | 
|  | template <typename T, typename Traits = HexFloatTraits<T>> | 
|  | class HexFloat { | 
|  | public: | 
|  | using uint_type = typename Traits::uint_type; | 
|  | using int_type = typename Traits::int_type; | 
|  | using underlying_type = typename Traits::underlying_type; | 
|  | using native_type = typename Traits::native_type; | 
|  |  | 
|  | explicit HexFloat(T f) : value_(f) {} | 
|  |  | 
|  | T value() const { return value_; } | 
|  | void set_value(T f) { value_ = f; } | 
|  |  | 
|  | // These are all written like this because it is convenient to have | 
|  | // compile-time constants for all of these values. | 
|  |  | 
|  | // Pass-through values to save typing. | 
|  | static const uint32_t num_used_bits = Traits::num_used_bits; | 
|  | static const uint32_t exponent_bias = Traits::exponent_bias; | 
|  | static const uint32_t num_exponent_bits = Traits::num_exponent_bits; | 
|  | static const uint32_t num_fraction_bits = Traits::num_fraction_bits; | 
|  |  | 
|  | // Number of bits to shift left to set the highest relevant bit. | 
|  | static const uint32_t top_bit_left_shift = num_used_bits - 1; | 
|  | // How many nibbles (hex characters) the fractional part takes up. | 
|  | static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4; | 
|  | // If the fractional part does not fit evenly into a hex character (4-bits) | 
|  | // then we have to left-shift to get rid of leading 0s. This is the amount | 
|  | // we have to shift (might be 0). | 
|  | static const uint32_t num_overflow_bits = | 
|  | fraction_nibbles * 4 - num_fraction_bits; | 
|  |  | 
|  | // The representation of the fraction, not the actual bits. This | 
|  | // includes the leading bit that is usually implicit. | 
|  | static const uint_type fraction_represent_mask = | 
|  | SetBits<uint_type, 0, num_fraction_bits + num_overflow_bits>::get; | 
|  |  | 
|  | // The topmost bit in the nibble-aligned fraction. | 
|  | static const uint_type fraction_top_bit = | 
|  | uint_type(1) << (num_fraction_bits + num_overflow_bits - 1); | 
|  |  | 
|  | // The least significant bit in the exponent, which is also the bit | 
|  | // immediately to the left of the significand. | 
|  | static const uint_type first_exponent_bit = uint_type(1) | 
|  | << (num_fraction_bits); | 
|  |  | 
|  | // The mask for the encoded fraction. It does not include the | 
|  | // implicit bit. | 
|  | static const uint_type fraction_encode_mask = | 
|  | SetBits<uint_type, 0, num_fraction_bits>::get; | 
|  |  | 
|  | // The bit that is used as a sign. | 
|  | static const uint_type sign_mask = uint_type(1) << top_bit_left_shift; | 
|  |  | 
|  | // The bits that represent the exponent. | 
|  | static const uint_type exponent_mask = | 
|  | SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get; | 
|  |  | 
|  | // How far left the exponent is shifted. | 
|  | static const uint32_t exponent_left_shift = num_fraction_bits; | 
|  |  | 
|  | // How far from the right edge the fraction is shifted. | 
|  | static const uint32_t fraction_right_shift = | 
|  | static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits; | 
|  |  | 
|  | // The maximum representable unbiased exponent. | 
|  | static const int_type max_exponent = | 
|  | (exponent_mask >> num_fraction_bits) - exponent_bias; | 
|  | // The minimum representable exponent for normalized numbers. | 
|  | static const int_type min_exponent = -static_cast<int_type>(exponent_bias); | 
|  |  | 
|  | // Returns the bits associated with the value. | 
|  | uint_type getBits() const { return value_.data(); } | 
|  |  | 
|  | // Returns the bits associated with the value, without the leading sign bit. | 
|  | uint_type getUnsignedBits() const { | 
|  | return static_cast<uint_type>(value_.data() & ~sign_mask); | 
|  | } | 
|  |  | 
|  | // Returns the bits associated with the exponent, shifted to start at the | 
|  | // lsb of the type. | 
|  | const uint_type getExponentBits() const { | 
|  | return static_cast<uint_type>((getBits() & exponent_mask) >> | 
|  | num_fraction_bits); | 
|  | } | 
|  |  | 
|  | // Returns the exponent in unbiased form. This is the exponent in the | 
|  | // human-friendly form. | 
|  | const int_type getUnbiasedExponent() const { | 
|  | return static_cast<int_type>(getExponentBits() - exponent_bias); | 
|  | } | 
|  |  | 
|  | // Returns just the significand bits from the value. | 
|  | const uint_type getSignificandBits() const { | 
|  | return getBits() & fraction_encode_mask; | 
|  | } | 
|  |  | 
|  | // If the number was normalized, returns the unbiased exponent. | 
|  | // If the number was denormal, normalize the exponent first. | 
|  | const int_type getUnbiasedNormalizedExponent() const { | 
|  | if ((getBits() & ~sign_mask) == 0) {  // special case if everything is 0 | 
|  | return 0; | 
|  | } | 
