blob: 97f129e200de729a8f52481aa3f96dc825f858f8 [file] [log] [blame]
//===- InstCombineMulDivRem.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
// srem, urem, frem.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include <cassert>
#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Utils/InstructionWorklist.h"
using namespace llvm;
using namespace PatternMatch;
/// The specific integer value is used in a context where it is known to be
/// non-zero. If this allows us to simplify the computation, do so and return
/// the new operand, otherwise return null.
static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
Instruction &CxtI) {
// If V has multiple uses, then we would have to do more analysis to determine
// if this is safe. For example, the use could be in dynamically unreached
// code.
if (!V->hasOneUse()) return nullptr;
bool MadeChange = false;
// ((1 << A) >>u B) --> (1 << (A-B))
// Because V cannot be zero, we know that B is less than A.
Value *A = nullptr, *B = nullptr, *One = nullptr;
if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
match(One, m_One())) {
A = IC.Builder.CreateSub(A, B);
return IC.Builder.CreateShl(One, A);
}
// (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
// inexact. Similarly for <<.
BinaryOperator *I = dyn_cast<BinaryOperator>(V);
if (I && I->isLogicalShift() &&
IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
// We know that this is an exact/nuw shift and that the input is a
// non-zero context as well.
if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
IC.replaceOperand(*I, 0, V2);
MadeChange = true;
}
if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
I->setIsExact();
MadeChange = true;
}
if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
I->setHasNoUnsignedWrap();
MadeChange = true;
}
}
// TODO: Lots more we could do here:
// If V is a phi node, we can call this on each of its operands.
// "select cond, X, 0" can simplify to "X".
return MadeChange ? V : nullptr;
}
// TODO: This is a specific form of a much more general pattern.
// We could detect a select with any binop identity constant, or we
// could use SimplifyBinOp to see if either arm of the select reduces.
// But that needs to be done carefully and/or while removing potential
// reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
static Value *foldMulSelectToNegate(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Value *Cond, *OtherOp;
// mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
// mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
m_Value(OtherOp)))) {
bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
return Builder.CreateSelect(Cond, OtherOp, Neg);
}
// mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
// mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
m_Value(OtherOp)))) {
bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
return Builder.CreateSelect(Cond, Neg, OtherOp);
}
// fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
// fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
m_SpecificFP(-1.0))),
m_Value(OtherOp)))) {
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
Builder.setFastMathFlags(I.getFastMathFlags());
return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
}
// fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
// fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
m_SpecificFP(1.0))),
m_Value(OtherOp)))) {
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
Builder.setFastMathFlags(I.getFastMathFlags());
return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
}
return nullptr;
}
/// Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
/// Callers are expected to call this twice to handle commuted patterns.
static Value *foldMulShl1(BinaryOperator &Mul, bool CommuteOperands,
InstCombiner::BuilderTy &Builder) {
Value *X = Mul.getOperand(0), *Y = Mul.getOperand(1);
if (CommuteOperands)
std::swap(X, Y);
const bool HasNSW = Mul.hasNoSignedWrap();
const bool HasNUW = Mul.hasNoUnsignedWrap();
// X * (1 << Z) --> X << Z
Value *Z;
if (match(Y, m_Shl(m_One(), m_Value(Z)))) {
bool PropagateNSW = HasNSW && cast<ShlOperator>(Y)->hasNoSignedWrap();
return Builder.CreateShl(X, Z, Mul.getName(), HasNUW, PropagateNSW);
}
// Similar to above, but an increment of the shifted value becomes an add:
// X * ((1 << Z) + 1) --> (X * (1 << Z)) + X --> (X << Z) + X
// This increases uses of X, so it may require a freeze, but that is still
// expected to be an improvement because it removes the multiply.
BinaryOperator *Shift;
if (match(Y, m_OneUse(m_Add(m_BinOp(Shift), m_One()))) &&
match(Shift, m_OneUse(m_Shl(m_One(), m_Value(Z))))) {
bool PropagateNSW = HasNSW && Shift->hasNoSignedWrap();
Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
Value *Shl = Builder.CreateShl(FrX, Z, "mulshl", HasNUW, PropagateNSW);
return Builder.CreateAdd(Shl, FrX, Mul.getName(), HasNUW, PropagateNSW);
}
// Similar to above, but a decrement of the shifted value is disguised as
// 'not' and becomes a sub:
// X * (~(-1 << Z)) --> X * ((1 << Z) - 1) --> (X << Z) - X
// This increases uses of X, so it may require a freeze, but that is still
// expected to be an improvement because it removes the multiply.
if (match(Y, m_OneUse(m_Not(m_OneUse(m_Shl(m_AllOnes(), m_Value(Z))))))) {
Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
Value *Shl = Builder.CreateShl(FrX, Z, "mulshl");
return Builder.CreateSub(Shl, FrX, Mul.getName());
}
return nullptr;
}
Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V =
simplifyMulInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (SimplifyAssociativeOrCommutative(I))
return &I;
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
if (Value *V = foldUsingDistributiveLaws(I))
return replaceInstUsesWith(I, V);
Type *Ty = I.getType();
const unsigned BitWidth = Ty->getScalarSizeInBits();
const bool HasNSW = I.hasNoSignedWrap();
const bool HasNUW = I.hasNoUnsignedWrap();
// X * -1 --> 0 - X
if (match(Op1, m_AllOnes())) {
return HasNSW ? BinaryOperator::CreateNSWNeg(Op0)
: BinaryOperator::CreateNeg(Op0);
}
// Also allow combining multiply instructions on vectors.
