| //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains logic for simplifying instructions based on information |
| // about how they are used. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| /// Check to see if the specified operand of the specified instruction is a |
| /// constant integer. If so, check to see if there are any bits set in the |
| /// constant that are not demanded. If so, shrink the constant and return true. |
| static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, |
| const APInt &Demanded) { |
| assert(I && "No instruction?"); |
| assert(OpNo < I->getNumOperands() && "Operand index too large"); |
| |
| // The operand must be a constant integer or splat integer. |
| Value *Op = I->getOperand(OpNo); |
| const APInt *C; |
| if (!match(Op, m_APInt(C))) |
| return false; |
| |
| // If there are no bits set that aren't demanded, nothing to do. |
| if (C->isSubsetOf(Demanded)) |
| return false; |
| |
| // This instruction is producing bits that are not demanded. Shrink the RHS. |
| I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); |
| |
| return true; |
| } |
| |
| |
| |
| /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if |
| /// the instruction has any properties that allow us to simplify its operands. |
| bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction &Inst) { |
| unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); |
| KnownBits Known(BitWidth); |
| APInt DemandedMask(APInt::getAllOnes(BitWidth)); |
| |
| Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, |
| 0, &Inst); |
| if (!V) return false; |
| if (V == &Inst) return true; |
| replaceInstUsesWith(Inst, V); |
| return true; |
| } |
| |
| /// This form of SimplifyDemandedBits simplifies the specified instruction |
| /// operand if possible, updating it in place. It returns true if it made any |
| /// change and false otherwise. |
| bool InstCombinerImpl::SimplifyDemandedBits(Instruction *I, unsigned OpNo, |
| const APInt &DemandedMask, |
| KnownBits &Known, unsigned Depth) { |
| Use &U = I->getOperandUse(OpNo); |
| Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, |
| Depth, I); |
| if (!NewVal) return false; |
| if (Instruction* OpInst = dyn_cast<Instruction>(U)) |
| salvageDebugInfo(*OpInst); |
| |
| replaceUse(U, NewVal); |
| return true; |
| } |
| |
| /// This function attempts to replace V with a simpler value based on the |
| /// demanded bits. When this function is called, it is known that only the bits |
| /// set in DemandedMask of the result of V are ever used downstream. |
| /// Consequently, depending on the mask and V, it may be possible to replace V |
| /// with a constant or one of its operands. In such cases, this function does |
| /// the replacement and returns true. In all other cases, it returns false after |
| /// analyzing the expression and setting KnownOne and known to be one in the |
| /// expression. Known.Zero contains all the bits that are known to be zero in |
| /// the expression. These are provided to potentially allow the caller (which |
| /// might recursively be SimplifyDemandedBits itself) to simplify the |
| /// expression. |
| /// Known.One and Known.Zero always follow the invariant that: |
| /// Known.One & Known.Zero == 0. |
| /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and |
| /// Known.Zero may only be accurate for those bits set in DemandedMask. Note |
| /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all |
| /// be the same. |
| /// |
| /// This returns null if it did not change anything and it permits no |
| /// simplification. This returns V itself if it did some simplification of V's |
| /// operands based on the information about what bits are demanded. This returns |
| /// some other non-null value if it found out that V is equal to another value |
| /// in the context where the specified bits are demanded, but not for all users. |
| Value *InstCombinerImpl::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, |
| KnownBits &Known, |
| unsigned Depth, |
| Instruction *CxtI) { |
| assert(V != nullptr && "Null pointer of Value???"); |
| assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); |
| uint32_t BitWidth = DemandedMask.getBitWidth(); |
| Type *VTy = V->getType(); |
| assert( |
| (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && |
| Known.getBitWidth() == BitWidth && |
| "Value *V, DemandedMask and Known must have same BitWidth"); |
| |
| if (isa<Constant>(V)) { |
| computeKnownBits(V, Known, Depth, CxtI); |
| return nullptr; |
| } |
| |
| Known.resetAll(); |
| if (DemandedMask.isZero()) // Not demanding any bits from V. |
| return UndefValue::get(VTy); |
| |
| if (Depth == MaxAnalysisRecursionDepth) |
| return nullptr; |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) { |
| computeKnownBits(V, Known, Depth, CxtI); |
| return nullptr; // Only analyze instructions. |
| } |
| |
| // If there are multiple uses of this value and we aren't at the root, then |
| // we can't do any simplifications of the operands, because DemandedMask |
| // only reflects the bits demanded by *one* of the users. |
| if (Depth != 0 && !I->hasOneUse()) |
| return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); |
| |
| KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); |
| |
| // If this is the root being simplified, allow it to have multiple uses, |
| // just set the DemandedMask to all bits so that we can try to simplify the |
| // operands. This allows visitTruncInst (for example) to simplify the |
| // operand of a trunc without duplicating all the logic below. |
| if (Depth == 0 && !V->hasOneUse()) |
| DemandedMask.setAllBits(); |
| |
| // Update flags after simplifying an operand based on the fact that some high |
| // order bits are not demanded. |
| auto disableWrapFlagsBasedOnUnusedHighBits = [](Instruction *I, |
| unsigned NLZ) { |
| if (NLZ > 0) { |
| // Disable the nsw and nuw flags here: We can no longer guarantee that |
| // we won't wrap after simplification. Removing the nsw/nuw flags is |
| // legal here because the top bit is not demanded. |
| I->setHasNoSignedWrap(false); |
| I->setHasNoUnsignedWrap(false); |
| } |
| return I; |
| }; |
| |
| // If the high-bits of an ADD/SUB/MUL are not demanded, then we do not care |
| // about the high bits of the operands. |
| auto simplifyOperandsBasedOnUnusedHighBits = [&](APInt &DemandedFromOps) { |
| unsigned NLZ = DemandedMask.countLeadingZeros(); |
| // Right fill the mask of bits for the operands to demand the most |
| // significant bit and all those below it. |
| DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); |
| if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || |
| SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || |
| ShrinkDemandedConstant(I, 1, DemandedFromOps) || |
| SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { |
| disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); |
| return true; |
| } |
| return false; |
| }; |
| |
| switch (I->getOpcode()) { |
| default: |
| computeKnownBits(I, Known, Depth, CxtI); |
| break; |
| case Instruction::And: { |
| // If either the LHS or the RHS are Zero, the result is zero. |
| if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || |
| SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, |
| Depth + 1)) |
| return I; |
| assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| |
| Known = LHSKnown & RHSKnown; |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) |
| return Constant::getIntegerValue(VTy, Known.One); |
| |
| // If all of the demanded bits are known 1 on one side, return the other. |
| // These bits cannot contribute to the result of the 'and'. |
| if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) |
| return I->getOperand(1); |
| |
| // If the RHS is a constant, see if we can simplify it. |
| if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) |
| return I; |
| |
| break; |
| } |
| case Instruction::Or: { |