|  | int_type exp = getUnbiasedExponent(); | 
|  | if (exp == min_exponent) {  // We are in denorm land. | 
|  | uint_type significand_bits = getSignificandBits(); | 
|  | while ((significand_bits & (first_exponent_bit >> 1)) == 0) { | 
|  | significand_bits = static_cast<uint_type>(significand_bits << 1); | 
|  | exp = static_cast<int_type>(exp - 1); | 
|  | } | 
|  | significand_bits &= fraction_encode_mask; | 
|  | } | 
|  | return exp; | 
|  | } | 
|  |  | 
|  | // Returns the signficand after it has been normalized. | 
|  | const uint_type getNormalizedSignificand() const { | 
|  | int_type unbiased_exponent = getUnbiasedNormalizedExponent(); | 
|  | uint_type significand = getSignificandBits(); | 
|  | for (int_type i = unbiased_exponent; i <= min_exponent; ++i) { | 
|  | significand = static_cast<uint_type>(significand << 1); | 
|  | } | 
|  | significand &= fraction_encode_mask; | 
|  | return significand; | 
|  | } | 
|  |  | 
|  | // Returns true if this number represents a negative value. | 
|  | bool isNegative() const { return (getBits() & sign_mask) != 0; } | 
|  |  | 
|  | // Sets this HexFloat from the individual components. | 
|  | // Note this assumes EVERY significand is normalized, and has an implicit | 
|  | // leading one. This means that the only way that this method will set 0, | 
|  | // is if you set a number so denormalized that it underflows. | 
|  | // Do not use this method with raw bits extracted from a subnormal number, | 
|  | // since subnormals do not have an implicit leading 1 in the significand. | 
|  | // The significand is also expected to be in the | 
|  | // lowest-most num_fraction_bits of the uint_type. | 
|  | // The exponent is expected to be unbiased, meaning an exponent of | 
|  | // 0 actually means 0. | 
|  | // If underflow_round_up is set, then on underflow, if a number is non-0 | 
|  | // and would underflow, we round up to the smallest denorm. | 
|  | void setFromSignUnbiasedExponentAndNormalizedSignificand( | 
|  | bool negative, int_type exponent, uint_type significand, | 
|  | bool round_denorm_up) { | 
|  | bool significand_is_zero = significand == 0; | 
|  |  | 
|  | if (exponent <= min_exponent) { | 
|  | // If this was denormalized, then we have to shift the bit on, meaning | 
|  | // the significand is not zero. | 
|  | significand_is_zero = false; | 
|  | significand |= first_exponent_bit; | 
|  | significand = static_cast<uint_type>(significand >> 1); | 
|  | } | 
|  |  | 
|  | while (exponent < min_exponent) { | 
|  | significand = static_cast<uint_type>(significand >> 1); | 
|  | ++exponent; | 
|  | } | 
|  |  | 
|  | if (exponent == min_exponent) { | 
|  | if (significand == 0 && !significand_is_zero && round_denorm_up) { | 
|  | significand = static_cast<uint_type>(0x1); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint_type new_value = 0; | 
|  | if (negative) { | 
|  | new_value = static_cast<uint_type>(new_value | sign_mask); | 
|  | } | 
|  | exponent = static_cast<int_type>(exponent + exponent_bias); | 
|  | assert(exponent >= 0); | 
|  |  | 
|  | // put it all together | 
|  | exponent = static_cast<uint_type>((exponent << exponent_left_shift) & | 
|  | exponent_mask); | 
|  | significand = static_cast<uint_type>(significand & fraction_encode_mask); | 
|  | new_value = static_cast<uint_type>(new_value | (exponent | significand)); | 
|  | value_ = T(new_value); | 
|  | } | 
|  |  | 
|  | // Increments the significand of this number by the given amount. | 
|  | // If this would spill the significand into the implicit bit, | 
|  | // carry is set to true and the significand is shifted to fit into | 
|  | // the correct location, otherwise carry is set to false. | 
|  | // All significands and to_increment are assumed to be within the bounds | 
|  | // for a valid significand. | 
|  | static uint_type incrementSignificand(uint_type significand, | 
|  | uint_type to_increment, bool* carry) { | 
|  | significand = static_cast<uint_type>(significand + to_increment); | 
|  | *carry = false; | 
|  | if (significand & first_exponent_bit) { | 
|  | *carry = true; | 
|  | // The implicit 1-bit will have carried, so we should zero-out the | 
|  | // top bit and shift back. | 
|  | significand = static_cast<uint_type>(significand & ~first_exponent_bit); | 
|  | significand = static_cast<uint_type>(significand >> 1); | 
|  | } | 
|  | return significand; | 
|  | } | 
|  |  | 
|  | #if GCC_VERSION == 40801 | 
|  | // These exist because MSVC throws warnings on negative right-shifts | 
|  | // even if they are not going to be executed. Eg: | 
|  | // constant_number < 0? 0: constant_number | 
|  | // These convert the negative left-shifts into right shifts. | 
|  | template <int_type N> | 
|  | struct negatable_left_shift { | 
|  | static uint_type val(uint_type val) { | 
|  | if (N > 0) { | 
