| //===- LoopPeel.cpp -------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Loop Peeling Utilities. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/LoopPeel.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/ProfDataUtils.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/LoopSimplify.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <optional> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "loop-peel" |
| |
| STATISTIC(NumPeeled, "Number of loops peeled"); |
| |
| static cl::opt<unsigned> UnrollPeelCount( |
| "unroll-peel-count", cl::Hidden, |
| cl::desc("Set the unroll peeling count, for testing purposes")); |
| |
| static cl::opt<bool> |
| UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, |
| cl::desc("Allows loops to be peeled when the dynamic " |
| "trip count is known to be low.")); |
| |
| static cl::opt<bool> |
| UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", |
| cl::init(false), cl::Hidden, |
| cl::desc("Allows loop nests to be peeled.")); |
| |
| static cl::opt<unsigned> UnrollPeelMaxCount( |
| "unroll-peel-max-count", cl::init(7), cl::Hidden, |
| cl::desc("Max average trip count which will cause loop peeling.")); |
| |
| static cl::opt<unsigned> UnrollForcePeelCount( |
| "unroll-force-peel-count", cl::init(0), cl::Hidden, |
| cl::desc("Force a peel count regardless of profiling information.")); |
| |
| static cl::opt<bool> DisableAdvancedPeeling( |
| "disable-advanced-peeling", cl::init(false), cl::Hidden, |
| cl::desc( |
| "Disable advance peeling. Issues for convergent targets (D134803).")); |
| |
| static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; |
| |
| // Check whether we are capable of peeling this loop. |
| bool llvm::canPeel(const Loop *L) { |
| // Make sure the loop is in simplified form |
| if (!L->isLoopSimplifyForm()) |
| return false; |
| if (!DisableAdvancedPeeling) |
| return true; |
| |
| SmallVector<BasicBlock *, 4> Exits; |
| L->getUniqueNonLatchExitBlocks(Exits); |
| // The latch must either be the only exiting block or all non-latch exit |
| // blocks have either a deopt or unreachable terminator or compose a chain of |
| // blocks where the last one is either deopt or unreachable terminated. Both |
| // deopt and unreachable terminators are a strong indication they are not |
| // taken. Note that this is a profitability check, not a legality check. Also |
| // note that LoopPeeling currently can only update the branch weights of latch |
| // blocks and branch weights to blocks with deopt or unreachable do not need |
| // updating. |
| return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable); |
| } |
| |
| namespace { |
| |
| // As a loop is peeled, it may be the case that Phi nodes become |
| // loop-invariant (ie, known because there is only one choice). |
| // For example, consider the following function: |
| // void g(int); |
| // void binary() { |
| // int x = 0; |
| // int y = 0; |
| // int a = 0; |
| // for(int i = 0; i <100000; ++i) { |
| // g(x); |
| // x = y; |
| // g(a); |
| // y = a + 1; |
| // a = 5; |
| // } |
| // } |
| // Peeling 3 iterations is beneficial because the values for x, y and a |
| // become known. The IR for this loop looks something like the following: |
| // |
| // %i = phi i32 [ 0, %entry ], [ %inc, %if.end ] |
| // %a = phi i32 [ 0, %entry ], [ 5, %if.end ] |
| // %y = phi i32 [ 0, %entry ], [ %add, %if.end ] |
| // %x = phi i32 [ 0, %entry ], [ %y, %if.end ] |
| // ... |
| // tail call void @_Z1gi(i32 signext %x) |
| // tail call void @_Z1gi(i32 signext %a) |
| // %add = add nuw nsw i32 %a, 1 |
| // %inc = add nuw nsw i32 %i, 1 |
| // %exitcond = icmp eq i32 %inc, 100000 |
| // br i1 %exitcond, label %for.cond.cleanup, label %for.body |
| // |
| // The arguments for the calls to g will become known after 3 iterations |
| // of the loop, because the phi nodes values become known after 3 iterations |
| // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations). |
| // The first iteration has g(0), g(0); the second has g(0), g(5); the |
| // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5). |
| // Now consider the phi nodes: |
| // %a is a phi with constants so it is determined after iteration 1. |
| // %y is a phi based on a constant and %a so it is determined on |
| // the iteration after %a is determined, so iteration 2. |
| // %x is a phi based on a constant and %y so it is determined on |
| // the iteration after %y, so iteration 3. |
| // %i is based on itself (and is an induction variable) so it is |
| // never determined. |
| // This means that peeling off 3 iterations will result in being able to |
| // remove the phi nodes for %a, %y, and %x. The arguments for the |
| // corresponding calls to g are determined and the code for computing |
| // x, y, and a can be removed. |
| // |
| // The PhiAnalyzer class calculates how many times a loop should be |