{
Value *NewOp;
Constant *C1, *C2;
const APInt *IVal;
if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
m_Constant(C1))) &&
match(C1, m_APInt(IVal))) {
// ((X << C2)*C1) == (X * (C1 << C2))
Constant *Shl = ConstantExpr::getShl(C1, C2);
BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
if (HasNUW && Mul->hasNoUnsignedWrap())
BO->setHasNoUnsignedWrap();
if (HasNSW && Mul->hasNoSignedWrap() && Shl->isNotMinSignedValue())
BO->setHasNoSignedWrap();
return BO;
}
if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
// Replace X*(2^C) with X << C, where C is either a scalar or a vector.
if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
if (HasNUW)
Shl->setHasNoUnsignedWrap();
if (HasNSW) {
const APInt *V;
if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
Shl->setHasNoSignedWrap();
}
return Shl;
}
}
}
if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
// Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
// The "* (1<<C)" thus becomes a potential shifting opportunity.
if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
return BinaryOperator::CreateMul(
NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
// Try to convert multiply of extended operand to narrow negate and shift
// for better analysis.
// This is valid if the shift amount (trailing zeros in the multiplier
// constant) clears more high bits than the bitwidth difference between
// source and destination types:
// ({z/s}ext X) * (-1<<C) --> (zext (-X)) << C
const APInt *NegPow2C;
Value *X;
if (match(Op0, m_ZExtOrSExt(m_Value(X))) &&
match(Op1, m_APIntAllowUndef(NegPow2C))) {
unsigned SrcWidth = X->getType()->getScalarSizeInBits();
unsigned ShiftAmt = NegPow2C->countTrailingZeros();
if (ShiftAmt >= BitWidth - SrcWidth) {
Value *N = Builder.CreateNeg(X, X->getName() + ".neg");
Value *Z = Builder.CreateZExt(N, Ty, N->getName() + ".z");
return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt));
}
}
}
if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
return FoldedMul;
if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
return replaceInstUsesWith(I, FoldedMul);
// Simplify mul instructions with a constant RHS.
Constant *MulC;
if (match(Op1, m_ImmConstant(MulC))) {
// Canonicalize (X+C1)*MulC -> X*MulC+C1*MulC.
// Canonicalize (X|C1)*MulC -> X*MulC+C1*MulC.
Value *X;
Constant *C1;
if ((match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(C1))))) ||
(match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C1)))) &&
haveNoCommonBitsSet(X, C1, DL, &AC, &I, &DT))) {
// C1*MulC simplifies to a tidier constant.
Value *NewC = Builder.CreateMul(C1, MulC);
auto *BOp0 = cast<BinaryOperator>(Op0);
bool Op0NUW =
(BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap());
Value *NewMul = Builder.CreateMul(X, MulC);
auto *BO = BinaryOperator::CreateAdd(NewMul, NewC);
if (HasNUW && Op0NUW) {
// If NewMulBO is constant we also can set BO to nuw.
if (auto *NewMulBO = dyn_cast<BinaryOperator>(NewMul))
NewMulBO->setHasNoUnsignedWrap();
BO->setHasNoUnsignedWrap();
}
return BO;
}
}
// abs(X) * abs(X) -> X * X
// nabs(X) * nabs(X) -> X * X
if (Op0 == Op1) {
Value *X, *Y;
SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
if (SPF == SPF_ABS || SPF == SPF_NABS)
return BinaryOperator::CreateMul(X, X);
if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
return BinaryOperator::CreateMul(X, X);
}
// -X * C --> X * -C
Value *X, *Y;
Constant *Op1C;
if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
// -X * -Y --> X * Y
if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
auto *NewMul = BinaryOperator::CreateMul(X, Y);
if (HasNSW && cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
NewMul->setHasNoSignedWrap();
return NewMul;
}
// -X * Y --> -(X * Y)
// X * -Y --> -(X * Y)
if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
// (X / Y) * Y = X - (X % Y)
// (X / Y) * -Y = (X % Y) - X
{
Value *Y = Op1;
BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
if (!Div || (Div->getOpcode() != Instruction::UDiv &&
Div->getOpcode() != Instruction::SDiv)) {
Y = Op0;
Div = dyn_cast<BinaryOperator>(Op1);
}
Value *Neg = dyn_castNegVal(Y);
if (Div && Div->hasOneUse() &&
(Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
(Div->getOpcode() == Instruction::UDiv ||
Div->getOpcode() == Instruction::SDiv)) {
Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
// If the division is exact, X % Y is zero, so we end up with X or -X.
if (Div->isExact()) {
if (DivOp1 == Y)
return replaceInstUsesWith(I, X);
return BinaryOperator::CreateNeg(X);
}
auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
: Instruction::SRem;
// X must be frozen because we are increasing its number of uses.