|  | return static_cast<uint_type>(val << N); | 
|  | } else { | 
|  | return static_cast<uint_type>(val >> N); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <int_type N> | 
|  | struct negatable_right_shift { | 
|  | static uint_type val(uint_type val) { | 
|  | if (N > 0) { | 
|  | return static_cast<uint_type>(val >> N); | 
|  | } else { | 
|  | return static_cast<uint_type>(val << N); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | #else | 
|  | // These exist because MSVC throws warnings on negative right-shifts | 
|  | // even if they are not going to be executed. Eg: | 
|  | // constant_number < 0? 0: constant_number | 
|  | // These convert the negative left-shifts into right shifts. | 
|  | template <int_type N, typename enable = void> | 
|  | struct negatable_left_shift { | 
|  | static uint_type val(uint_type val) { | 
|  | return static_cast<uint_type>(val >> -N); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <int_type N> | 
|  | struct negatable_left_shift<N, typename std::enable_if<N >= 0>::type> { | 
|  | static uint_type val(uint_type val) { | 
|  | return static_cast<uint_type>(val << N); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <int_type N, typename enable = void> | 
|  | struct negatable_right_shift { | 
|  | static uint_type val(uint_type val) { | 
|  | return static_cast<uint_type>(val << -N); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <int_type N> | 
|  | struct negatable_right_shift<N, typename std::enable_if<N >= 0>::type> { | 
|  | static uint_type val(uint_type val) { | 
|  | return static_cast<uint_type>(val >> N); | 
|  | } | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | // Returns the significand, rounded to fit in a significand in | 
|  | // other_T. This is shifted so that the most significant | 
|  | // bit of the rounded number lines up with the most significant bit | 
|  | // of the returned significand. | 
|  | template <typename other_T> | 
|  | typename other_T::uint_type getRoundedNormalizedSignificand( | 
|  | round_direction dir, bool* carry_bit) { | 
|  | using other_uint_type = typename other_T::uint_type; | 
|  | static const int_type num_throwaway_bits = | 
|  | static_cast<int_type>(num_fraction_bits) - | 
|  | static_cast<int_type>(other_T::num_fraction_bits); | 
|  |  | 
|  | static const uint_type last_significant_bit = | 
|  | (num_throwaway_bits < 0) | 
|  | ? 0 | 
|  | : negatable_left_shift<num_throwaway_bits>::val(1u); | 
|  | static const uint_type first_rounded_bit = | 
|  | (num_throwaway_bits < 1) | 
|  | ? 0 | 
|  | : negatable_left_shift<num_throwaway_bits - 1>::val(1u); | 
|  |  | 
|  | static const uint_type throwaway_mask_bits = | 
|  | num_throwaway_bits > 0 ? num_throwaway_bits : 0; | 
|  | static const uint_type throwaway_mask = | 
|  | SetBits<uint_type, 0, throwaway_mask_bits>::get; | 
|  |  | 
|  | *carry_bit = false; | 
|  | other_uint_type out_val = 0; | 
|  | uint_type significand = getNormalizedSignificand(); | 
|  | // If we are up-casting, then we just have to shift to the right location. | 
|  | if (num_throwaway_bits <= 0) { | 
|  | out_val = static_cast<other_uint_type>(significand); | 
|  | uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits); | 
|  | out_val = static_cast<other_uint_type>(out_val << shift_amount); | 
|  | return out_val; | 
|  | } | 
|  |  | 
|  | // If every non-representable bit is 0, then we don't have any casting to | 
|  | // do. | 
|  | if ((significand & throwaway_mask) == 0) { | 
|  | return static_cast<other_uint_type>( | 
|  | negatable_right_shift<num_throwaway_bits>::val(significand)); | 
|  | } | 
|  |  | 
|  | bool round_away_from_zero = false; | 
|  | // We actually have to narrow the significand here, so we have to follow the | 
|  | // rounding rules. | 
|  | switch (dir) { | 
|  | case round_direction::kToZero: | 
|  | break; | 
|  | case round_direction::kToPositiveInfinity: | 
|  | round_away_from_zero = !isNegative(); | 
|  | break; | 
|  | case round_direction::kToNegativeInfinity: | 
|  | round_away_from_zero = isNegative(); | 
|  | break; | 
|  | case round_direction::kToNearestEven: | 
|  | // Have to round down, round bit is 0 | 
|  | if ((first_rounded_bit & significand) == 0) { | 
|  | break; | 
|  | } | 
|  | if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) { | 
|  | // If any subsequent bit of the rounded portion is non-0 then we round | 
|  | // up. | 
|  | round_away_from_zero = true; | 
|  | break; | 
|  | } | 
|  | // We are exactly half-way between 2 numbers, pick even. | 
|  | if ((significand & last_significant_bit) != 0) { | 
|  | // 1 for our last bit, round up. | 
|  | round_away_from_zero = true; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (round_away_from_zero) { | 
|  | return static_cast<other_uint_type>( | 
|  | negatable_right_shift<num_throwaway_bits>::val(incrementSignificand( | 