| // peeled based on the above analysis of the phi nodes in the loop while |
| // respecting the maximum specified. |
| class PhiAnalyzer { |
| public: |
| PhiAnalyzer(const Loop &L, unsigned MaxIterations); |
| |
| // Calculate the sufficient minimum number of iterations of the loop to peel |
| // such that phi instructions become determined (subject to allowable limits) |
| std::optional<unsigned> calculateIterationsToPeel(); |
| |
| protected: |
| using PeelCounter = std::optional<unsigned>; |
| const PeelCounter Unknown = std::nullopt; |
| |
| // Add 1 respecting Unknown and return Unknown if result over MaxIterations |
| PeelCounter addOne(PeelCounter PC) const { |
| if (PC == Unknown) |
| return Unknown; |
| return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown; |
| } |
| |
| // Calculate the number of iterations after which the given value |
| // becomes an invariant. |
| PeelCounter calculate(const Value &); |
| |
| const Loop &L; |
| const unsigned MaxIterations; |
| |
| // Map of Values to number of iterations to invariance |
| SmallDenseMap<const Value *, PeelCounter> IterationsToInvariance; |
| }; |
| |
| PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations) |
| : L(L), MaxIterations(MaxIterations) { |
| assert(canPeel(&L) && "loop is not suitable for peeling"); |
| assert(MaxIterations > 0 && "no peeling is allowed?"); |
| } |
| |
| // This function calculates the number of iterations after which the value |
| // becomes an invariant. The pre-calculated values are memorized in a map. |
| // N.B. This number will be Unknown or <= MaxIterations. |
| // The function is calculated according to the following definition: |
| // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. |
| // F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown) |
| // G(%y) = 0 if %y is a loop invariant |
| // G(%y) = G(%BackEdgeValue) if %y is a phi in the header block |
| // G(%y) = TODO: if %y is an expression based on phis and loop invariants |
| // The example looks like: |
| // %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration. |
| // %y = phi(0, 5) |
| // %a = %y + 1 |
| // G(%y) = Unknown otherwise (including phi not in header block) |
| PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) { |
| // If we already know the answer, take it from the map. |
| auto I = IterationsToInvariance.find(&V); |
| if (I != IterationsToInvariance.end()) |
| return I->second; |
| |
| // Place Unknown to map to avoid infinite recursion. Such |
| // cycles can never stop on an invariant. |
| IterationsToInvariance[&V] = Unknown; |
| |
| if (L.isLoopInvariant(&V)) |
| // Loop invariant so known at start. |
| return (IterationsToInvariance[&V] = 0); |
| if (const PHINode *Phi = dyn_cast<PHINode>(&V)) { |
| if (Phi->getParent() != L.getHeader()) { |
| // Phi is not in header block so Unknown. |
| assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved"); |
| return Unknown; |
| } |
| // We need to analyze the input from the back edge and add 1. |
| Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch()); |
| PeelCounter Iterations = calculate(*Input); |
| assert(IterationsToInvariance[Input] == Iterations && |
| "unexpected value saved"); |
| return (IterationsToInvariance[Phi] = addOne(Iterations)); |
| } |
| if (const Instruction *I = dyn_cast<Instruction>(&V)) { |
| if (isa<CmpInst>(I) || I->isBinaryOp()) { |
| // Binary instructions get the max of the operands. |
| PeelCounter LHS = calculate(*I->getOperand(0)); |
| if (LHS == Unknown) |
| return Unknown; |
| PeelCounter RHS = calculate(*I->getOperand(1)); |
| if (RHS == Unknown) |
| return Unknown; |
| return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)}); |
| } |
| if (I->isCast()) |
| // Cast instructions get the value of the operand. |
| return (IterationsToInvariance[I] = calculate(*I->getOperand(0))); |
| } |
| // TODO: handle more expressions |
| |
| // Everything else is Unknown. |
| assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved"); |
| return Unknown; |
| } |
| |
| std::optional<unsigned> PhiAnalyzer::calculateIterationsToPeel() { |
| unsigned Iterations = 0; |
| for (auto &PHI : L.getHeader()->phis()) { |
| PeelCounter ToInvariance = calculate(PHI); |
| if (ToInvariance != Unknown) { |
| assert(*ToInvariance <= MaxIterations && "bad result in phi analysis"); |
| Iterations = std::max(Iterations, *ToInvariance); |
| if (Iterations == MaxIterations) |
| break; |
| } |
| } |
| assert((Iterations <= MaxIterations) && "bad result in phi analysis"); |
| return Iterations ? std::optional<unsigned>(Iterations) : std::nullopt; |
| } |
| |
| } // unnamed namespace |
| |
| // Try to find any invariant memory reads that will become dereferenceable in |
| // the remainder loop after peeling. The load must also be used (transitively) |