| // If either the LHS or the RHS are One, the result is One. |
| if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || |
| SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, |
| Depth + 1)) |
| return I; |
| assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| |
| Known = LHSKnown | RHSKnown; |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) |
| return Constant::getIntegerValue(VTy, Known.One); |
| |
| // If all of the demanded bits are known zero on one side, return the other. |
| // These bits cannot contribute to the result of the 'or'. |
| if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| // If the RHS is a constant, see if we can simplify it. |
| if (ShrinkDemandedConstant(I, 1, DemandedMask)) |
| return I; |
| |
| break; |
| } |
| case Instruction::Xor: { |
| if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || |
| SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) |
| return I; |
| Value *LHS, *RHS; |
| if (DemandedMask == 1 && |
| match(I->getOperand(0), m_Intrinsic<Intrinsic::ctpop>(m_Value(LHS))) && |
| match(I->getOperand(1), m_Intrinsic<Intrinsic::ctpop>(m_Value(RHS)))) { |
| // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1 |
| IRBuilderBase::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(I); |
| auto *Xor = Builder.CreateXor(LHS, RHS); |
| return Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, Xor); |
| } |
| |
| assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| |
| Known = LHSKnown ^ RHSKnown; |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) |
| return Constant::getIntegerValue(VTy, Known.One); |
| |
| // If all of the demanded bits are known zero on one side, return the other. |
| // These bits cannot contribute to the result of the 'xor'. |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| // If all of the demanded bits are known to be zero on one side or the |
| // other, turn this into an *inclusive* or. |
| // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { |
| Instruction *Or = |
| BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), |
| I->getName()); |
| return InsertNewInstWith(Or, *I); |
| } |
| |
| // If all of the demanded bits on one side are known, and all of the set |
| // bits on that side are also known to be set on the other side, turn this |
| // into an AND, as we know the bits will be cleared. |
| // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && |
| RHSKnown.One.isSubsetOf(LHSKnown.One)) { |
| Constant *AndC = Constant::getIntegerValue(VTy, |
| ~RHSKnown.One & DemandedMask); |
| Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); |
| return InsertNewInstWith(And, *I); |
| } |
| |
| // If the RHS is a constant, see if we can change it. Don't alter a -1 |
| // constant because that's a canonical 'not' op, and that is better for |
| // combining, SCEV, and codegen. |
| const APInt *C; |
| if (match(I->getOperand(1), m_APInt(C)) && !C->isAllOnes()) { |
| if ((*C | ~DemandedMask).isAllOnes()) { |
| // Force bits to 1 to create a 'not' op. |
| I->setOperand(1, ConstantInt::getAllOnesValue(VTy)); |
| return I; |
| } |
| // If we can't turn this into a 'not', try to shrink the constant. |
| if (ShrinkDemandedConstant(I, 1, DemandedMask)) |
| return I; |
| } |
| |
| // If our LHS is an 'and' and if it has one use, and if any of the bits we |
| // are flipping are known to be set, then the xor is just resetting those |
| // bits to zero. We can just knock out bits from the 'and' and the 'xor', |
| // simplifying both of them. |
| if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) { |
| ConstantInt *AndRHS, *XorRHS; |
| if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && |
| match(I->getOperand(1), m_ConstantInt(XorRHS)) && |
| match(LHSInst->getOperand(1), m_ConstantInt(AndRHS)) && |
| (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { |
| APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); |
| |
| Constant *AndC = ConstantInt::get(VTy, NewMask & AndRHS->getValue()); |
| Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); |
| InsertNewInstWith(NewAnd, *I); |
| |
| Constant *XorC = ConstantInt::get(VTy, NewMask & XorRHS->getValue()); |
| Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); |
| return InsertNewInstWith(NewXor, *I); |
| } |
| } |
| break; |
| } |
| case Instruction::Select: { |
| if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || |
| SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) |
| return I; |
| assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If the operands are constants, see if we can simplify them. |
| // This is similar to ShrinkDemandedConstant, but for a select we want to |
| // try to keep the selected constants the same as icmp value constants, if |
| // we can. This helps not break apart (or helps put back together) |
| // canonical patterns like min and max. |
| auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, |
| const APInt &DemandedMask) { |
| const APInt *SelC; |
| if (!match(I->getOperand(OpNo), m_APInt(SelC))) |
| return false; |
| |
| // Get the constant out of the ICmp, if there is one. |
| // Only try this when exactly 1 operand is a constant (if both operands |
| // are constant, the icmp should eventually simplify). Otherwise, we may |
| // invert the transform that reduces set bits and infinite-loop. |
| Value *X; |
| const APInt *CmpC; |
| ICmpInst::Predicate Pred; |
| if (!match(I->getOperand(0), m_ICmp(Pred, m_Value(X), m_APInt(CmpC))) || |
| isa<Constant>(X) || CmpC->getBitWidth() != SelC->getBitWidth()) |
| return ShrinkDemandedConstant(I, OpNo, DemandedMask); |
| |
| // If the constant is already the same as the ICmp, leave it as-is. |
| if (*CmpC == *SelC) |
| return false; |
| // If the constants are not already the same, but can be with the demand |
| // mask, use the constant value from the ICmp. |
| if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { |
| I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); |
| return true; |
| } |
| return ShrinkDemandedConstant(I, OpNo, DemandedMask); |
| }; |
| if (CanonicalizeSelectConstant(I, 1, DemandedMask) || |
| CanonicalizeSelectConstant(I, 2, DemandedMask)) |
| return I; |
| |
| // Only known if known in both the LHS and RHS. |
| Known = KnownBits::commonBits(LHSKnown, RHSKnown); |
| break; |
| } |
| case Instruction::Trunc: { |
| // If we do not demand the high bits of a right-shifted and truncated value, |
| // then we may be able to truncate it before the shift. |
| Value *X; |
| const APInt *C; |
| if (match(I->getOperand(0), m_OneUse(m_LShr(m_Value(X), m_APInt(C))))) { |
| // The shift amount must be valid (not poison) in the narrow type, and |
| // it must not be greater than the high bits demanded of the result. |
| if (C->ult(VTy->getScalarSizeInBits()) && |
| C->ule(DemandedMask.countLeadingZeros())) { |
| // trunc (lshr X, C) --> lshr (trunc X), C |
| IRBuilderBase::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(I); |
| Value *Trunc = Builder.CreateTrunc(X, VTy); |
| return Builder.CreateLShr(Trunc, C->getZExtValue()); |
| } |
| } |
| } |
| [[fallthrough]]; |
| case Instruction::ZExt: { |
| unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); |
| |
| APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); |
| KnownBits InputKnown(SrcBitWidth); |
| if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) |
| return I; |
| assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); |
| Known = InputKnown.zextOrTrunc(BitWidth); |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| break; |
| } |
| case Instruction::BitCast: |
| if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) |
| return nullptr; // vector->int or fp->int? |
| |
| if (auto *DstVTy = dyn_cast<VectorType>(VTy)) { |
| if (auto *SrcVTy = dyn_cast<VectorType>(I->getOperand(0)->getType())) { |
| if (isa<ScalableVectorType>(DstVTy) || |
| isa<ScalableVectorType>(SrcVTy) || |
| cast<FixedVectorType>(DstVTy)->getNumElements() != |