|  | significand, last_significant_bit, carry_bit))); | 
|  | } else { | 
|  | return static_cast<other_uint_type>( | 
|  | negatable_right_shift<num_throwaway_bits>::val(significand)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Casts this value to another HexFloat. If the cast is widening, | 
|  | // then round_dir is ignored. If the cast is narrowing, then | 
|  | // the result is rounded in the direction specified. | 
|  | // This number will retain Nan and Inf values. | 
|  | // It will also saturate to Inf if the number overflows, and | 
|  | // underflow to (0 or min depending on rounding) if the number underflows. | 
|  | template <typename other_T> | 
|  | void castTo(other_T& other, round_direction round_dir) { | 
|  | other = other_T(static_cast<typename other_T::native_type>(0)); | 
|  | bool negate = isNegative(); | 
|  | if (getUnsignedBits() == 0) { | 
|  | if (negate) { | 
|  | other.set_value(-other.value()); | 
|  | } | 
|  | return; | 
|  | } | 
|  | uint_type significand = getSignificandBits(); | 
|  | bool carried = false; | 
|  | typename other_T::uint_type rounded_significand = | 
|  | getRoundedNormalizedSignificand<other_T>(round_dir, &carried); | 
|  |  | 
|  | int_type exponent = getUnbiasedExponent(); | 
|  | if (exponent == min_exponent) { | 
|  | // If we are denormal, normalize the exponent, so that we can encode | 
|  | // easily. | 
|  | exponent = static_cast<int_type>(exponent + 1); | 
|  | for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0; | 
|  | check_bit = static_cast<uint_type>(check_bit >> 1)) { | 
|  | exponent = static_cast<int_type>(exponent - 1); | 
|  | if (check_bit & significand) break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool is_nan = | 
|  | (getBits() & exponent_mask) == exponent_mask && significand != 0; | 
|  | bool is_inf = | 
|  | !is_nan && | 
|  | ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) || | 
|  | (significand == 0 && (getBits() & exponent_mask) == exponent_mask)); | 
|  |  | 
|  | // If we are Nan or Inf we should pass that through. | 
|  | if (is_inf) { | 
|  | other.set_value(typename other_T::underlying_type( | 
|  | static_cast<typename other_T::uint_type>( | 
|  | (negate ? other_T::sign_mask : 0) | other_T::exponent_mask))); | 
|  | return; | 
|  | } | 
|  | if (is_nan) { | 
|  | typename other_T::uint_type shifted_significand; | 
|  | shifted_significand = static_cast<typename other_T::uint_type>( | 
|  | negatable_left_shift< | 
|  | static_cast<int_type>(other_T::num_fraction_bits) - | 
|  | static_cast<int_type>(num_fraction_bits)>::val(significand)); | 
|  |  | 
|  | // We are some sort of Nan. We try to keep the bit-pattern of the Nan | 
|  | // as close as possible. If we had to shift off bits so we are 0, then we | 
|  | // just set the last bit. | 
|  | other.set_value(typename other_T::underlying_type( | 
|  | static_cast<typename other_T::uint_type>( | 
|  | (negate ? other_T::sign_mask : 0) | other_T::exponent_mask | | 
|  | (shifted_significand == 0 ? 0x1 : shifted_significand)))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bool round_underflow_up = | 
|  | isNegative() ? round_dir == round_direction::kToNegativeInfinity | 
|  | : round_dir == round_direction::kToPositiveInfinity; | 
|  | using other_int_type = typename other_T::int_type; | 
|  | // setFromSignUnbiasedExponentAndNormalizedSignificand will | 
|  | // zero out any underflowing value (but retain the sign). | 
|  | other.setFromSignUnbiasedExponentAndNormalizedSignificand( | 
|  | negate, static_cast<other_int_type>(exponent), rounded_significand, | 
|  | round_underflow_up); | 
|  | return; | 
|  | } | 
|  |  | 
|  | private: | 
|  | T value_; | 
|  |  | 
|  | static_assert(num_used_bits == | 
|  | Traits::num_exponent_bits + Traits::num_fraction_bits + 1, | 
|  | "The number of bits do not fit"); | 
|  | static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match"); | 
|  | }; | 
|  |  | 
|  | // Returns 4 bits represented by the hex character. | 
|  | inline uint8_t get_nibble_from_character(int character) { | 
|  | const char* dec = "0123456789"; | 
|  | const char* lower = "abcdef"; | 
|  | const char* upper = "ABCDEF"; | 
|  | const char* p = nullptr; | 
|  | if ((p = strchr(dec, character))) { | 
|  | return static_cast<uint8_t>(p - dec); | 
|  | } else if ((p = strchr(lower, character))) { | 
|  | return static_cast<uint8_t>(p - lower + 0xa); | 
|  | } else if ((p = strchr(upper, character))) { | 
|  | return static_cast<uint8_t>(p - upper + 0xa); | 
|  | } | 
|  |  | 
|  | assert(false && "This was called with a non-hex character"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Outputs the given HexFloat to the stream. | 
|  | template <typename T, typename Traits> | 
|  | std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) { | 