| // by an exit condition. Returns the number of iterations to peel off (at the |
| // moment either 0 or 1). |
| static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L, |
| DominatorTree &DT, |
| AssumptionCache *AC) { |
| // Skip loops with a single exiting block, because there should be no benefit |
| // for the heuristic below. |
| if (L.getExitingBlock()) |
| return 0; |
| |
| // All non-latch exit blocks must have an UnreachableInst terminator. |
| // Otherwise the heuristic below may not be profitable. |
| SmallVector<BasicBlock *, 4> Exits; |
| L.getUniqueNonLatchExitBlocks(Exits); |
| if (any_of(Exits, [](const BasicBlock *BB) { |
| return !isa<UnreachableInst>(BB->getTerminator()); |
| })) |
| return 0; |
| |
| // Now look for invariant loads that dominate the latch and are not known to |
| // be dereferenceable. If there are such loads and no writes, they will become |
| // dereferenceable in the loop if the first iteration is peeled off. Also |
| // collect the set of instructions controlled by such loads. Only peel if an |
| // exit condition uses (transitively) such a load. |
| BasicBlock *Header = L.getHeader(); |
| BasicBlock *Latch = L.getLoopLatch(); |
| SmallPtrSet<Value *, 8> LoadUsers; |
| const DataLayout &DL = L.getHeader()->getModule()->getDataLayout(); |
| for (BasicBlock *BB : L.blocks()) { |
| for (Instruction &I : *BB) { |
| if (I.mayWriteToMemory()) |
| return 0; |
| |
| auto Iter = LoadUsers.find(&I); |
| if (Iter != LoadUsers.end()) { |
| for (Value *U : I.users()) |
| LoadUsers.insert(U); |
| } |
| // Do not look for reads in the header; they can already be hoisted |
| // without peeling. |
| if (BB == Header) |
| continue; |
| if (auto *LI = dyn_cast<LoadInst>(&I)) { |
| Value *Ptr = LI->getPointerOperand(); |
| if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) && |
| !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT)) |
| for (Value *U : I.users()) |
| LoadUsers.insert(U); |
| } |
| } |
| } |
| SmallVector<BasicBlock *> ExitingBlocks; |
| L.getExitingBlocks(ExitingBlocks); |
| if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) { |
| return LoadUsers.contains(Exiting->getTerminator()); |
| })) |
| return 1; |
| return 0; |
| } |
| |
| // Return the number of iterations to peel off that make conditions in the |
| // body true/false. For example, if we peel 2 iterations off the loop below, |
| // the condition i < 2 can be evaluated at compile time. |
| // for (i = 0; i < n; i++) |
| // if (i < 2) |
| // .. |
| // else |
| // .. |
| // } |
| static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, |
| ScalarEvolution &SE) { |
| assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); |
| unsigned DesiredPeelCount = 0; |
| |
| for (auto *BB : L.blocks()) { |
| auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); |
| if (!BI || BI->isUnconditional()) |
| continue; |
| |
| // Ignore loop exit condition. |
| if (L.getLoopLatch() == BB) |
| continue; |
| |
| Value *Condition = BI->getCondition(); |
| Value *LeftVal, *RightVal; |
| CmpInst::Predicate Pred; |
| if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) |
| continue; |
| |
| const SCEV *LeftSCEV = SE.getSCEV(LeftVal); |
| const SCEV *RightSCEV = SE.getSCEV(RightVal); |
| |
| // Do not consider predicates that are known to be true or false |
| // independently of the loop iteration. |
| if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV)) |
| continue; |
| |
| // Check if we have a condition with one AddRec and one non AddRec |
| // expression. Normalize LeftSCEV to be the AddRec. |
| if (!isa<SCEVAddRecExpr>(LeftSCEV)) { |
| if (isa<SCEVAddRecExpr>(RightSCEV)) { |
| std::swap(LeftSCEV, RightSCEV); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } else |
| continue; |
| } |
| |
| const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); |
| |
| // Avoid huge SCEV computations in the loop below, make sure we only |
| // consider AddRecs of the loop we are trying to peel. |
| if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) |
| continue; |
| if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && |
| !SE.getMonotonicPredicateType(LeftAR, Pred)) |
| continue; |
| |
| // Check if extending the current DesiredPeelCount lets us evaluate Pred |
| // or !Pred in the loop body statically. |
| unsigned NewPeelCount = DesiredPeelCount; |
| |
| const SCEV *IterVal = LeftAR->evaluateAtIteration( |
| SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); |
| |
| // If the original condition is not known, get the negated predicate |
| // (which holds on the else branch) and check if it is known. This allows |
| // us to peel of iterations that make the original condition false. |
| if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) |
| Pred = ICmpInst::getInversePredicate(Pred); |
| |
| const SCEV *Step = LeftAR->getStepRecurrence(SE); |
| const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); |
| auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, |
| &NewPeelCount]() { |
| IterVal = NextIterVal; |
| NextIterVal = SE.getAddExpr(IterVal, Step); |
| NewPeelCount++; |
| }; |
| |
| auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { |
| return NewPeelCount < MaxPeelCount; |
| }; |
| |
| while (CanPeelOneMoreIteration() && |
| SE.isKnownPredicate(Pred, IterVal, RightSCEV)) |
| PeelOneMoreIteration(); |
| |
| // With *that* peel count, does the predicate !Pred become known in the |
| // first iteration of the loop body after peeling? |
| if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, |
| RightSCEV)) |
| continue; // If not, give up. |
| |
| // However, for equality comparisons, that isn't always sufficient to |
| // eliminate the comparsion in loop body, we may need to peel one more |
| // iteration. See if that makes !Pred become unknown again. |
| if (ICmpInst::isEquality(Pred) && |
| !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, |
| RightSCEV) && |
| !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && |
| SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { |
| if (!CanPeelOneMoreIteration()) |
| continue; // Need to peel one more iteration, but can't. Give up. |
| PeelOneMoreIteration(); // Great! |
| } |
| |
| DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); |
| } |
| |
| return DesiredPeelCount; |
| } |
| |
| /// This "heuristic" exactly matches implicit behavior which used to exist |
| /// inside getLoopEstimatedTripCount. It was added here to keep an |
| /// improvement inside that API from causing peeling to become more aggressive. |
| /// This should probably be removed. |
| static bool violatesLegacyMultiExitLoopCheck(Loop *L) { |
| BasicBlock *Latch = L->getLoopLatch(); |
| if (!Latch) |
| return true; |
| |
| BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); |
| if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) |
| return true; |
| |
| assert((LatchBR->getSuccessor(0) == L->getHeader() || |
| LatchBR->getSuccessor(1) == L->getHeader()) && |
| "At least one edge out of the latch must go to the header"); |
| |
| SmallVector<BasicBlock *, 4> ExitBlocks; |
| L->getUniqueNonLatchExitBlocks(ExitBlocks); |
| return any_of(ExitBlocks, [](const BasicBlock *EB) { |
| return !EB->getTerminatingDeoptimizeCall(); |
| }); |
| } |
| |
| |
| // Return the number of iterations we want to peel off. |
| void llvm::computePeelCount(Loop *L, unsigned LoopSize, |
| TargetTransformInfo::PeelingPreferences &PP, |
| unsigned TripCount, DominatorTree &DT, |
| ScalarEvolution &SE, AssumptionCache *AC, |
| unsigned Threshold) { |
| assert(LoopSize > 0 && "Zero loop size is not allowed!"); |
| // Save the PP.PeelCount value set by the target in |
| // TTI.getPeelingPreferences or by the flag -unroll-peel-count. |
| unsigned TargetPeelCount = PP.PeelCount; |
| PP.PeelCount = 0; |
| if (!canPeel(L)) |
| return; |
| |
| // Only try to peel innermost loops by default. |
| // The constraint can be relaxed by the target in TTI.getPeelingPreferences |
| // or by the flag -unroll-allow-loop-nests-peeling. |
| if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) |
| return; |
| |
| // If the user provided a peel count, use that. |
| bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; |
| if (UserPeelCount) { |
| LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount |
| << " iterations.\n"); |
| PP.PeelCount = UnrollForcePeelCount; |
| PP.PeelProfiledIterations = true; |
| return; |
| } |
| |
| // Skip peeling if it's disabled. |
| if (!PP.AllowPeeling) |
| return; |
| |
| // Check that we can peel at least one iteration. |
| if (2 * LoopSize > Threshold) |
| return; |
| |
| unsigned AlreadyPeeled = 0; |
| if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) |
| AlreadyPeeled = *Peeled; |
| // Stop if we already peeled off the maximum number of iterations. |
| if (AlreadyPeeled >= UnrollPeelMaxCount) |
| return; |
| |
| // Pay respect to limitations implied by loop size and the max peel count. |
| unsigned MaxPeelCount = UnrollPeelMaxCount; |
| MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); |
| |
| // Start the max computation with the PP.PeelCount value set by the target |
| // in TTI.getPeelingPreferences or by the flag -unroll-peel-count. |
| unsigned DesiredPeelCount = TargetPeelCount; |
| |
| // Here we try to get rid of Phis which become invariants after 1, 2, ..., N |
| // iterations of the loop. For this we compute the number for iterations after |
| // which every Phi is guaranteed to become an invariant, and try to peel the |
| // maximum number of iterations among these values, thus turning all those |
| // Phis into invariants. |
| if (MaxPeelCount > DesiredPeelCount) { |
| // Check how many iterations are useful for resolving Phis |
| auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel(); |