| cast<FixedVectorType>(SrcVTy)->getNumElements()) |
| // Don't touch a bitcast between vectors of different element counts. |
| return nullptr; |
| } else |
| // Don't touch a scalar-to-vector bitcast. |
| return nullptr; |
| } else if (I->getOperand(0)->getType()->isVectorTy()) |
| // Don't touch a vector-to-scalar bitcast. |
| return nullptr; |
| |
| if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) |
| return I; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| break; |
| case Instruction::SExt: { |
| // Compute the bits in the result that are not present in the input. |
| unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); |
| |
| APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); |
| |
| // If any of the sign extended bits are demanded, we know that the sign |
| // bit is demanded. |
| if (DemandedMask.getActiveBits() > SrcBitWidth) |
| InputDemandedBits.setBit(SrcBitWidth-1); |
| |
| KnownBits InputKnown(SrcBitWidth); |
| if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) |
| return I; |
| |
| // If the input sign bit is known zero, or if the NewBits are not demanded |
| // convert this into a zero extension. |
| if (InputKnown.isNonNegative() || |
| DemandedMask.getActiveBits() <= SrcBitWidth) { |
| // Convert to ZExt cast. |
| CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); |
| return InsertNewInstWith(NewCast, *I); |
| } |
| |
| // If the sign bit of the input is known set or clear, then we know the |
| // top bits of the result. |
| Known = InputKnown.sext(BitWidth); |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| break; |
| } |
| case Instruction::Add: { |
| if ((DemandedMask & 1) == 0) { |
| // If we do not need the low bit, try to convert bool math to logic: |
| // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN |
| Value *X, *Y; |
| if (match(I, m_c_Add(m_OneUse(m_ZExt(m_Value(X))), |
| m_OneUse(m_SExt(m_Value(Y))))) && |
| X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { |
| // Truth table for inputs and output signbits: |
| // X:0 | X:1 |
| // ---------- |
| // Y:0 | 0 | 0 | |
| // Y:1 | -1 | 0 | |
| // ---------- |
| IRBuilderBase::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(I); |
| Value *AndNot = Builder.CreateAnd(Builder.CreateNot(X), Y); |
| return Builder.CreateSExt(AndNot, VTy); |
| } |
| |
| // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN |
| // TODO: Relax the one-use checks because we are removing an instruction? |
| if (match(I, m_Add(m_OneUse(m_SExt(m_Value(X))), |
| m_OneUse(m_SExt(m_Value(Y))))) && |
| X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType()) { |
| // Truth table for inputs and output signbits: |
| // X:0 | X:1 |
| // ----------- |
| // Y:0 | -1 | -1 | |
| // Y:1 | -1 | 0 | |
| // ----------- |
| IRBuilderBase::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(I); |
| Value *Or = Builder.CreateOr(X, Y); |
| return Builder.CreateSExt(Or, VTy); |
| } |
| } |
| |
| // Right fill the mask of bits for the operands to demand the most |
| // significant bit and all those below it. |
| unsigned NLZ = DemandedMask.countLeadingZeros(); |
| APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); |
| if (ShrinkDemandedConstant(I, 1, DemandedFromOps) || |
| SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) |
| return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); |
| |
| // If low order bits are not demanded and known to be zero in one operand, |
| // then we don't need to demand them from the other operand, since they |
| // can't cause overflow into any bits that are demanded in the result. |
| unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countTrailingOnes(); |
| APInt DemandedFromLHS = DemandedFromOps; |
| DemandedFromLHS.clearLowBits(NTZ); |
| if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) || |
| SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1)) |
| return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); |
| |
| // If we are known to be adding zeros to every bit below |
| // the highest demanded bit, we just return the other side. |
| if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) |
| return I->getOperand(0); |
| if (DemandedFromOps.isSubsetOf(LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| // Otherwise just compute the known bits of the result. |
| bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); |
| Known = KnownBits::computeForAddSub(true, NSW, LHSKnown, RHSKnown); |
| break; |
| } |
| case Instruction::Sub: { |
| // Right fill the mask of bits for the operands to demand the most |
| // significant bit and all those below it. |
| unsigned NLZ = DemandedMask.countLeadingZeros(); |
| APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); |
| if (ShrinkDemandedConstant(I, 1, DemandedFromOps) || |
| SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) |
| return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); |
| |
| // If low order bits are not demanded and are known to be zero in RHS, |
| // then we don't need to demand them from LHS, since they can't cause a |
| // borrow from any bits that are demanded in the result. |
| unsigned NTZ = (~DemandedMask & RHSKnown.Zero).countTrailingOnes(); |
| APInt DemandedFromLHS = DemandedFromOps; |
| DemandedFromLHS.clearLowBits(NTZ); |
| if (ShrinkDemandedConstant(I, 0, DemandedFromLHS) || |
| SimplifyDemandedBits(I, 0, DemandedFromLHS, LHSKnown, Depth + 1)) |
| return disableWrapFlagsBasedOnUnusedHighBits(I, NLZ); |
| |
| // If we are known to be subtracting zeros from every bit below |
| // the highest demanded bit, we just return the other side. |
| if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) |
| return I->getOperand(0); |
| // We can't do this with the LHS for subtraction, unless we are only |
| // demanding the LSB. |
| if (DemandedFromOps.isOne() && DemandedFromOps.isSubsetOf(LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| // Otherwise just compute the known bits of the result. |
| bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); |
| Known = KnownBits::computeForAddSub(false, NSW, LHSKnown, RHSKnown); |
| break; |
| } |
| case Instruction::Mul: { |
| APInt DemandedFromOps; |
| if (simplifyOperandsBasedOnUnusedHighBits(DemandedFromOps)) |
| return I; |
| |
| if (DemandedMask.isPowerOf2()) { |
| // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. |
| // If we demand exactly one bit N and we have "X * (C' << N)" where C' is |
| // odd (has LSB set), then the left-shifted low bit of X is the answer. |
| unsigned CTZ = DemandedMask.countTrailingZeros(); |
| const APInt *C; |
| if (match(I->getOperand(1), m_APInt(C)) && |
| C->countTrailingZeros() == CTZ) { |
| Constant *ShiftC = ConstantInt::get(VTy, CTZ); |
| Instruction *Shl = BinaryOperator::CreateShl(I->getOperand(0), ShiftC); |
| return InsertNewInstWith(Shl, *I); |
| } |
| } |
| // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: |
| // X * X is odd iff X is odd. |
| // 'Quadratic Reciprocity': X * X -> 0 for bit[1] |
| if (I->getOperand(0) == I->getOperand(1) && DemandedMask.ult(4)) { |
| Constant *One = ConstantInt::get(VTy, 1); |
| Instruction *And1 = BinaryOperator::CreateAnd(I->getOperand(0), One); |
| return InsertNewInstWith(And1, *I); |
| } |
| |
| computeKnownBits(I, Known, Depth, CxtI); |
| break; |
| } |
| case Instruction::Shl: { |
| const APInt *SA; |
| if (match(I->getOperand(1), m_APInt(SA))) { |
| const APInt *ShrAmt; |
| if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) |
| if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) |
| if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, |
| DemandedMask, Known)) |
| return R; |
| |
| // TODO: If we only want bits that already match the signbit then we don't |
| // need to shift. |
| |
| // If we can pre-shift a right-shifted constant to the left without |
| // losing any high bits amd we don't demand the low bits, then eliminate |
| // the left-shift: |
| // (C >> X) << LeftShiftAmtC --> (C << RightShiftAmtC) >> X |
| uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); |
| Value *X; |
| Constant *C; |
| if (DemandedMask.countTrailingZeros() >= ShiftAmt && |
| match(I->getOperand(0), m_LShr(m_ImmConstant(C), m_Value(X)))) { |
| Constant *LeftShiftAmtC = ConstantInt::get(VTy, ShiftAmt); |
| Constant *NewC = ConstantExpr::getShl(C, LeftShiftAmtC); |
| if (ConstantExpr::getLShr(NewC, LeftShiftAmtC) == C) { |
| Instruction *Lshr = BinaryOperator::CreateLShr(NewC, X); |
| return InsertNewInstWith(Lshr, *I); |
| } |
| } |
| |
| APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); |
| |
| // If the shift is NUW/NSW, then it does demand the high bits. |
| ShlOperator *IOp = cast<ShlOperator>(I); |
| if (IOp->hasNoSignedWrap()) |
| DemandedMaskIn.setHighBits(ShiftAmt+1); |
| else if (IOp->hasNoUnsignedWrap()) |
| DemandedMaskIn.setHighBits(ShiftAmt); |
| |
| if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) |
| return I; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| |
| bool SignBitZero = Known.Zero.isSignBitSet(); |
| bool SignBitOne = Known.One.isSignBitSet(); |
| Known.Zero <<= ShiftAmt; |
| Known.One <<= ShiftAmt; |
| // low bits known zero. |
| if (ShiftAmt) |
| Known.Zero.setLowBits(ShiftAmt); |
| |
| // If this shift has "nsw" keyword, then the result is either a poison |
| // value or has the same sign bit as the first operand. |
| if (IOp->hasNoSignedWrap()) { |
| if (SignBitZero) |
| Known.Zero.setSignBit(); |
| else if (SignBitOne) |
| Known.One.setSignBit(); |
| if (Known.hasConflict()) |
| return UndefValue::get(VTy); |
| } |
| } else { |
| // This is a variable shift, so we can't shift the demand mask by a known |
| // amount. But if we are not demanding high bits, then we are not |
| // demanding those bits from the pre-shifted operand either. |
| if (unsigned CTLZ = DemandedMask.countLeadingZeros()) { |
| APInt DemandedFromOp(APInt::getLowBitsSet(BitWidth, BitWidth - CTLZ)); |
| if (SimplifyDemandedBits(I, 0, DemandedFromOp, Known, Depth + 1)) { |
| // We can't guarantee that nsw/nuw hold after simplifying the operand. |
| I->dropPoisonGeneratingFlags(); |
| return I; |
| } |
| } |
| computeKnownBits(I, Known, Depth, CxtI); |
| } |
| break; |
| } |
| case Instruction::LShr: { |
| const APInt *SA; |
| if (match(I->getOperand(1), m_APInt(SA))) { |
| uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); |
| |
| // If we are just demanding the shifted sign bit and below, then this can |
| // be treated as an ASHR in disguise. |
| if (DemandedMask.countLeadingZeros() >= ShiftAmt) { |
| // If we only want bits that already match the signbit then we don't |
| // need to shift. |
| unsigned NumHiDemandedBits = |
| BitWidth - DemandedMask.countTrailingZeros(); |
| unsigned SignBits = |
| ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); |
| if (SignBits >= NumHiDemandedBits) |
| return I->getOperand(0); |
| |
| // If we can pre-shift a left-shifted constant to the right without |
| // losing any low bits (we already know we don't demand the high bits), |
| // then eliminate the right-shift: |
| // (C << X) >> RightShiftAmtC --> (C >> RightShiftAmtC) << X |
| Value *X; |
| Constant *C; |
| if (match(I->getOperand(0), m_Shl(m_ImmConstant(C), m_Value(X)))) { |
| Constant *RightShiftAmtC = ConstantInt::get(VTy, ShiftAmt); |
| Constant *NewC = ConstantExpr::getLShr(C, RightShiftAmtC); |
| if (ConstantExpr::getShl(NewC, RightShiftAmtC) == C) { |
| Instruction *Shl = BinaryOperator::CreateShl(NewC, X); |
| return InsertNewInstWith(Shl, *I); |
| } |
| } |
| } |
| |
| // Unsigned shift right. |
| APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); |
| |
| // If the shift is exact, then it does demand the low bits (and knows that |
| // they are zero). |
| if (cast<LShrOperator>(I)->isExact()) |
| DemandedMaskIn.setLowBits(ShiftAmt); |
| |
| if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) |
| return I; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| Known.Zero.lshrInPlace(ShiftAmt); |
| Known.One.lshrInPlace(ShiftAmt); |
| if (ShiftAmt) |
| Known.Zero.setHighBits(ShiftAmt); // high bits known zero. |
| } else { |
| computeKnownBits(I, Known, Depth, CxtI); |
| } |
| break; |
| } |
| case Instruction::AShr: { |
| unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); |
| |
| // If we only want bits that already match the signbit then we don't need |
| // to shift. |
| unsigned NumHiDemandedBits = BitWidth - DemandedMask.countTrailingZeros(); |
| if (SignBits >= NumHiDemandedBits) |
| return I->getOperand(0); |
| |
| // If this is an arithmetic shift right and only the low-bit is set, we can |
| // always convert this into a logical shr, even if the shift amount is |
| // variable. The low bit of the shift cannot be an input sign bit unless |
| // the shift amount is >= the size of the datatype, which is undefined. |
| if (DemandedMask.isOne()) { |
| // Perform the logical shift right. |
| Instruction *NewVal = BinaryOperator::CreateLShr( |
| I->getOperand(0), I->getOperand(1), I->getName()); |
| return InsertNewInstWith(NewVal, *I); |
| } |
| |
| const APInt *SA; |
| if (match(I->getOperand(1), m_APInt(SA))) { |
| uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); |
| |
| // Signed shift right. |
| APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); |
| // If any of the high bits are demanded, we should set the sign bit as |
| // demanded. |
| if (DemandedMask.countLeadingZeros() <= ShiftAmt) |
| DemandedMaskIn.setSignBit(); |
| |
| // If the shift is exact, then it does demand the low bits (and knows that |
| // they are zero). |
| if (cast<AShrOperator>(I)->isExact()) |
| DemandedMaskIn.setLowBits(ShiftAmt); |
| |
| if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) |
| return I; |
| |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| // Compute the new bits that are at the top now plus sign bits. |
| APInt HighBits(APInt::getHighBitsSet( |
| BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); |
| Known.Zero.lshrInPlace(ShiftAmt); |
| Known.One.lshrInPlace(ShiftAmt); |
| |
| // If the input sign bit is known to be zero, or if none of the top bits |
| // are demanded, turn this into an unsigned shift right. |
| assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); |
| if (Known.Zero[BitWidth-ShiftAmt-1] || |
| !DemandedMask.intersects(HighBits)) { |
| BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), |
| I->getOperand(1)); |
| LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); |
| return InsertNewInstWith(LShr, *I); |
| } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. |
| Known.One |= HighBits; |
| } |
| } else { |
| computeKnownBits(I, Known, Depth, CxtI); |
| } |
| break; |
| } |
| case Instruction::UDiv: { |
| // UDiv doesn't demand low bits that are zero in the divisor. |
| const APInt *SA; |
| if (match(I->getOperand(1), m_APInt(SA))) { |
| // TODO: Take the demanded mask of the result into account. |
| unsigned RHSTrailingZeros = SA->countTrailingZeros(); |
| APInt DemandedMaskIn = |
| APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); |
| if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) { |
| // We can't guarantee that "exact" is still true after changing the |
| // the dividend. |
| I->dropPoisonGeneratingFlags(); |
| return I; |
| } |
| |
| // Increase high zero bits from the input. |
| Known.Zero.setHighBits(std::min( |
| BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); |
| } else { |
| computeKnownBits(I, Known, Depth, CxtI); |
| } |
| break; |
| } |
| case Instruction::SRem: { |
| const APInt *Rem; |
| if (match(I->getOperand(1), m_APInt(Rem))) { |
| // X % -1 demands all the bits because we don't want to introduce |
| // INT_MIN % -1 (== undef) by accident. |
| if (Rem->isAllOnes()) |
| break; |
| APInt RA = Rem->abs(); |
| if (RA.isPowerOf2()) { |
| if (DemandedMask.ult(RA)) // srem won't affect demanded bits |
| return I->getOperand(0); |
| |
| APInt LowBits = RA - 1; |
| APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); |
| if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) |
| return I; |
| |
| // The low bits of LHS are unchanged by the srem. |
| Known.Zero = LHSKnown.Zero & LowBits; |
| Known.One = LHSKnown.One & LowBits; |
| |
| // If LHS is non-negative or has all low bits zero, then the upper bits |
| // are all zero. |
| if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) |
| Known.Zero |= ~LowBits; |
| |
| // If LHS is negative and not all low bits are zero, then the upper bits |
| // are all one. |
| if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) |
| Known.One |= ~LowBits; |
| |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| break; |
| } |
| } |
| |
| // The sign bit is the LHS's sign bit, except when the result of the |
| // remainder is zero. |
| if (DemandedMask.isSignBitSet()) { |
| computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); |
| // If it's known zero, our sign bit is also zero. |
| if (LHSKnown.isNonNegative()) |
| Known.makeNonNegative(); |
| } |
| break; |
| } |
| case Instruction::URem: { |
| KnownBits Known2(BitWidth); |
| APInt AllOnes = APInt::getAllOnes(BitWidth); |
| if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || |
| SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) |
| return I; |
| |
| unsigned Leaders = Known2.countMinLeadingZeros(); |
| Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; |
| break; |
| } |
| case Instruction::Call: { |
| bool KnownBitsComputed = false; |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::abs: { |
| if (DemandedMask == 1) |
| return II->getArgOperand(0); |
| break; |
| } |
| case Intrinsic::ctpop: { |
| // Checking if the number of clear bits is odd (parity)? If the type has |
| // an even number of bits, that's the same as checking if the number of |
| // set bits is odd, so we can eliminate the 'not' op. |
| Value *X; |
| if (DemandedMask == 1 && VTy->getScalarSizeInBits() % 2 == 0 && |
| match(II->getArgOperand(0), m_Not(m_Value(X)))) { |
| Function *Ctpop = Intrinsic::getDeclaration( |
| II->getModule(), Intrinsic::ctpop, VTy); |
| return InsertNewInstWith(CallInst::Create(Ctpop, {X}), *I); |
| } |
| break; |
| } |
| case Intrinsic::bswap: { |
| // If the only bits demanded come from one byte of the bswap result, |
| // just shift the input byte into position to eliminate the bswap. |
| unsigned NLZ = DemandedMask.countLeadingZeros(); |
| unsigned NTZ = DemandedMask.countTrailingZeros(); |
| |
| // Round NTZ down to the next byte. If we have 11 trailing zeros, then |
| // we need all the bits down to bit 8. Likewise, round NLZ. If we |
| // have 14 leading zeros, round to 8. |
| NLZ = alignDown(NLZ, 8); |
| NTZ = alignDown(NTZ, 8); |
| // If we need exactly one byte, we can do this transformation. |
| if (BitWidth - NLZ - NTZ == 8) { |
| // Replace this with either a left or right shift to get the byte into |
| // the right place. |
| Instruction *NewVal; |
| if (NLZ > NTZ) |
| NewVal = BinaryOperator::CreateLShr( |
| II->getArgOperand(0), ConstantInt::get(VTy, NLZ - NTZ)); |
| else |
| NewVal = BinaryOperator::CreateShl( |
| II->getArgOperand(0), ConstantInt::get(VTy, NTZ - NLZ)); |
| NewVal->takeName(I); |
| return InsertNewInstWith(NewVal, *I); |
| } |
| break; |
| } |
| case Intrinsic::fshr: |
| case Intrinsic::fshl: { |
| const APInt *SA; |
| if (!match(I->getOperand(2), m_APInt(SA))) |
| break; |
| |
| // Normalize to funnel shift left. APInt shifts of BitWidth are well- |
| // defined, so no need to special-case zero shifts here. |
| uint64_t ShiftAmt = SA->urem(BitWidth); |
| if (II->getIntrinsicID() == Intrinsic::fshr) |
| ShiftAmt = BitWidth - ShiftAmt; |
| |
| APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); |
| APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); |
| if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || |
| SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) |
| return I; |
| |
| Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | |
| RHSKnown.Zero.lshr(BitWidth - ShiftAmt); |
| Known.One = LHSKnown.One.shl(ShiftAmt) | |
| RHSKnown.One.lshr(BitWidth - ShiftAmt); |
| KnownBitsComputed = true; |
| break; |
| } |
| case Intrinsic::umax: { |
| // UMax(A, C) == A if ... |
| // The lowest non-zero bit of DemandMask is higher than the highest |
| // non-zero bit of C. |
| const APInt *C; |
| unsigned CTZ = DemandedMask.countTrailingZeros(); |
| if (match(II->getArgOperand(1), m_APInt(C)) && |
| CTZ >= C->getActiveBits()) |
| return II->getArgOperand(0); |
| break; |
| } |
| case Intrinsic::umin: { |
| // UMin(A, C) == A if ... |
| // The lowest non-zero bit of DemandMask is higher than the highest |
| // non-one bit of C. |
| // This comes from using DeMorgans on the above umax example. |
| const APInt *C; |
| unsigned CTZ = DemandedMask.countTrailingZeros(); |
| if (match(II->getArgOperand(1), m_APInt(C)) && |
| CTZ >= C->getBitWidth() - C->countLeadingOnes()) |
| return II->getArgOperand(0); |
| break; |
| } |
| default: { |
| // Handle target specific intrinsics |
| std::optional<Value *> V = targetSimplifyDemandedUseBitsIntrinsic( |
| *II, DemandedMask, Known, KnownBitsComputed); |
| if (V) |
| return *V; |
| break; |
| } |
| } |
| } |
| |
| if (!KnownBitsComputed) |
| computeKnownBits(V, Known, Depth, CxtI); |
| break; |
| } |
| } |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) |
| return Constant::getIntegerValue(VTy, Known.One); |
| return nullptr; |
| } |
| |
| /// Helper routine of SimplifyDemandedUseBits. It computes Known |
| /// bits. It also tries to handle simplifications that can be done based on |
| /// DemandedMask, but without modifying the Instruction. |
| Value *InstCombinerImpl::SimplifyMultipleUseDemandedBits( |
| Instruction *I, const APInt &DemandedMask, KnownBits &Known, unsigned Depth, |
| Instruction *CxtI) { |
| unsigned BitWidth = DemandedMask.getBitWidth(); |
| Type *ITy = I->getType(); |
| |
| KnownBits LHSKnown(BitWidth); |
| KnownBits RHSKnown(BitWidth); |
| |
| // Despite the fact that we can't simplify this instruction in all User's |
| // context, we can at least compute the known bits, and we can |
| // do simplifications that apply to *just* the one user if we know that |
| // this instruction has a simpler value in that context. |
| switch (I->getOpcode()) { |
| case Instruction::And: { |
| computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); |
| computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); |
| Known = LHSKnown & RHSKnown; |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) |
| return Constant::getIntegerValue(ITy, Known.One); |
| |
| // If all of the demanded bits are known 1 on one side, return the other. |
| // These bits cannot contribute to the result of the 'and' in this context. |
| if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) |
| return I->getOperand(1); |
| |
| break; |
| } |
| case Instruction::Or: { |
| computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); |
| computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); |
| Known = LHSKnown | RHSKnown; |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) |
| return Constant::getIntegerValue(ITy, Known.One); |
| |
| // We can simplify (X|Y) -> X or Y in the user's context if we know that |
| // only bits from X or Y are demanded. |
| // If all of the demanded bits are known zero on one side, return the other. |
| // These bits cannot contribute to the result of the 'or' in this context. |
| if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| break; |
| } |
| case Instruction::Xor: { |
| computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); |
| computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); |
| Known = LHSKnown ^ RHSKnown; |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) |
| return Constant::getIntegerValue(ITy, Known.One); |
| |
| // We can simplify (X^Y) -> X or Y in the user's context if we know that |