|  | using HF = HexFloat<T, Traits>; | 
|  | using uint_type = typename HF::uint_type; | 
|  | using int_type = typename HF::int_type; | 
|  |  | 
|  | static_assert(HF::num_used_bits != 0, | 
|  | "num_used_bits must be non-zero for a valid float"); | 
|  | static_assert(HF::num_exponent_bits != 0, | 
|  | "num_exponent_bits must be non-zero for a valid float"); | 
|  | static_assert(HF::num_fraction_bits != 0, | 
|  | "num_fractin_bits must be non-zero for a valid float"); | 
|  |  | 
|  | const uint_type bits = value.value().data(); | 
|  | const char* const sign = (bits & HF::sign_mask) ? "-" : ""; | 
|  | const uint_type exponent = static_cast<uint_type>( | 
|  | (bits & HF::exponent_mask) >> HF::num_fraction_bits); | 
|  |  | 
|  | uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask) | 
|  | << HF::num_overflow_bits); | 
|  |  | 
|  | const bool is_zero = exponent == 0 && fraction == 0; | 
|  | const bool is_denorm = exponent == 0 && !is_zero; | 
|  |  | 
|  | // exponent contains the biased exponent we have to convert it back into | 
|  | // the normal range. | 
|  | int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias); | 
|  | // If the number is all zeros, then we actually have to NOT shift the | 
|  | // exponent. | 
|  | int_exponent = is_zero ? 0 : int_exponent; | 
|  |  | 
|  | // If we are denorm, then start shifting, and decreasing the exponent until | 
|  | // our leading bit is 1. | 
|  |  | 
|  | if (is_denorm) { | 
|  | while ((fraction & HF::fraction_top_bit) == 0) { | 
|  | fraction = static_cast<uint_type>(fraction << 1); | 
|  | int_exponent = static_cast<int_type>(int_exponent - 1); | 
|  | } | 
|  | // Since this is denormalized, we have to consume the leading 1 since it | 
|  | // will end up being implicit. | 
|  | fraction = static_cast<uint_type>(fraction << 1);  // eat the leading 1 | 
|  | fraction &= HF::fraction_represent_mask; | 
|  | } | 
|  |  | 
|  | uint_type fraction_nibbles = HF::fraction_nibbles; | 
|  | // We do not have to display any trailing 0s, since this represents the | 
|  | // fractional part. | 
|  | while (fraction_nibbles > 0 && (fraction & 0xF) == 0) { | 
|  | // Shift off any trailing values; | 
|  | fraction = static_cast<uint_type>(fraction >> 4); | 
|  | --fraction_nibbles; | 
|  | } | 
|  |  | 
|  | const auto saved_flags = os.flags(); | 
|  | const auto saved_fill = os.fill(); | 
|  |  | 
|  | os << sign << "0x" << (is_zero ? '0' : '1'); | 
|  | if (fraction_nibbles) { | 
|  | // Make sure to keep the leading 0s in place, since this is the fractional | 
|  | // part. | 
|  | os << "." << std::setw(static_cast<int>(fraction_nibbles)) | 
|  | << std::setfill('0') << std::hex << fraction; | 
|  | } | 
|  | os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent; | 
|  |  | 
|  | os.flags(saved_flags); | 
|  | os.fill(saved_fill); | 
|  |  | 
|  | return os; | 
|  | } | 
|  |  | 
|  | // Returns true if negate_value is true and the next character on the | 
|  | // input stream is a plus or minus sign.  In that case we also set the fail bit | 
|  | // on the stream and set the value to the zero value for its type. | 
|  | template <typename T, typename Traits> | 
|  | inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value, | 
|  | HexFloat<T, Traits>& value) { | 
|  | if (negate_value) { | 
|  | auto next_char = is.peek(); | 
|  | if (next_char == '-' || next_char == '+') { | 
|  | // Fail the parse.  Emulate standard behaviour by setting the value to | 
|  | // the zero value, and set the fail bit on the stream. | 
|  | value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0}); | 
|  | is.setstate(std::ios_base::failbit); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Parses a floating point number from the given stream and stores it into the | 
|  | // value parameter. | 
|  | // If negate_value is true then the number may not have a leading minus or | 
|  | // plus, and if it successfully parses, then the number is negated before | 
|  | // being stored into the value parameter. | 
|  | // If the value cannot be correctly parsed or overflows the target floating | 
|  | // point type, then set the fail bit on the stream. | 
|  | // TODO(dneto): Promise C++11 standard behavior in how the value is set in | 
|  | // the error case, but only after all target platforms implement it correctly. | 
|  | // In particular, the Microsoft C++ runtime appears to be out of spec. | 
|  | template <typename T, typename Traits> | 
|  | inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value, | 
|  | HexFloat<T, Traits>& value) { | 
|  | if (RejectParseDueToLeadingSign(is, negate_value, value)) { | 
|  | return is; | 
|  | } | 
|  | T val; | 
|  | is >> val; | 
|  | if (negate_value) { | 
|  | val = -val; | 
|  | } | 
|  | value.set_value(val); | 