Value *XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr");
Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1);
if (DivOp1 == Y)
return BinaryOperator::CreateSub(XFreeze, Rem);
return BinaryOperator::CreateSub(Rem, XFreeze);
}
}
// Fold the following two scenarios:
// 1) i1 mul -> i1 and.
// 2) X * Y --> X & Y, iff X, Y can be only {0,1}.
// Note: We could use known bits to generalize this and related patterns with
// shifts/truncs
if (Ty->isIntOrIntVectorTy(1) ||
(match(Op0, m_And(m_Value(), m_One())) &&
match(Op1, m_And(m_Value(), m_One()))))
return BinaryOperator::CreateAnd(Op0, Op1);
if (Value *R = foldMulShl1(I, /* CommuteOperands */ false, Builder))
return replaceInstUsesWith(I, R);
if (Value *R = foldMulShl1(I, /* CommuteOperands */ true, Builder))
return replaceInstUsesWith(I, R);
// (zext bool X) * (zext bool Y) --> zext (and X, Y)
// (sext bool X) * (sext bool Y) --> zext (and X, Y)
// Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
(match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
(Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
Value *And = Builder.CreateAnd(X, Y, "mulbool");
return CastInst::Create(Instruction::ZExt, And, Ty);
}
// (sext bool X) * (zext bool Y) --> sext (and X, Y)
// (zext bool X) * (sext bool Y) --> sext (and X, Y)
// Note: -1 * 1 == 1 * -1 == -1
if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
(match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
(Op0->hasOneUse() || Op1->hasOneUse())) {
Value *And = Builder.CreateAnd(X, Y, "mulbool");
return CastInst::Create(Instruction::SExt, And, Ty);
}
// (zext bool X) * Y --> X ? Y : 0
// Y * (zext bool X) --> X ? Y : 0
if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
return SelectInst::Create(X, Op1, ConstantInt::getNullValue(Ty));
if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
return SelectInst::Create(X, Op0, ConstantInt::getNullValue(Ty));
Constant *ImmC;
if (match(Op1, m_ImmConstant(ImmC))) {
// (sext bool X) * C --> X ? -C : 0
if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
Constant *NegC = ConstantExpr::getNeg(ImmC);
return SelectInst::Create(X, NegC, ConstantInt::getNullValue(Ty));
}
// (ashr i32 X, 31) * C --> (X < 0) ? -C : 0
const APInt *C;
if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) &&
*C == C->getBitWidth() - 1) {
Constant *NegC = ConstantExpr::getNeg(ImmC);
Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty));
}
}
// (lshr X, 31) * Y --> (X < 0) ? Y : 0
// TODO: We are not checking one-use because the elimination of the multiply
// is better for analysis?
const APInt *C;
if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) &&
*C == C->getBitWidth() - 1) {
Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
}
// (and X, 1) * Y --> (trunc X) ? Y : 0
if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) {
Value *Tr = Builder.CreateTrunc(X, CmpInst::makeCmpResultType(Ty));
return SelectInst::Create(Tr, Y, ConstantInt::getNullValue(Ty));
}
// ((ashr X, 31) | 1) * X --> abs(X)
// X * ((ashr X, 31) | 1) --> abs(X)
if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
m_SpecificIntAllowUndef(BitWidth - 1)),
m_One()),
m_Deferred(X)))) {
Value *Abs = Builder.CreateBinaryIntrinsic(
Intrinsic::abs, X, ConstantInt::getBool(I.getContext(), HasNSW));
Abs->takeName(&I);
return replaceInstUsesWith(I, Abs);
}
if (Instruction *Ext = narrowMathIfNoOverflow(I))
return Ext;
bool Changed = false;
if (!HasNSW && willNotOverflowSignedMul(Op0, Op1, I)) {
Changed = true;
I.setHasNoSignedWrap(true);
}
if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1, I)) {
Changed = true;
I.setHasNoUnsignedWrap(true);
}
return Changed ? &I : nullptr;
}
Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
BinaryOperator::BinaryOps Opcode = I.getOpcode();
assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
"Expected fmul or fdiv");
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Value *X, *Y;
// -X * -Y --> X * Y
// -X / -Y --> X / Y
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
// fabs(X) * fabs(X) -> X * X
// fabs(X) / fabs(X) -> X / X
if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
// fabs(X) * fabs(Y) --> fabs(X * Y)
// fabs(X) / fabs(Y) --> fabs(X / Y)
if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
(Op0->hasOneUse() || Op1->hasOneUse())) {
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
Builder.setFastMathFlags(I.getFastMathFlags());
Value *XY = Builder.CreateBinOp(Opcode, X, Y);
Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
Fabs->takeName(&I);
return replaceInstUsesWith(I, Fabs);
}
return nullptr;
}
Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (SimplifyAssociativeOrCommutative(I))
return &I;
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
return FoldedMul;
if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
return replaceInstUsesWith(I, FoldedMul);
if (Instruction *R = foldFPSignBitOps(I))
return R;
// X * -1.0 --> -X
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (match(Op1, m_SpecificFP(-1.0)))
return UnaryOperator::CreateFNegFMF(Op0, &I);
// With no-nans: X * 0.0 --> copysign(0.0, X)
if (I.hasNoNaNs() && match(Op1, m_PosZeroFP())) {
CallInst *CopySign = Builder.CreateIntrinsic(Intrinsic::copysign,
{I.getType()}, {Op1, Op0}, &I);
return replaceInstUsesWith(I, CopySign);
}
// -X * C --> X * -C
Value *X, *Y;
Constant *C;
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
return BinaryOperator::CreateFMulFMF(X, NegC, &I);
// (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
return replaceInstUsesWith(I, V);
if (I.hasAllowReassoc()) {
// Reassociate constant RHS with another constant to form constant
// expression.