| // only bits from X or Y are demanded. |
| // If all of the demanded bits are known zero on one side, return the other. |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| break; |
| } |
| case Instruction::Add: { |
| unsigned NLZ = DemandedMask.countLeadingZeros(); |
| APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); |
| |
| // If an operand adds zeros to every bit below the highest demanded bit, |
| // that operand doesn't change the result. Return the other side. |
| computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); |
| if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) |
| return I->getOperand(0); |
| |
| computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); |
| if (DemandedFromOps.isSubsetOf(LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| break; |
| } |
| case Instruction::Sub: { |
| unsigned NLZ = DemandedMask.countLeadingZeros(); |
| APInt DemandedFromOps = APInt::getLowBitsSet(BitWidth, BitWidth - NLZ); |
| |
| // If an operand subtracts zeros from every bit below the highest demanded |
| // bit, that operand doesn't change the result. Return the other side. |
| computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); |
| if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) |
| return I->getOperand(0); |
| |
| break; |
| } |
| case Instruction::AShr: { |
| // Compute the Known bits to simplify things downstream. |
| computeKnownBits(I, Known, Depth, CxtI); |
| |
| // If this user is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(Known.Zero | Known.One)) |
| return Constant::getIntegerValue(ITy, Known.One); |
| |
| // If the right shift operand 0 is a result of a left shift by the same |
| // amount, this is probably a zero/sign extension, which may be unnecessary, |
| // if we do not demand any of the new sign bits. So, return the original |
| // operand instead. |
| const APInt *ShiftRC; |
| const APInt *ShiftLC; |
| Value *X; |
| unsigned BitWidth = DemandedMask.getBitWidth(); |
| if (match(I, |
| m_AShr(m_Shl(m_Value(X), m_APInt(ShiftLC)), m_APInt(ShiftRC))) && |
| ShiftLC == ShiftRC && ShiftLC->ult(BitWidth) && |
| DemandedMask.isSubsetOf(APInt::getLowBitsSet( |
| BitWidth, BitWidth - ShiftRC->getZExtValue()))) { |
| return X; |
| } |
| |
| break; |
| } |
| default: |
| // Compute the Known bits to simplify things downstream. |
| computeKnownBits(I, Known, Depth, CxtI); |
| |
| // If this user is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) |
| return Constant::getIntegerValue(ITy, Known.One); |
| |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Helper routine of SimplifyDemandedUseBits. It tries to simplify |
| /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into |
| /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign |
| /// of "C2-C1". |
| /// |
| /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, |
| /// ..., bn}, without considering the specific value X is holding. |
| /// This transformation is legal iff one of following conditions is hold: |
| /// 1) All the bit in S are 0, in this case E1 == E2. |
| /// 2) We don't care those bits in S, per the input DemandedMask. |
| /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the |
| /// rest bits. |
| /// |
| /// Currently we only test condition 2). |
| /// |
| /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was |
| /// not successful. |
| Value *InstCombinerImpl::simplifyShrShlDemandedBits( |
| Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, |
| const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known) { |
| if (!ShlOp1 || !ShrOp1) |
| return nullptr; // No-op. |
| |
| Value *VarX = Shr->getOperand(0); |
| Type *Ty = VarX->getType(); |
| unsigned BitWidth = Ty->getScalarSizeInBits(); |
| if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) |
| return nullptr; // Undef. |
| |
| unsigned ShlAmt = ShlOp1.getZExtValue(); |
| unsigned ShrAmt = ShrOp1.getZExtValue(); |
| |
| Known.One.clearAllBits(); |
| Known.Zero.setLowBits(ShlAmt - 1); |
| Known.Zero &= DemandedMask; |
| |
| APInt BitMask1(APInt::getAllOnes(BitWidth)); |
| APInt BitMask2(APInt::getAllOnes(BitWidth)); |
| |
| bool isLshr = (Shr->getOpcode() == Instruction::LShr); |
| BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : |
| (BitMask1.ashr(ShrAmt) << ShlAmt); |
| |
| if (ShrAmt <= ShlAmt) { |
| BitMask2 <<= (ShlAmt - ShrAmt); |
| } else { |
| BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): |
| BitMask2.ashr(ShrAmt - ShlAmt); |
| } |
| |
| // Check if condition-2 (see the comment to this function) is satified. |
| if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { |
| if (ShrAmt == ShlAmt) |
| return VarX; |
| |
| if (!Shr->hasOneUse()) |
| return nullptr; |
| |
| BinaryOperator *New; |
| if (ShrAmt < ShlAmt) { |
| Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); |
| New = BinaryOperator::CreateShl(VarX, Amt); |
| BinaryOperator *Orig = cast<BinaryOperator>(Shl); |
| New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); |
| New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); |
| } else { |
| Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); |
| New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : |
| BinaryOperator::CreateAShr(VarX, Amt); |
| if (cast<BinaryOperator>(Shr)->isExact()) |
| New->setIsExact(true); |
| } |
| |
| return InsertNewInstWith(New, *Shl); |
| } |
| |
| return nullptr; |
| } |
| |
| /// The specified value produces a vector with any number of elements. |
| /// This method analyzes which elements of the operand are undef or poison and |
| /// returns that information in UndefElts. |
| /// |
| /// DemandedElts contains the set of elements that are actually used by the |
| /// caller, and by default (AllowMultipleUsers equals false) the value is |
| /// simplified only if it has a single caller. If AllowMultipleUsers is set |
| /// to true, DemandedElts refers to the union of sets of elements that are |
| /// used by all callers. |
| /// |
| /// If the information about demanded elements can be used to simplify the |
| /// operation, the operation is simplified, then the resultant value is |
| /// returned. This returns null if no change was made. |
| Value *InstCombinerImpl::SimplifyDemandedVectorElts(Value *V, |
| APInt DemandedElts, |
| APInt &UndefElts, |
| unsigned Depth, |
| bool AllowMultipleUsers) { |
| // Cannot analyze scalable type. The number of vector elements is not a |
| // compile-time constant. |
| if (isa<ScalableVectorType>(V->getType())) |
| return nullptr; |
| |
| unsigned VWidth = cast<FixedVectorType>(V->getType())->getNumElements(); |
| APInt EltMask(APInt::getAllOnes(VWidth)); |
| assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); |
| |
| if (match(V, m_Undef())) { |
| // If the entire vector is undef or poison, just return this info. |
| UndefElts = EltMask; |
| return nullptr; |
| } |
| |
| if (DemandedElts.isZero()) { // If nothing is demanded, provide poison. |
| UndefElts = EltMask; |
| return PoisonValue::get(V->getType()); |
| } |
| |
| UndefElts = 0; |
| |
| if (auto *C = dyn_cast<Constant>(V)) { |
| // Check if this is identity. If so, return 0 since we are not simplifying |
| // anything. |
| if (DemandedElts.isAllOnes()) |
| return nullptr; |
| |
| Type *EltTy = cast<VectorType>(V->getType())->getElementType(); |
| Constant *Poison = PoisonValue::get(EltTy); |
| SmallVector<Constant*, 16> Elts; |
| for (unsigned i = 0; i != VWidth; ++i) { |
| if (!DemandedElts[i]) { // If not demanded, set to poison. |
| Elts.push_back(Poison); |
| UndefElts.setBit(i); |
| continue; |
| } |
| |
| Constant *Elt = C->getAggregateElement(i); |
| if (!Elt) return nullptr; |
| |
| Elts.push_back(Elt); |
| if (isa<UndefValue>(Elt)) // Already undef or poison. |
| UndefElts.setBit(i); |
| } |
| |
| // If we changed the constant, return it. |
| Constant *NewCV = ConstantVector::get(Elts); |
| return NewCV != C ? NewCV : nullptr; |
| } |
| |
| // Limit search depth. |