|  | // In the failure case, map -0.0 to 0.0. | 
|  | if (is.fail() && value.getUnsignedBits() == 0u) { | 
|  | value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0}); | 
|  | } | 
|  | if (val.isInfinity()) { | 
|  | // Fail the parse.  Emulate standard behaviour by setting the value to | 
|  | // the closest normal value, and set the fail bit on the stream. | 
|  | value.set_value((value.isNegative() | negate_value) ? T::lowest() | 
|  | : T::max()); | 
|  | is.setstate(std::ios_base::failbit); | 
|  | } | 
|  | return is; | 
|  | } | 
|  |  | 
|  | // Specialization of ParseNormalFloat for FloatProxy<Float16> values. | 
|  | // This will parse the float as it were a 32-bit floating point number, | 
|  | // and then round it down to fit into a Float16 value. | 
|  | // The number is rounded towards zero. | 
|  | // If negate_value is true then the number may not have a leading minus or | 
|  | // plus, and if it successfully parses, then the number is negated before | 
|  | // being stored into the value parameter. | 
|  | // If the value cannot be correctly parsed or overflows the target floating | 
|  | // point type, then set the fail bit on the stream. | 
|  | // TODO(dneto): Promise C++11 standard behavior in how the value is set in | 
|  | // the error case, but only after all target platforms implement it correctly. | 
|  | // In particular, the Microsoft C++ runtime appears to be out of spec. | 
|  | template <> | 
|  | inline std::istream& | 
|  | ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>( | 
|  | std::istream& is, bool negate_value, | 
|  | HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) { | 
|  | // First parse as a 32-bit float. | 
|  | HexFloat<FloatProxy<float>> float_val(0.0f); | 
|  | ParseNormalFloat(is, negate_value, float_val); | 
|  |  | 
|  | // Then convert to 16-bit float, saturating at infinities, and | 
|  | // rounding toward zero. | 
|  | float_val.castTo(value, round_direction::kToZero); | 
|  |  | 
|  | // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the | 
|  | // fail bit and set the lowest or highest value. | 
|  | if (Float16::isInfinity(value.value().getAsFloat())) { | 
|  | value.set_value(value.isNegative() ? Float16::lowest() : Float16::max()); | 
|  | is.setstate(std::ios_base::failbit); | 
|  | } | 
|  | return is; | 
|  | } | 
|  |  | 
|  | // Reads a HexFloat from the given stream. | 
|  | // If the float is not encoded as a hex-float then it will be parsed | 
|  | // as a regular float. | 
|  | // This may fail if your stream does not support at least one unget. | 
|  | // Nan values can be encoded with "0x1.<not zero>p+exponent_bias". | 
|  | // This would normally overflow a float and round to | 
|  | // infinity but this special pattern is the exact representation for a NaN, | 
|  | // and therefore is actually encoded as the correct NaN. To encode inf, | 
|  | // either 0x0p+exponent_bias can be specified or any exponent greater than | 
|  | // exponent_bias. | 
|  | // Examples using IEEE 32-bit float encoding. | 
|  | //    0x1.0p+128 (+inf) | 
|  | //    -0x1.0p-128 (-inf) | 
|  | // | 
|  | //    0x1.1p+128 (+Nan) | 
|  | //    -0x1.1p+128 (-Nan) | 
|  | // | 
|  | //    0x1p+129 (+inf) | 
|  | //    -0x1p+129 (-inf) | 
|  | template <typename T, typename Traits> | 
|  | std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) { | 
|  | using HF = HexFloat<T, Traits>; | 
|  | using uint_type = typename HF::uint_type; | 
|  | using int_type = typename HF::int_type; | 
|  |  | 
|  | value.set_value(static_cast<typename HF::native_type>(0.f)); | 
|  |  | 
|  | if (is.flags() & std::ios::skipws) { | 
|  | // If the user wants to skip whitespace , then we should obey that. | 
|  | while (std::isspace(is.peek())) { | 
|  | is.get(); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto next_char = is.peek(); | 
|  | bool negate_value = false; | 
|  |  | 
|  | if (next_char != '-' && next_char != '0') { | 
|  | return ParseNormalFloat(is, negate_value, value); | 
|  | } | 
|  |  | 
|  | if (next_char == '-') { | 
|  | negate_value = true; | 
|  | is.get(); | 
|  | next_char = is.peek(); | 
|  | } | 
|  |  | 
|  | if (next_char == '0') { | 
|  | is.get();  // We may have to unget this. | 
|  | auto maybe_hex_start = is.peek(); | 
|  | if (maybe_hex_start != 'x' && maybe_hex_start != 'X') { | 
|  | is.unget(); | 
|  | return ParseNormalFloat(is, negate_value, value); | 
|  | } else { | 
|  | is.get();  // Throw away the 'x'; | 
|  | } | 
|  | } else { | 
|  | return ParseNormalFloat(is, negate_value, value); | 
|  | } | 
|  |  | 
|  | // This "looks" like a hex-float so treat it as one. | 
|  | bool seen_p = false; | 
|  | bool seen_dot = false; | 
|  |  | 
|  | // The mantissa bits, without the most significant 1 bit, and with the | 
|  | // the most recently read bits in the least significant positions. | 