| if (NumPeels) |
| DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels); |
| } |
| |
| DesiredPeelCount = std::max(DesiredPeelCount, |
| countToEliminateCompares(*L, MaxPeelCount, SE)); |
| |
| if (DesiredPeelCount == 0) |
| DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC); |
| |
| if (DesiredPeelCount > 0) { |
| DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); |
| // Consider max peel count limitation. |
| assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); |
| if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { |
| LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount |
| << " iteration(s) to turn" |
| << " some Phis into invariants.\n"); |
| PP.PeelCount = DesiredPeelCount; |
| PP.PeelProfiledIterations = false; |
| return; |
| } |
| } |
| |
| // Bail if we know the statically calculated trip count. |
| // In this case we rather prefer partial unrolling. |
| if (TripCount) |
| return; |
| |
| // Do not apply profile base peeling if it is disabled. |
| if (!PP.PeelProfiledIterations) |
| return; |
| // If we don't know the trip count, but have reason to believe the average |
| // trip count is low, peeling should be beneficial, since we will usually |
| // hit the peeled section. |
| // We only do this in the presence of profile information, since otherwise |
| // our estimates of the trip count are not reliable enough. |
| if (L->getHeader()->getParent()->hasProfileData()) { |
| if (violatesLegacyMultiExitLoopCheck(L)) |
| return; |
| std::optional<unsigned> EstimatedTripCount = getLoopEstimatedTripCount(L); |
| if (!EstimatedTripCount) |
| return; |
| |
| LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " |
| << *EstimatedTripCount << "\n"); |
| |
| if (*EstimatedTripCount) { |
| if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) { |
| unsigned PeelCount = *EstimatedTripCount; |
| LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n"); |
| PP.PeelCount = PeelCount; |
| return; |
| } |
| LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); |
| LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); |
| LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n"); |
| LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); |
| LLVM_DEBUG(dbgs() << "Max peel count by cost: " |
| << (Threshold / LoopSize - 1) << "\n"); |
| } |
| } |
| } |
| |
| struct WeightInfo { |
| // Weights for current iteration. |
| SmallVector<uint32_t> Weights; |
| // Weights to subtract after each iteration. |
| const SmallVector<uint32_t> SubWeights; |
| }; |
| |
| /// Update the branch weights of an exiting block of a peeled-off loop |
| /// iteration. |
| /// Let F is a weight of the edge to continue (fallthrough) into the loop. |
| /// Let E is a weight of the edge to an exit. |
| /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to |
| /// go to exit. |
| /// Then, Estimated ExitCount = F / E. |
| /// For I-th (counting from 0) peeled off iteration we set the the weights for |
| /// the peeled exit as (EC - I, 1). It gives us reasonable distribution, |
| /// The probability to go to exit 1/(EC-I) increases. At the same time |
| /// the estimated exit count in the remainder loop reduces by I. |
| /// To avoid dealing with division rounding we can just multiple both part |
| /// of weights to E and use weight as (F - I * E, E). |
| static void updateBranchWeights(Instruction *Term, WeightInfo &Info) { |
| MDBuilder MDB(Term->getContext()); |
| Term->setMetadata(LLVMContext::MD_prof, |
| MDB.createBranchWeights(Info.Weights)); |
| for (auto [Idx, SubWeight] : enumerate(Info.SubWeights)) |
| if (SubWeight != 0) |
| Info.Weights[Idx] = Info.Weights[Idx] > SubWeight |
| ? Info.Weights[Idx] - SubWeight |
| : 1; |
| } |
| |
| /// Initialize the weights for all exiting blocks. |
| static void initBranchWeights(DenseMap<Instruction *, WeightInfo> &WeightInfos, |
| Loop *L) { |
| SmallVector<BasicBlock *> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| for (BasicBlock *ExitingBlock : ExitingBlocks) { |
| Instruction *Term = ExitingBlock->getTerminator(); |
| SmallVector<uint32_t> Weights; |
| if (!extractBranchWeights(*Term, Weights)) |
| continue; |
| |
| // See the comment on updateBranchWeights() for an explanation of what we |
| // do here. |
| uint32_t FallThroughWeights = 0; |
| uint32_t ExitWeights = 0; |
| for (auto [Succ, Weight] : zip(successors(Term), Weights)) { |
| if (L->contains(Succ)) |
| FallThroughWeights += Weight; |
| else |
| ExitWeights += Weight; |
| } |
| |
| // Don't try to update weights for degenerate case. |
| if (FallThroughWeights == 0) |
| continue; |
| |
| SmallVector<uint32_t> SubWeights; |
| for (auto [Succ, Weight] : zip(successors(Term), Weights)) { |
| if (!L->contains(Succ)) { |
| // Exit weights stay the same. |
| SubWeights.push_back(0); |
| continue; |
| } |
| |