if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
Constant *C1;
if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
// (C1 / X) * C --> (C * C1) / X
Constant *CC1 =
ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
if (CC1 && CC1->isNormalFP())
return BinaryOperator::CreateFDivFMF(CC1, X, &I);
}
if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
// (X / C1) * C --> X * (C / C1)
Constant *CDivC1 =
ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
if (CDivC1 && CDivC1->isNormalFP())
return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
// If the constant was a denormal, try reassociating differently.
// (X / C1) * C --> X / (C1 / C)
Constant *C1DivC =
ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
}
// We do not need to match 'fadd C, X' and 'fsub X, C' because they are
// canonicalized to 'fadd X, C'. Distributing the multiply may allow
// further folds and (X * C) + C2 is 'fma'.
if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
// (X + C1) * C --> (X * C) + (C * C1)
if (Constant *CC1 = ConstantFoldBinaryOpOperands(
Instruction::FMul, C, C1, DL)) {
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
}
}
if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
// (C1 - X) * C --> (C * C1) - (X * C)
if (Constant *CC1 = ConstantFoldBinaryOpOperands(
Instruction::FMul, C, C1, DL)) {
Value *XC = Builder.CreateFMulFMF(X, C, &I);
return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
}
}
}
Value *Z;
if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
m_Value(Z)))) {
// Sink division: (X / Y) * Z --> (X * Z) / Y
Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
}
// sqrt(X) * sqrt(Y) -> sqrt(X * Y)
// nnan disallows the possibility of returning a number if both operands are
// negative (in that case, we should return NaN).
if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
Value *XY = Builder.CreateFMulFMF(X, Y, &I);
Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
return replaceInstUsesWith(I, Sqrt);
}
// The following transforms are done irrespective of the number of uses
// for the expression "1.0/sqrt(X)".
// 1) 1.0/sqrt(X) * X -> X/sqrt(X)
// 2) X * 1.0/sqrt(X) -> X/sqrt(X)
// We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
// has the necessary (reassoc) fast-math-flags.
if (I.hasNoSignedZeros() &&
match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
return BinaryOperator::CreateFDivFMF(X, Y, &I);
if (I.hasNoSignedZeros() &&
match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
return BinaryOperator::CreateFDivFMF(X, Y, &I);
// Like the similar transform in instsimplify, this requires 'nsz' because
// sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
Op0->hasNUses(2)) {
// Peek through fdiv to find squaring of square root:
// (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
Value *XX = Builder.CreateFMulFMF(X, X, &I);
return BinaryOperator::CreateFDivFMF(XX, Y, &I);
}
// (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
Value *XX = Builder.CreateFMulFMF(X, X, &I);
return BinaryOperator::CreateFDivFMF(Y, XX, &I);
}
}
// pow(X, Y) * X --> pow(X, Y+1)
// X * pow(X, Y) --> pow(X, Y+1)
if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
m_Value(Y))),
m_Deferred(X)))) {
Value *Y1 =
Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
return replaceInstUsesWith(I, Pow);
}
if (I.isOnlyUserOfAnyOperand()) {
// pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
return replaceInstUsesWith(I, NewPow);
}
// pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
return replaceInstUsesWith(I, NewPow);
}
// powi(x, y) * powi(x, z) -> powi(x, y + z)
if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
Y->getType() == Z->getType()) {
auto *YZ = Builder.CreateAdd(Y, Z);
auto *NewPow = Builder.CreateIntrinsic(
Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
return replaceInstUsesWith(I, NewPow);
}
// exp(X) * exp(Y) -> exp(X + Y)
if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
return replaceInstUsesWith(I, Exp);
}
// exp2(X) * exp2(Y) -> exp2(X + Y)
if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
Value *XY = Builder.CreateFAddFMF(X, Y, &I);
Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
return replaceInstUsesWith(I, Exp2);
}
}
// (X*Y) * X => (X*X) * Y where Y != X
// The purpose is two-fold:
// 1) to form a power expression (of X).