|  | uint_type fraction = 0; | 
|  | // The number of mantissa bits that have been read, including the leading 1 | 
|  | // bit that is not written into 'fraction'. | 
|  | uint_type fraction_index = 0; | 
|  |  | 
|  | // TODO(dneto): handle overflow and underflow | 
|  | int_type exponent = HF::exponent_bias; | 
|  |  | 
|  | // Strip off leading zeros so we don't have to special-case them later. | 
|  | while ((next_char = is.peek()) == '0') { | 
|  | is.get(); | 
|  | } | 
|  |  | 
|  | // Does the mantissa, as written, have non-zero digits to the left of | 
|  | // the decimal point.  Assume no until proven otherwise. | 
|  | bool has_integer_part = false; | 
|  | bool bits_written = false;  // Stays false until we write a bit. | 
|  |  | 
|  | // Scan the mantissa hex digits until we see a '.' or the 'p' that | 
|  | // starts the exponent. | 
|  | while (!seen_p && !seen_dot) { | 
|  | // Handle characters that are left of the fractional part. | 
|  | if (next_char == '.') { | 
|  | seen_dot = true; | 
|  | } else if (next_char == 'p') { | 
|  | seen_p = true; | 
|  | } else if (::isxdigit(next_char)) { | 
|  | // We have stripped all leading zeroes and we have not yet seen a ".". | 
|  | has_integer_part = true; | 
|  | int number = get_nibble_from_character(next_char); | 
|  | for (int i = 0; i < 4; ++i, number <<= 1) { | 
|  | uint_type write_bit = (number & 0x8) ? 0x1 : 0x0; | 
|  | if (bits_written) { | 
|  | // If we are here the bits represented belong in the fractional | 
|  | // part of the float, and we have to adjust the exponent accordingly. | 
|  | fraction = static_cast<uint_type>( | 
|  | fraction | | 
|  | static_cast<uint_type>( | 
|  | write_bit << (HF::top_bit_left_shift - fraction_index++))); | 
|  | // TODO(dneto): Avoid overflow. Testing would require | 
|  | // parameterization. | 
|  | exponent = static_cast<int_type>(exponent + 1); | 
|  | } | 
|  | // Since this updated after setting fraction bits, this effectively | 
|  | // drops the leading 1 bit. | 
|  | bits_written |= write_bit != 0; | 
|  | } | 
|  | } else { | 
|  | // We have not found our exponent yet, so we have to fail. | 
|  | is.setstate(std::ios::failbit); | 
|  | return is; | 
|  | } | 
|  | is.get(); | 
|  | next_char = is.peek(); | 
|  | } | 
|  |  | 
|  | // Finished reading the part preceding any '.' or 'p'. | 
|  |  | 
|  | bits_written = false; | 
|  | while (seen_dot && !seen_p) { | 
|  | // Handle only fractional parts now. | 
|  | if (next_char == 'p') { | 
|  | seen_p = true; | 
|  | } else if (::isxdigit(next_char)) { | 
|  | int number = get_nibble_from_character(next_char); | 
|  | for (int i = 0; i < 4; ++i, number <<= 1) { | 
|  | uint_type write_bit = (number & 0x8) ? 0x01 : 0x00; | 
|  | bits_written |= write_bit != 0; | 
|  | if ((!has_integer_part) && !bits_written) { | 
|  | // Handle modifying the exponent here this way we can handle | 
|  | // an arbitrary number of hex values without overflowing our | 
|  | // integer. | 
|  | // TODO(dneto): Handle underflow. Testing would require extra | 
|  | // parameterization. | 
|  | exponent = static_cast<int_type>(exponent - 1); | 
|  | } else { | 
|  | fraction = static_cast<uint_type>( | 
|  | fraction | | 
|  | static_cast<uint_type>( | 
|  | write_bit << (HF::top_bit_left_shift - fraction_index++))); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // We still have not found our 'p' exponent yet, so this is not a valid | 
|  | // hex-float. | 
|  | is.setstate(std::ios::failbit); | 
|  | return is; | 
|  | } | 
|  | is.get(); | 
|  | next_char = is.peek(); | 
|  | } | 
|  |  | 
|  | // Finished reading the part preceding 'p'. | 
|  | // In hex floats syntax, the binary exponent is required. | 
|  |  | 
|  | bool seen_exponent_sign = false; | 
|  | int8_t exponent_sign = 1; | 
|  | bool seen_written_exponent_digits = false; | 
|  | // The magnitude of the exponent, as written, or the sentinel value to signal | 
|  | // overflow. | 
|  | int_type written_exponent = 0; | 
|  | // A sentinel value signalling overflow of the magnitude of the written | 
|  | // exponent.  We'll assume that -written_exponent_overflow is valid for the | 
|  | // type. Later we may add 1 or subtract 1 from the adjusted exponent, so leave | 
|  | // room for an extra 1. | 
|  | const int_type written_exponent_overflow = | 
|  | std::numeric_limits<int_type>::max() - 1; | 
|  | while (true) { | 
|  | if (!seen_written_exponent_digits && | 
|  | (next_char == '-' || next_char == '+')) { | 
|  | if (seen_exponent_sign) { | 
|  | is.setstate(std::ios::failbit); | 
|  | return is; | 
|  | } | 
|  | seen_exponent_sign = true; | 
|  | exponent_sign = (next_char == '-') ? -1 : 1; | 
|  | } else if (::isdigit(next_char)) { | 
|  | seen_written_exponent_digits = true; | 