| // Subtract exit weights on each iteration, distributed across all |
| // fallthrough edges. |
| double W = (double)Weight / (double)FallThroughWeights; |
| SubWeights.push_back((uint32_t)(ExitWeights * W)); |
| } |
| |
| WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}}); |
| } |
| } |
| |
| /// Update the weights of original exiting block after peeling off all |
| /// iterations. |
| static void fixupBranchWeights(Instruction *Term, const WeightInfo &Info) { |
| MDBuilder MDB(Term->getContext()); |
| Term->setMetadata(LLVMContext::MD_prof, |
| MDB.createBranchWeights(Info.Weights)); |
| } |
| |
| /// Clones the body of the loop L, putting it between \p InsertTop and \p |
| /// InsertBot. |
| /// \param IterNumber The serial number of the iteration currently being |
| /// peeled off. |
| /// \param ExitEdges The exit edges of the original loop. |
| /// \param[out] NewBlocks A list of the blocks in the newly created clone |
| /// \param[out] VMap The value map between the loop and the new clone. |
| /// \param LoopBlocks A helper for DFS-traversal of the loop. |
| /// \param LVMap A value-map that maps instructions from the original loop to |
| /// instructions in the last peeled-off iteration. |
| static void cloneLoopBlocks( |
| Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, |
| SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges, |
| SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, |
| ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, |
| LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes, |
| ScalarEvolution &SE) { |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *Latch = L->getLoopLatch(); |
| BasicBlock *PreHeader = L->getLoopPreheader(); |
| |
| Function *F = Header->getParent(); |
| LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); |
| LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); |
| Loop *ParentLoop = L->getParentLoop(); |
| |
| // For each block in the original loop, create a new copy, |
| // and update the value map with the newly created values. |
| for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
| BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); |
| NewBlocks.push_back(NewBB); |
| |
| // If an original block is an immediate child of the loop L, its copy |
| // is a child of a ParentLoop after peeling. If a block is a child of |
| // a nested loop, it is handled in the cloneLoop() call below. |
| if (ParentLoop && LI->getLoopFor(*BB) == L) |
| ParentLoop->addBasicBlockToLoop(NewBB, *LI); |
| |
| VMap[*BB] = NewBB; |
| |
| // If dominator tree is available, insert nodes to represent cloned blocks. |
| if (DT) { |
| if (Header == *BB) |
| DT->addNewBlock(NewBB, InsertTop); |
| else { |
| DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); |
| // VMap must contain entry for IDom, as the iteration order is RPO. |
| DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); |
| } |
| } |
| } |
| |
| { |
| // Identify what other metadata depends on the cloned version. After |
| // cloning, replace the metadata with the corrected version for both |
| // memory instructions and noalias intrinsics. |
| std::string Ext = (Twine("Peel") + Twine(IterNumber)).str(); |
| cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, |
| Header->getContext(), Ext); |
| } |
| |
| // Recursively create the new Loop objects for nested loops, if any, |
| // to preserve LoopInfo. |
| for (Loop *ChildLoop : *L) { |
| cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); |
| } |
| |
| // Hook-up the control flow for the newly inserted blocks. |
| // The new header is hooked up directly to the "top", which is either |
| // the original loop preheader (for the first iteration) or the previous |
| // iteration's exiting block (for every other iteration) |
| InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); |
| |
| // Similarly, for the latch: |
| // The original exiting edge is still hooked up to the loop exit. |
| // The backedge now goes to the "bottom", which is either the loop's real |
| // header (for the last peeled iteration) or the copied header of the next |
| // iteration (for every other iteration) |
| BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); |
| auto *LatchTerm = cast<Instruction>(NewLatch->getTerminator()); |
| for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx) |
| if (LatchTerm->getSuccessor(idx) == Header) { |
| LatchTerm->setSuccessor(idx, InsertBot); |
| break; |
| } |
| if (DT) |
| DT->changeImmediateDominator(InsertBot, NewLatch); |
| |
| // The new copy of the loop body starts with a bunch of PHI nodes |
| // that pick an incoming value from either the preheader, or the previous |
| // loop iteration. Since this copy is no longer part of the loop, we |
| // resolve this statically: |
| // For the first iteration, we use the value from the preheader directly. |