// 2) potentially shorten the critical path: After transformation, the
// latency of the instruction Y is amortized by the expression of X*X,
// and therefore Y is in a "less critical" position compared to what it
// was before the transformation.
if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
Op1 != Y) {
Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
Op0 != Y) {
Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
return BinaryOperator::CreateFMulFMF(XX, Y, &I);
}
}
// log2(X * 0.5) * Y = log2(X) * Y - Y
if (I.isFast()) {
IntrinsicInst *Log2 = nullptr;
if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
Log2 = cast<IntrinsicInst>(Op0);
Y = Op1;
}
if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
Log2 = cast<IntrinsicInst>(Op1);
Y = Op0;
}
if (Log2) {
Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
}
}
// Simplify FMUL recurrences starting with 0.0 to 0.0 if nnan and nsz are set.
// Given a phi node with entry value as 0 and it used in fmul operation,
// we can replace fmul with 0 safely and eleminate loop operation.
PHINode *PN = nullptr;
Value *Start = nullptr, *Step = nullptr;
if (matchSimpleRecurrence(&I, PN, Start, Step) && I.hasNoNaNs() &&
I.hasNoSignedZeros() && match(Start, m_Zero()))
return replaceInstUsesWith(I, Start);
return nullptr;
}
/// Fold a divide or remainder with a select instruction divisor when one of the
/// select operands is zero. In that case, we can use the other select operand
/// because div/rem by zero is undefined.
bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
if (!SI)
return false;
int NonNullOperand;
if (match(SI->getTrueValue(), m_Zero()))
// div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
NonNullOperand = 2;
else if (match(SI->getFalseValue(), m_Zero()))
// div/rem X, (Cond ? Y : 0) -> div/rem X, Y
NonNullOperand = 1;
else
return false;
// Change the div/rem to use 'Y' instead of the select.
replaceOperand(I, 1, SI->getOperand(NonNullOperand));
// Okay, we know we replace the operand of the div/rem with 'Y' with no
// problem. However, the select, or the condition of the select may have
// multiple uses. Based on our knowledge that the operand must be non-zero,
// propagate the known value for the select into other uses of it, and
// propagate a known value of the condition into its other users.
// If the select and condition only have a single use, don't bother with this,
// early exit.
Value *SelectCond = SI->getCondition();
if (SI->use_empty() && SelectCond->hasOneUse())
return true;
// Scan the current block backward, looking for other uses of SI.
BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
Type *CondTy = SelectCond->getType();
while (BBI != BBFront) {
--BBI;
// If we found an instruction that we can't assume will return, so
// information from below it cannot be propagated above it.
if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
break;
// Replace uses of the select or its condition with the known values.
for (Use &Op : BBI->operands()) {
if (Op == SI) {
replaceUse(Op, SI->getOperand(NonNullOperand));
Worklist.push(&*BBI);
} else if (Op == SelectCond) {
replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
: ConstantInt::getFalse(CondTy));
Worklist.push(&*BBI);
}
}
// If we past the instruction, quit looking for it.
if (&*BBI == SI)
SI = nullptr;
if (&*BBI == SelectCond)
SelectCond = nullptr;
// If we ran out of things to eliminate, break out of the loop.
if (!SelectCond && !SI)
break;
}
return true;
}
/// True if the multiply can not be expressed in an int this size.
static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
bool IsSigned) {
bool Overflow;
Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
return Overflow;
}
/// True if C1 is a multiple of C2. Quotient contains C1/C2.
static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
bool IsSigned) {
assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
// Bail if we will divide by zero.
if (C2.isZero())
return false;
// Bail if we would divide INT_MIN by -1.
if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
return false;
APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
if (IsSigned)
APInt::sdivrem(C1, C2, Quotient, Remainder);
else
APInt::udivrem(C1, C2, Quotient, Remainder);
return Remainder.isMinValue();
}
static Instruction *foldIDivShl(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
assert((I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::UDiv) &&
"Expected integer divide");
bool IsSigned = I.getOpcode() == Instruction::SDiv;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
Instruction *Ret = nullptr;
Value *X, *Y, *Z;
// With appropriate no-wrap constraints, remove a common factor in the
// dividend and divisor that is disguised as a left-shifted value.
if (match(Op1, m_Shl(m_Value(X), m_Value(Z))) &&
match(Op0, m_c_Mul(m_Specific(X), m_Value(Y)))) {
// Both operands must have the matching no-wrap for this kind of division.