|  | // Hex-floats express their exponent as decimal. | 
|  | int_type digit = | 
|  | static_cast<int_type>(static_cast<int_type>(next_char) - '0'); | 
|  | if (written_exponent >= (written_exponent_overflow - digit) / 10) { | 
|  | // The exponent is very big. Saturate rather than overflow the exponent. | 
|  | // signed integer, which would be undefined behaviour. | 
|  | written_exponent = written_exponent_overflow; | 
|  | } else { | 
|  | written_exponent = static_cast<int_type>( | 
|  | static_cast<int_type>(written_exponent * 10) + digit); | 
|  | } | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | is.get(); | 
|  | next_char = is.peek(); | 
|  | } | 
|  | if (!seen_written_exponent_digits) { | 
|  | // Binary exponent had no digits. | 
|  | is.setstate(std::ios::failbit); | 
|  | return is; | 
|  | } | 
|  |  | 
|  | written_exponent = static_cast<int_type>(written_exponent * exponent_sign); | 
|  | // Now fold in the exponent bias into the written exponent, updating exponent. | 
|  | // But avoid undefined behaviour that would result from overflowing int_type. | 
|  | if (written_exponent >= 0 && exponent >= 0) { | 
|  | // Saturate up to written_exponent_overflow. | 
|  | if (written_exponent_overflow - exponent > written_exponent) { | 
|  | exponent = static_cast<int_type>(written_exponent + exponent); | 
|  | } else { | 
|  | exponent = written_exponent_overflow; | 
|  | } | 
|  | } else if (written_exponent < 0 && exponent < 0) { | 
|  | // Saturate down to -written_exponent_overflow. | 
|  | if (written_exponent_overflow + exponent > -written_exponent) { | 
|  | exponent = static_cast<int_type>(written_exponent + exponent); | 
|  | } else { | 
|  | exponent = static_cast<int_type>(-written_exponent_overflow); | 
|  | } | 
|  | } else { | 
|  | // They're of opposing sign, so it's safe to add. | 
|  | exponent = static_cast<int_type>(written_exponent + exponent); | 
|  | } | 
|  |  | 
|  | bool is_zero = (!has_integer_part) && (fraction == 0); | 
|  | if ((!has_integer_part) && !is_zero) { | 
|  | fraction = static_cast<uint_type>(fraction << 1); | 
|  | exponent = static_cast<int_type>(exponent - 1); | 
|  | } else if (is_zero) { | 
|  | exponent = 0; | 
|  | } | 
|  |  | 
|  | if (exponent <= 0 && !is_zero) { | 
|  | fraction = static_cast<uint_type>(fraction >> 1); | 
|  | fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift; | 
|  | } | 
|  |  | 
|  | fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask; | 
|  |  | 
|  | const int_type max_exponent = | 
|  | SetBits<uint_type, 0, HF::num_exponent_bits>::get; | 
|  |  | 
|  | // Handle denorm numbers | 
|  | while (exponent < 0 && !is_zero) { | 
|  | fraction = static_cast<uint_type>(fraction >> 1); | 
|  | exponent = static_cast<int_type>(exponent + 1); | 
|  |  | 
|  | fraction &= HF::fraction_encode_mask; | 
|  | if (fraction == 0) { | 
|  | // We have underflowed our fraction. We should clamp to zero. | 
|  | is_zero = true; | 
|  | exponent = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We have overflowed so we should be inf/-inf. | 
|  | if (exponent > max_exponent) { | 
|  | exponent = max_exponent; | 
|  | fraction = 0; | 
|  | } | 
|  |  | 
|  | uint_type output_bits = static_cast<uint_type>( | 
|  | static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift); | 
|  | output_bits |= fraction; | 
|  |  | 
|  | uint_type shifted_exponent = static_cast<uint_type>( | 
|  | static_cast<uint_type>(exponent << HF::exponent_left_shift) & | 
|  | HF::exponent_mask); | 
|  | output_bits |= shifted_exponent; | 
|  |  | 
|  | T output_float(output_bits); | 
|  | value.set_value(output_float); | 
|  |  | 
|  | return is; | 
|  | } | 
|  |  | 
|  | // Writes a FloatProxy value to a stream. | 
|  | // Zero and normal numbers are printed in the usual notation, but with | 
|  | // enough digits to fully reproduce the value.  Other values (subnormal, | 
|  | // NaN, and infinity) are printed as a hex float. | 
|  | template <typename T> | 
|  | std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) { | 
|  | auto float_val = value.getAsFloat(); | 
|  | switch (std::fpclassify(float_val)) { | 
|  | case FP_ZERO: | 
|  | case FP_NORMAL: { | 
|  | auto saved_precision = os.precision(); | 
|  | os.precision(std::numeric_limits<T>::max_digits10); | 
|  | os << float_val; | 
|  | os.precision(saved_precision); | 
|  | } break; | 
|  | default: | 
|  | os << HexFloat<FloatProxy<T>>(value); | 
|  | break; | 
|  | } | 
|  | return os; | 
|  | } | 
|  |  | 
|  | template <> | 
|  | inline std::ostream& operator<<<Float16>(std::ostream& os, | 
|  | const FloatProxy<Float16>& value) { | 
|  | os << HexFloat<FloatProxy<Float16>>(value); | 
|  | return os; | 
|  | } | 
|  |  | 
|  | }  // namespace utils | 
|  | }  // namespace spvtools | 
|  |  | 
|  | #endif  // SOURCE_UTIL_HEX_FLOAT_H_ |