| if (Depth == 10) |
| return nullptr; |
| |
| if (!AllowMultipleUsers) { |
| // If multiple users are using the root value, proceed with |
| // simplification conservatively assuming that all elements |
| // are needed. |
| if (!V->hasOneUse()) { |
| // Quit if we find multiple users of a non-root value though. |
| // They'll be handled when it's their turn to be visited by |
| // the main instcombine process. |
| if (Depth != 0) |
| // TODO: Just compute the UndefElts information recursively. |
| return nullptr; |
| |
| // Conservatively assume that all elements are needed. |
| DemandedElts = EltMask; |
| } |
| } |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) return nullptr; // Only analyze instructions. |
| |
| bool MadeChange = false; |
| auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, |
| APInt Demanded, APInt &Undef) { |
| auto *II = dyn_cast<IntrinsicInst>(Inst); |
| Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); |
| if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { |
| replaceOperand(*Inst, OpNum, V); |
| MadeChange = true; |
| } |
| }; |
| |
| APInt UndefElts2(VWidth, 0); |
| APInt UndefElts3(VWidth, 0); |
| switch (I->getOpcode()) { |
| default: break; |
| |
| case Instruction::GetElementPtr: { |
| // The LangRef requires that struct geps have all constant indices. As |
| // such, we can't convert any operand to partial undef. |
| auto mayIndexStructType = [](GetElementPtrInst &GEP) { |
| for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); |
| I != E; I++) |
| if (I.isStruct()) |
| return true; |
| return false; |
| }; |
| if (mayIndexStructType(cast<GetElementPtrInst>(*I))) |
| break; |
| |
| // Conservatively track the demanded elements back through any vector |
| // operands we may have. We know there must be at least one, or we |
| // wouldn't have a vector result to get here. Note that we intentionally |
| // merge the undef bits here since gepping with either an poison base or |
| // index results in poison. |
| for (unsigned i = 0; i < I->getNumOperands(); i++) { |
| if (i == 0 ? match(I->getOperand(i), m_Undef()) |
| : match(I->getOperand(i), m_Poison())) { |
| // If the entire vector is undefined, just return this info. |
| UndefElts = EltMask; |
| return nullptr; |
| } |
| if (I->getOperand(i)->getType()->isVectorTy()) { |
| APInt UndefEltsOp(VWidth, 0); |
| simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); |
| // gep(x, undef) is not undef, so skip considering idx ops here |
| // Note that we could propagate poison, but we can't distinguish between |
| // undef & poison bits ATM |
| if (i == 0) |
| UndefElts |= UndefEltsOp; |
| } |
| } |
| |
| break; |
| } |
| case Instruction::InsertElement: { |
| // If this is a variable index, we don't know which element it overwrites. |
| // demand exactly the same input as we produce. |
| ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); |
| if (!Idx) { |
| // Note that we can't propagate undef elt info, because we don't know |
| // which elt is getting updated. |
| simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); |
| break; |
| } |
| |
| // The element inserted overwrites whatever was there, so the input demanded |
| // set is simpler than the output set. |
| unsigned IdxNo = Idx->getZExtValue(); |
| APInt PreInsertDemandedElts = DemandedElts; |
| if (IdxNo < VWidth) |
| PreInsertDemandedElts.clearBit(IdxNo); |
| |
| // If we only demand the element that is being inserted and that element |
| // was extracted from the same index in another vector with the same type, |
| // replace this insert with that other vector. |
| // Note: This is attempted before the call to simplifyAndSetOp because that |
| // may change UndefElts to a value that does not match with Vec. |
| Value *Vec; |
| if (PreInsertDemandedElts == 0 && |
| match(I->getOperand(1), |
| m_ExtractElt(m_Value(Vec), m_SpecificInt(IdxNo))) && |
| Vec->getType() == I->getType()) { |
| return Vec; |
| } |
| |
| simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); |
| |
| // If this is inserting an element that isn't demanded, remove this |
| // insertelement. |
| if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { |
| Worklist.push(I); |
| return I->getOperand(0); |
| } |
| |
| // The inserted element is defined. |
| UndefElts.clearBit(IdxNo); |
| break; |
| } |
| case Instruction::ShuffleVector: { |
| auto *Shuffle = cast<ShuffleVectorInst>(I); |
| assert(Shuffle->getOperand(0)->getType() == |
| Shuffle->getOperand(1)->getType() && |
| "Expected shuffle operands to have same type"); |
| unsigned OpWidth = cast<FixedVectorType>(Shuffle->getOperand(0)->getType()) |
| ->getNumElements(); |
| // Handle trivial case of a splat. Only check the first element of LHS |
| // operand. |
| if (all_of(Shuffle->getShuffleMask(), [](int Elt) { return Elt == 0; }) && |
| DemandedElts.isAllOnes()) { |
| if (!match(I->getOperand(1), m_Undef())) { |
| I->setOperand(1, PoisonValue::get(I->getOperand(1)->getType())); |
| MadeChange = true; |
| } |
| APInt LeftDemanded(OpWidth, 1); |
| APInt LHSUndefElts(OpWidth, 0); |
| simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); |
| if (LHSUndefElts[0]) |
| UndefElts = EltMask; |
| else |
| UndefElts.clearAllBits(); |
| break; |
| } |
| |
| APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); |
| for (unsigned i = 0; i < VWidth; i++) { |
| if (DemandedElts[i]) { |
| unsigned MaskVal = Shuffle->getMaskValue(i); |
| if (MaskVal != -1u) { |
| assert(MaskVal < OpWidth * 2 && |
| "shufflevector mask index out of range!"); |
| if (MaskVal < OpWidth) |
| LeftDemanded.setBit(MaskVal); |
| else |
| RightDemanded.setBit(MaskVal - OpWidth); |
| } |
| } |
| } |
| |
| APInt LHSUndefElts(OpWidth, 0); |
| simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); |
| |
| APInt RHSUndefElts(OpWidth, 0); |
| simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); |
| |
| // If this shuffle does not change the vector length and the elements |
| // demanded by this shuffle are an identity mask, then this shuffle is |
| // unnecessary. |
| // |
| // We are assuming canonical form for the mask, so the source vector is |
| // operand 0 and operand 1 is not used. |
| // |
| // Note that if an element is demanded and this shuffle mask is undefined |
| // for that element, then the shuffle is not considered an identity |
| // operation. The shuffle prevents poison from the operand vector from |
| // leaking to the result by replacing poison with an undefined value. |
| if (VWidth == OpWidth) { |
| bool IsIdentityShuffle = true; |
| for (unsigned i = 0; i < VWidth; i++) { |
| unsigned MaskVal = Shuffle->getMaskValue(i); |
| if (DemandedElts[i] && i != MaskVal) { |
| IsIdentityShuffle = false; |
| break; |
| } |
| } |
| if (IsIdentityShuffle) |
| return Shuffle->getOperand(0); |
| } |
| |
| bool NewUndefElts = false; |
| unsigned LHSIdx = -1u, LHSValIdx = -1u; |
| unsigned RHSIdx = -1u, RHSValIdx = -1u; |
| bool LHSUniform = true; |
| bool RHSUniform = true; |
| for (unsigned i = 0; i < VWidth; i++) { |
| unsigned MaskVal = Shuffle->getMaskValue(i); |
| if (MaskVal == -1u) { |
| UndefElts.setBit(i); |
| } else if (!DemandedElts[i]) { |
| NewUndefElts = true; |
| UndefElts.setBit(i); |
| } else if (MaskVal < OpWidth) { |
| if (LHSUndefElts[MaskVal]) { |
| NewUndefElts = true; |
| UndefElts.setBit(i); |
| } else { |
| LHSIdx = LHSIdx == -1u ? i : OpWidth; |
| LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; |
| LHSUniform = LHSUniform && (MaskVal == i); |
| } |
| } else { |
| if (RHSUndefElts[MaskVal - OpWidth]) { |
| NewUndefElts = true; |
| UndefElts.setBit(i); |
| } else { |
| RHSIdx = RHSIdx == -1u ? i : OpWidth; |
| RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; |
| RHSUniform = RHSUniform && (MaskVal - OpWidth == i); |
| } |
| } |
| } |
| |
| // Try to transform shuffle with constant vector and single element from |
| // this constant vector to single insertelement instruction. |