| // For any other iteration, we replace the phi with the value generated by |
| // the immediately preceding clone of the loop body (which represents |
| // the previous iteration). |
| for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| PHINode *NewPHI = cast<PHINode>(VMap[&*I]); |
| if (IterNumber == 0) { |
| VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); |
| } else { |
| Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); |
| Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); |
| if (LatchInst && L->contains(LatchInst)) |
| VMap[&*I] = LVMap[LatchInst]; |
| else |
| VMap[&*I] = LatchVal; |
| } |
| NewPHI->eraseFromParent(); |
| } |
| |
| // Fix up the outgoing values - we need to add a value for the iteration |
| // we've just created. Note that this must happen *after* the incoming |
| // values are adjusted, since the value going out of the latch may also be |
| // a value coming into the header. |
| for (auto Edge : ExitEdges) |
| for (PHINode &PHI : Edge.second->phis()) { |
| Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); |
| Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); |
| if (LatchInst && L->contains(LatchInst)) |
| LatchVal = VMap[LatchVal]; |
| PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); |
| SE.forgetValue(&PHI); |
| } |
| |
| // LastValueMap is updated with the values for the current loop |
| // which are used the next time this function is called. |
| for (auto KV : VMap) |
| LVMap[KV.first] = KV.second; |
| } |
| |
| TargetTransformInfo::PeelingPreferences |
| llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE, |
| const TargetTransformInfo &TTI, |
| std::optional<bool> UserAllowPeeling, |
| std::optional<bool> UserAllowProfileBasedPeeling, |
| bool UnrollingSpecficValues) { |
| TargetTransformInfo::PeelingPreferences PP; |
| |
| // Set the default values. |
| PP.PeelCount = 0; |
| PP.AllowPeeling = true; |
| PP.AllowLoopNestsPeeling = false; |
| PP.PeelProfiledIterations = true; |
| |
| // Get the target specifc values. |
| TTI.getPeelingPreferences(L, SE, PP); |
| |
| // User specified values using cl::opt. |
| if (UnrollingSpecficValues) { |
| if (UnrollPeelCount.getNumOccurrences() > 0) |
| PP.PeelCount = UnrollPeelCount; |
| if (UnrollAllowPeeling.getNumOccurrences() > 0) |
| PP.AllowPeeling = UnrollAllowPeeling; |
| if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) |
| PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; |
| } |
| |
| // User specifed values provided by argument. |
| if (UserAllowPeeling) |
| PP.AllowPeeling = *UserAllowPeeling; |
| if (UserAllowProfileBasedPeeling) |
| PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; |
| |
| return PP; |
| } |
| |
| /// Peel off the first \p PeelCount iterations of loop \p L. |
| /// |
| /// Note that this does not peel them off as a single straight-line block. |
| /// Rather, each iteration is peeled off separately, and needs to check the |
| /// exit condition. |
| /// For loops that dynamically execute \p PeelCount iterations or less |
| /// this provides a benefit, since the peeled off iterations, which account |
| /// for the bulk of dynamic execution, can be further simplified by scalar |
| /// optimizations. |
| bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, |
| ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC, |
| bool PreserveLCSSA, ValueToValueMapTy &LVMap) { |
| assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); |
| assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); |
| |
| LoopBlocksDFS LoopBlocks(L); |
| LoopBlocks.perform(LI); |
| |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *PreHeader = L->getLoopPreheader(); |
| BasicBlock *Latch = L->getLoopLatch(); |
| SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; |
| L->getExitEdges(ExitEdges); |
| |
| // Remember dominators of blocks we might reach through exits to change them |
| // later. Immediate dominator of such block might change, because we add more |
| // routes which can lead to the exit: we can reach it from the peeled |
| // iterations too. |
| DenseMap<BasicBlock *, BasicBlock *> NonLoopBlocksIDom; |
| for (auto *BB : L->blocks()) { |
| auto *BBDomNode = DT.getNode(BB); |
| SmallVector<BasicBlock *, 16> ChildrenToUpdate; |
| for (auto *ChildDomNode : BBDomNode->children()) { |
| auto *ChildBB = ChildDomNode->getBlock(); |
| if (!L->contains(ChildBB)) |
| ChildrenToUpdate.push_back(ChildBB); |
| } |
| // The new idom of the block will be the nearest common dominator |
| // of all copies of the previous idom. This is equivalent to the |
| // nearest common dominator of the previous idom and the first latch, |
| // which dominates all copies of the previous idom. |
| BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch); |
| for (auto *ChildBB : ChildrenToUpdate) |
| NonLoopBlocksIDom[ChildBB] = NewIDom; |
| } |