auto *Mul = cast<OverflowingBinaryOperator>(Op0);
auto *Shl = cast<OverflowingBinaryOperator>(Op1);
bool HasNUW = Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap();
bool HasNSW = Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap();
// (X * Y) u/ (X << Z) --> Y u>> Z
if (!IsSigned && HasNUW)
Ret = BinaryOperator::CreateLShr(Y, Z);
// (X * Y) s/ (X << Z) --> Y s/ (1 << Z)
if (IsSigned && HasNSW && (Op0->hasOneUse() || Op1->hasOneUse())) {
Value *Shl = Builder.CreateShl(ConstantInt::get(Ty, 1), Z);
Ret = BinaryOperator::CreateSDiv(Y, Shl);
}
}
// With appropriate no-wrap constraints, remove a common factor in the
// dividend and divisor that is disguised as a left-shift amount.
if (match(Op0, m_Shl(m_Value(X), m_Value(Z))) &&
match(Op1, m_Shl(m_Value(Y), m_Specific(Z)))) {
auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
// For unsigned div, we need 'nuw' on both shifts or
// 'nsw' on both shifts + 'nuw' on the dividend.
// (X << Z) / (Y << Z) --> X / Y
if (!IsSigned &&
((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) ||
(Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() &&
Shl1->hasNoSignedWrap())))
Ret = BinaryOperator::CreateUDiv(X, Y);
// For signed div, we need 'nsw' on both shifts + 'nuw' on the divisor.
// (X << Z) / (Y << Z) --> X / Y
if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() &&
Shl1->hasNoUnsignedWrap())
Ret = BinaryOperator::CreateSDiv(X, Y);
}
if (!Ret)
return nullptr;
Ret->setIsExact(I.isExact());
return Ret;
}
/// This function implements the transforms common to both integer division
/// instructions (udiv and sdiv). It is called by the visitors to those integer
/// division instructions.
/// Common integer divide transforms
Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
bool IsSigned = I.getOpcode() == Instruction::SDiv;
Type *Ty = I.getType();
// The RHS is known non-zero.
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
return replaceOperand(I, 1, V);
// Handle cases involving: [su]div X, (select Cond, Y, Z)
// This does not apply for fdiv.
if (simplifyDivRemOfSelectWithZeroOp(I))
return &I;
// If the divisor is a select-of-constants, try to constant fold all div ops:
// C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC)
// TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
if (match(Op0, m_ImmConstant()) &&
match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
/*FoldWithMultiUse*/ true))
return R;
}
const APInt *C2;
if (match(Op1, m_APInt(C2))) {
Value *X;
const APInt *C1;
// (X / C1) / C2 -> X / (C1*C2)
if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
(!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
return BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Product));
}
if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
(!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
// (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Quotient));
NewDiv->setIsExact(I.isExact());
return NewDiv;
}
// (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
ConstantInt::get(Ty, Quotient));
auto *OBO = cast<OverflowingBinaryOperator>(Op0);
Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
return Mul;
}
}
if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
C1->ult(C1->getBitWidth() - 1)) ||
(!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
C1->ult(C1->getBitWidth()))) {
APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
APInt C1Shifted = APInt::getOneBitSet(
C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
// (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
auto *BO = BinaryOperator::Create(I.getOpcode(), X,
ConstantInt::get(Ty, Quotient));
BO->setIsExact(I.isExact());
return BO;
}
// (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
ConstantInt::get(Ty, Quotient));
auto *OBO = cast<OverflowingBinaryOperator>(Op0);
Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
return Mul;
}
}
if (!C2->isZero()) // avoid X udiv 0
if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
return FoldedDiv;
}
if (match(Op0, m_One())) {
assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
if (IsSigned) {
// 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0
// (Op1 + 1) u< 3 ? Op1 : 0
// Op1 must be frozen because we are increasing its number of uses.
Value *F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr");
Value *Inc = Builder.CreateAdd(F1, Op0);
Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0));
} else {
// If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
// result is one, otherwise it's zero.
return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
}
}
// See if we can fold away this div instruction.
if (SimplifyDemandedInstructionBits(I))
return &I;
// (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
Value *X, *Z;
if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
(!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
return BinaryOperator::Create(I.getOpcode(), X, Op1);
// (X << Y) / X -> 1 << Y
Value *Y;
if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
// X / (X * Y) -> 1 / Y if the multiplication does not overflow.
if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
replaceOperand(I, 0, ConstantInt::get(Ty, 1));
replaceOperand(I, 1, Y);
return &I;
}
}
// (X << Z) / (X * Y) -> (1 << Z) / Y
// TODO: Handle sdiv.