| // shufflevector V, C, <v1, v2, .., ci, .., vm> -> |
| // insertelement V, C[ci], ci-n |
| if (OpWidth == |
| cast<FixedVectorType>(Shuffle->getType())->getNumElements()) { |
| Value *Op = nullptr; |
| Constant *Value = nullptr; |
| unsigned Idx = -1u; |
| |
| // Find constant vector with the single element in shuffle (LHS or RHS). |
| if (LHSIdx < OpWidth && RHSUniform) { |
| if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { |
| Op = Shuffle->getOperand(1); |
| Value = CV->getOperand(LHSValIdx); |
| Idx = LHSIdx; |
| } |
| } |
| if (RHSIdx < OpWidth && LHSUniform) { |
| if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { |
| Op = Shuffle->getOperand(0); |
| Value = CV->getOperand(RHSValIdx); |
| Idx = RHSIdx; |
| } |
| } |
| // Found constant vector with single element - convert to insertelement. |
| if (Op && Value) { |
| Instruction *New = InsertElementInst::Create( |
| Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), |
| Shuffle->getName()); |
| InsertNewInstWith(New, *Shuffle); |
| return New; |
| } |
| } |
| if (NewUndefElts) { |
| // Add additional discovered undefs. |
| SmallVector<int, 16> Elts; |
| for (unsigned i = 0; i < VWidth; ++i) { |
| if (UndefElts[i]) |
| Elts.push_back(UndefMaskElem); |
| else |
| Elts.push_back(Shuffle->getMaskValue(i)); |
| } |
| Shuffle->setShuffleMask(Elts); |
| MadeChange = true; |
| } |
| break; |
| } |
| case Instruction::Select: { |
| // If this is a vector select, try to transform the select condition based |
| // on the current demanded elements. |
| SelectInst *Sel = cast<SelectInst>(I); |
| if (Sel->getCondition()->getType()->isVectorTy()) { |
| // TODO: We are not doing anything with UndefElts based on this call. |
| // It is overwritten below based on the other select operands. If an |
| // element of the select condition is known undef, then we are free to |
| // choose the output value from either arm of the select. If we know that |
| // one of those values is undef, then the output can be undef. |
| simplifyAndSetOp(I, 0, DemandedElts, UndefElts); |
| } |
| |
| // Next, see if we can transform the arms of the select. |
| APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); |
| if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { |
| for (unsigned i = 0; i < VWidth; i++) { |
| // isNullValue() always returns false when called on a ConstantExpr. |
| // Skip constant expressions to avoid propagating incorrect information. |
| Constant *CElt = CV->getAggregateElement(i); |
| if (isa<ConstantExpr>(CElt)) |
| continue; |
| // TODO: If a select condition element is undef, we can demand from |
| // either side. If one side is known undef, choosing that side would |
| // propagate undef. |
| if (CElt->isNullValue()) |
| DemandedLHS.clearBit(i); |
| else |
| DemandedRHS.clearBit(i); |
| } |
| } |
| |
| simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); |
| simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); |
| |
| // Output elements are undefined if the element from each arm is undefined. |
| // TODO: This can be improved. See comment in select condition handling. |
| UndefElts = UndefElts2 & UndefElts3; |
| break; |
| } |
| case Instruction::BitCast: { |
| // Vector->vector casts only. |
| VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); |
| if (!VTy) break; |
| unsigned InVWidth = cast<FixedVectorType>(VTy)->getNumElements(); |
| APInt InputDemandedElts(InVWidth, 0); |
| UndefElts2 = APInt(InVWidth, 0); |
| unsigned Ratio; |
| |
| if (VWidth == InVWidth) { |
| // If we are converting from <4 x i32> -> <4 x f32>, we demand the same |
| // elements as are demanded of us. |
| Ratio = 1; |
| InputDemandedElts = DemandedElts; |
| } else if ((VWidth % InVWidth) == 0) { |
| // If the number of elements in the output is a multiple of the number of |
| // elements in the input then an input element is live if any of the |
| // corresponding output elements are live. |
| Ratio = VWidth / InVWidth; |
| for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) |
| if (DemandedElts[OutIdx]) |
| InputDemandedElts.setBit(OutIdx / Ratio); |
| } else if ((InVWidth % VWidth) == 0) { |
| // If the number of elements in the input is a multiple of the number of |
| // elements in the output then an input element is live if the |
| // corresponding output element is live. |
| Ratio = InVWidth / VWidth; |
| for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) |
| if (DemandedElts[InIdx / Ratio]) |
| InputDemandedElts.setBit(InIdx); |
| } else { |
| // Unsupported so far. |
| break; |
| } |
| |
| simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); |
| |
| if (VWidth == InVWidth) { |
| UndefElts = UndefElts2; |
| } else if ((VWidth % InVWidth) == 0) { |
| // If the number of elements in the output is a multiple of the number of |
| // elements in the input then an output element is undef if the |
| // corresponding input element is undef. |
| for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) |
| if (UndefElts2[OutIdx / Ratio]) |
| UndefElts.setBit(OutIdx); |
| } else if ((InVWidth % VWidth) == 0) { |
| // If the number of elements in the input is a multiple of the number of |
| // elements in the output then an output element is undef if all of the |
| // corresponding input elements are undef. |
| for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { |
| APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); |
| if (SubUndef.countPopulation() == Ratio) |
| UndefElts.setBit(OutIdx); |
| } |
| } else { |
| llvm_unreachable("Unimp"); |
| } |
| break; |
| } |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| simplifyAndSetOp(I, 0, DemandedElts, UndefElts); |
| break; |
| |
| case Instruction::Call: { |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); |
| if (!II) break; |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::masked_gather: // fallthrough |
| case Intrinsic::masked_load: { |
| // Subtlety: If we load from a pointer, the pointer must be valid |
| // regardless of whether the element is demanded. Doing otherwise risks |
| // segfaults which didn't exist in the original program. |
| APInt DemandedPtrs(APInt::getAllOnes(VWidth)), |
| DemandedPassThrough(DemandedElts); |
| if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) |
| for (unsigned i = 0; i < VWidth; i++) { |
| Constant *CElt = CV->getAggregateElement(i); |
| if (CElt->isNullValue()) |
| DemandedPtrs.clearBit(i); |
| else if (CElt->isAllOnesValue()) |
| DemandedPassThrough.clearBit(i); |
| } |
| if (II->getIntrinsicID() == Intrinsic::masked_gather) |
| simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); |
| simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); |
| |
| // Output elements are undefined if the element from both sources are. |
| // TODO: can strengthen via mask as well. |
| UndefElts = UndefElts2 & UndefElts3; |
| break; |
| } |
| default: { |
| // Handle target specific intrinsics |
| std::optional<Value *> V = targetSimplifyDemandedVectorEltsIntrinsic( |
| *II, DemandedElts, UndefElts, UndefElts2, UndefElts3, |
| simplifyAndSetOp); |
| if (V) |
| return *V; |
| break; |
| } |
| } // switch on IntrinsicID |
| break; |
| } // case Call |
| } // switch on Opcode |
| |
| // TODO: We bail completely on integer div/rem and shifts because they have |
| // UB/poison potential, but that should be refined. |
| BinaryOperator *BO; |
| if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { |
| simplifyAndSetOp(I, 0, DemandedElts, UndefElts); |
| simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); |
| |
| // Output elements are undefined if both are undefined. Consider things |
| // like undef & 0. The result is known zero, not undef. |
| UndefElts &= UndefElts2; |
| } |
| |
| // If we've proven all of the lanes undef, return an undef value. |
| // TODO: Intersect w/demanded lanes |
| if (UndefElts.isAllOnes()) |
| return UndefValue::get(I->getType());; |
| |
| return MadeChange ? I : nullptr; |
| } |