| |
| Function *F = Header->getParent(); |
| |
| // Set up all the necessary basic blocks. It is convenient to split the |
| // preheader into 3 parts - two blocks to anchor the peeled copy of the loop |
| // body, and a new preheader for the "real" loop. |
| |
| // Peeling the first iteration transforms. |
| // |
| // PreHeader: |
| // ... |
| // Header: |
| // LoopBody |
| // If (cond) goto Header |
| // Exit: |
| // |
| // into |
| // |
| // InsertTop: |
| // LoopBody |
| // If (!cond) goto Exit |
| // InsertBot: |
| // NewPreHeader: |
| // ... |
| // Header: |
| // LoopBody |
| // If (cond) goto Header |
| // Exit: |
| // |
| // Each following iteration will split the current bottom anchor in two, |
| // and put the new copy of the loop body between these two blocks. That is, |
| // after peeling another iteration from the example above, we'll split |
| // InsertBot, and get: |
| // |
| // InsertTop: |
| // LoopBody |
| // If (!cond) goto Exit |
| // InsertBot: |
| // LoopBody |
| // If (!cond) goto Exit |
| // InsertBot.next: |
| // NewPreHeader: |
| // ... |
| // Header: |
| // LoopBody |
| // If (cond) goto Header |
| // Exit: |
| |
| BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI); |
| BasicBlock *InsertBot = |
| SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI); |
| BasicBlock *NewPreHeader = |
| SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); |
| |
| InsertTop->setName(Header->getName() + ".peel.begin"); |
| InsertBot->setName(Header->getName() + ".peel.next"); |
| NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); |
| |
| Instruction *LatchTerm = |
| cast<Instruction>(cast<BasicBlock>(Latch)->getTerminator()); |
| |
| // If we have branch weight information, we'll want to update it for the |
| // newly created branches. |
| DenseMap<Instruction *, WeightInfo> Weights; |
| initBranchWeights(Weights, L); |
| |
| // Identify what noalias metadata is inside the loop: if it is inside the |
| // loop, the associated metadata must be cloned for each iteration. |
| SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; |
| identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); |
| |
| // For each peeled-off iteration, make a copy of the loop. |
| for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { |
| SmallVector<BasicBlock *, 8> NewBlocks; |
| ValueToValueMapTy VMap; |
| |
| cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, |
| LoopBlocks, VMap, LVMap, &DT, LI, |
| LoopLocalNoAliasDeclScopes, *SE); |
| |
| // Remap to use values from the current iteration instead of the |
| // previous one. |
| remapInstructionsInBlocks(NewBlocks, VMap); |
| |
| // Update IDoms of the blocks reachable through exits. |
| if (Iter == 0) |
| for (auto BBIDom : NonLoopBlocksIDom) |
| DT.changeImmediateDominator(BBIDom.first, |
| cast<BasicBlock>(LVMap[BBIDom.second])); |
| #ifdef EXPENSIVE_CHECKS |
| assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
| #endif |
| |
| for (auto &[Term, Info] : Weights) { |
| auto *TermCopy = cast<Instruction>(VMap[Term]); |
| updateBranchWeights(TermCopy, Info); |
| } |
| |
| // Remove Loop metadata from the latch branch instruction |
| // because it is not the Loop's latch branch anymore. |
| auto *LatchTermCopy = cast<Instruction>(VMap[LatchTerm]); |
| LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr); |
| |
| InsertTop = InsertBot; |
| InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); |
| InsertBot->setName(Header->getName() + ".peel.next"); |
| |
| F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(), |
| F->end()); |
| } |
| |
| // Now adjust the phi nodes in the loop header to get their initial values |
| // from the last peeled-off iteration instead of the preheader. |
| for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PHI = cast<PHINode>(I); |
| Value *NewVal = PHI->getIncomingValueForBlock(Latch); |
| Instruction *LatchInst = dyn_cast<Instruction>(NewVal); |
| if (LatchInst && L->contains(LatchInst)) |
| NewVal = LVMap[LatchInst]; |
| |
| PHI->setIncomingValueForBlock(NewPreHeader, NewVal); |
| } |
| |
| for (const auto &[Term, Info] : Weights) |
| fixupBranchWeights(Term, Info); |
| |
| // Update Metadata for count of peeled off iterations. |
| unsigned AlreadyPeeled = 0; |
| if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) |
| AlreadyPeeled = *Peeled; |
| addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); |
| |
| if (Loop *ParentLoop = L->getParentLoop()) |
| L = ParentLoop; |
| |
| // We modified the loop, update SE. |
| SE->forgetTopmostLoop(L); |
| |
| #ifdef EXPENSIVE_CHECKS |
| // Finally DomtTree must be correct. |
| assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
| #endif |
| |
| // FIXME: Incrementally update loop-simplify |
| simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA); |
| |
| NumPeeled++; |
| |
| return true; |
| } |