if (!IsSigned && Op1->hasOneUse() &&
match(Op0, m_NUWShl(m_Value(X), m_Value(Z))) &&
match(Op1, m_c_Mul(m_Specific(X), m_Value(Y))))
if (cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap()) {
Instruction *NewDiv = BinaryOperator::CreateUDiv(
Builder.CreateShl(ConstantInt::get(Ty, 1), Z, "", /*NUW*/ true), Y);
NewDiv->setIsExact(I.isExact());
return NewDiv;
}
if (Instruction *R = foldIDivShl(I, Builder))
return R;
// With the appropriate no-wrap constraint, remove a multiply by the divisor
// after peeking through another divide:
// ((Op1 * X) / Y) / Op1 --> X / Y
if (match(Op0, m_BinOp(I.getOpcode(), m_c_Mul(m_Specific(Op1), m_Value(X)),
m_Value(Y)))) {
auto *InnerDiv = cast<PossiblyExactOperator>(Op0);
auto *Mul = cast<OverflowingBinaryOperator>(InnerDiv->getOperand(0));
Instruction *NewDiv = nullptr;
if (!IsSigned && Mul->hasNoUnsignedWrap())
NewDiv = BinaryOperator::CreateUDiv(X, Y);
else if (IsSigned && Mul->hasNoSignedWrap())
NewDiv = BinaryOperator::CreateSDiv(X, Y);
// Exact propagates only if both of the original divides are exact.
if (NewDiv) {
NewDiv->setIsExact(I.isExact() && InnerDiv->isExact());
return NewDiv;
}
}
return nullptr;
}
static const unsigned MaxDepth = 6;
// Take the exact integer log2 of the value. If DoFold is true, create the
// actual instructions, otherwise return a non-null dummy value. Return nullptr
// on failure.
static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
bool DoFold) {
auto IfFold = [DoFold](function_ref<Value *()> Fn) {
if (!DoFold)
return reinterpret_cast<Value *>(-1);
return Fn();
};
// FIXME: assert that Op1 isn't/doesn't contain undef.
// log2(2^C) -> C
if (match(Op, m_Power2()))
return IfFold([&]() {
Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op));
if (!C)
llvm_unreachable("Failed to constant fold udiv -> logbase2");
return C;
});
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth++ == MaxDepth)
return nullptr;
// log2(zext X) -> zext log2(X)
// FIXME: Require one use?
Value *X, *Y;
if (match(Op, m_ZExt(m_Value(X))))
if (Value *LogX = takeLog2(Builder, X, Depth, DoFold))
return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); });
// log2(X << Y) -> log2(X) + Y
// FIXME: Require one use unless X is 1?
if (match(Op, m_Shl(m_Value(X), m_Value(Y))))
if (Value *LogX = takeLog2(Builder, X, Depth, DoFold))
return IfFold([&]() { return Builder.CreateAdd(LogX, Y); });
// log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y)
// FIXME: missed optimization: if one of the hands of select is/contains
// undef, just directly pick the other one.
// FIXME: can both hands contain undef?
// FIXME: Require one use?
if (SelectInst *SI = dyn_cast<SelectInst>(Op))
if (Value *LogX = takeLog2(Builder, SI->getOperand(1), Depth, DoFold))
if (Value *LogY = takeLog2(Builder, SI->getOperand(2), Depth, DoFold))
return IfFold([&]() {
return Builder.CreateSelect(SI->getOperand(0), LogX, LogY);
});
// log2(umin(X, Y)) -> umin(log2(X), log2(Y))
// log2(umax(X, Y)) -> umax(log2(X), log2(Y))
auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op);
if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned())
if (Value *LogX = takeLog2(Builder, MinMax->getLHS(), Depth, DoFold))
if (Value *LogY = takeLog2(Builder, MinMax->getRHS(), Depth, DoFold))
return IfFold([&]() {
return Builder.CreateBinaryIntrinsic(
MinMax->getIntrinsicID(), LogX, LogY);
});
return nullptr;
}
/// If we have zero-extended operands of an unsigned div or rem, we may be able
/// to narrow the operation (sink the zext below the math).
static Instruction *narrowUDivURem(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Instruction::BinaryOps Opcode = I.getOpcode();
Value *N = I.getOperand(0);
Value *D = I.getOperand(1);
Type *Ty = I.getType();
Value *X, *Y;
if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
// udiv (zext X), (zext Y) --> zext (udiv X, Y)
// urem (zext X), (zext Y) --> zext (urem X, Y)
Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
return new ZExtInst(NarrowOp, Ty);
}
Constant *C;
if (isa<Instruction>(N) && match(N, m_OneUse(m_ZExt(m_Value(X)))) &&
match(D, m_Constant(C))) {
// If the constant is the same in the smaller type, use the narrow version.
Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
if (ConstantExpr::getZExt(TruncC, Ty) != C)
return nullptr;
// udiv (zext X), C --> zext (udiv X, C')
// urem (zext X), C --> zext (urem X, C')
return new ZExtInst(Builder.CreateBinOp(Opcode, X, TruncC), Ty);
}
if (isa<Instruction>(D) && match(D, m_OneUse(m_ZExt(m_Value(X)))) &&
match(N, m_Constant(C))) {
// If the constant is the same in the smaller type, use the narrow version.
Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
if (ConstantExpr::getZExt(TruncC, Ty) != C)
return nullptr;
// udiv C, (zext X) --> zext (udiv C', X)
// urem C, (zext X) --> zext (urem C', X)
return new ZExtInst(Builder.CreateBinOp(Opcode, TruncC, X), Ty);
}
return nullptr;
}
Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Value *X;
const APInt *C1, *C2;
if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
// (X lshr C1) udiv C2 --> X udiv (C2 << C1)
bool Overflow;
APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
if (!Overflow) {
bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
BinaryOperator *BO = BinaryOperator::CreateUDiv(
X, ConstantInt::get(X->getType(), C2ShlC1));
if (IsExact)
BO->setIsExact();
return BO;
}
}
// Op0 / C where C is large (negative) --> zext (Op0 >= C)
// TODO: Could use isKnownNegative() to handle non-constant values.
Type *Ty = I.getType();
if (match(Op1, m_Negative())) {
Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
return CastInst::CreateZExtOrBitCast(Cmp, Ty);
}
// Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
return CastInst::CreateZExtOrBitCast(Cmp, Ty);
}
if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
return NarrowDiv;
// If the udiv operands are non-overflowing multiplies with a common operand,
// then eliminate the common factor:
// (A * B) / (A * X) --> B / X (and commuted variants)
// TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
// TODO: If -reassociation handled this generally, we could remove this.
Value *A, *B;
if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
return BinaryOperator::CreateUDiv(B, X);
if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
return BinaryOperator::CreateUDiv(A, X);
}
// Look through a right-shift to find the common factor:
// ((Op1 *nuw A) >> B) / Op1 --> A >> B
if (match(Op0, m_LShr(m_NUWMul(m_Specific(Op1), m_Value(A)), m_Value(B))) ||
match(Op0, m_LShr(m_NUWMul(m_Value(A), m_Specific(Op1)), m_Value(B)))) {
Instruction *Lshr = BinaryOperator::CreateLShr(A, B);
if (I.isExact() && cast<PossiblyExactOperator>(Op0)->isExact())
Lshr->setIsExact();
return Lshr;
}
// Op1 udiv Op2 -> Op1 lshr log2(Op2), if log2() folds away.
if (takeLog2(Builder, Op1, /*Depth*/0, /*DoFold*/false)) {
Value *Res = takeLog2(Builder, Op1, /*Depth*/0, /*DoFold*/true);
return replaceInstUsesWith(
I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact()));
}
return nullptr;
}
Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
Value *X;
// sdiv Op0, -1 --> -Op0
// sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
if (match(Op1, m_AllOnes()) ||
(match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
return BinaryOperator::CreateNeg(Op0);
// X / INT_MIN --> X == INT_MIN
if (match(Op1, m_SignMask()))
return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
if (I.isExact()) {
// sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
if (match(Op1, m_Power2()) && match(Op1, m_NonNegative())) {
Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
return BinaryOperator::CreateExactAShr(Op0, C);
}
// sdiv exact X, (1<<ShAmt) --> ashr exact X, ShAmt (if shl is non-negative)
Value *ShAmt;
if (match(Op1, m_NSWShl(m_One(), m_Value(ShAmt))))
return BinaryOperator::CreateExactAShr(Op0, ShAmt);
// sdiv exact X, -1<<C --> -(ashr exact X, C)
if (match(Op1, m_NegatedPower2())) {
Constant *NegPow2C = ConstantExpr::getNeg(cast<Constant>(Op1));
Constant *C = ConstantExpr::getExactLogBase2(NegPow2C);
Value *Ashr = Builder.CreateAShr(Op0, C, I.getName() + ".neg", true);
return BinaryOperator::CreateNeg(Ashr);
}
}
const APInt *Op1C;
if (match(Op1, m_APInt(Op1C))) {
// If the dividend is sign-extended and the constant divisor is small enough
// to fit in the source type, shrink the division to the narrower type:
// (sext X) sdiv C --> sext (X sdiv C)
Value *Op0Src;
if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
// In the general case, we need to make sure that the dividend is not the
// minimum signed value because dividing that by -1 is UB. But here, we
// know that the -1 divisor case is already handled above.
Constant *NarrowDivisor =
ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
return new SExtInst(NarrowOp, Ty);
}
// -X / C --> X / -C (if the negation doesn't overflow).
// TODO: This could be enhanced to handle arbitrary vector constants by
// checking if all elements are not the min-signed-val.
if (!Op1C->isMinSignedValue() &&
match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
BO->setIsExact(I.isExact());
return BO;
}
}
// -X / Y --> -(X / Y)
Value *Y;
if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
return BinaryOperator::CreateNSWNeg(
Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
// abs(X) / X --> X > -1 ? 1 : -1
// X / abs(X) --> X > -1 ? 1 : -1
if (match(&I, m_c_BinOp(
m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
m_Deferred(X)))) {
Value *Cond = Builder.CreateIsNotNeg(X);
return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
ConstantInt::getAllOnesValue(Ty));
}
KnownBits KnownDividend = computeKnownBits(Op0, 0, &I);
if (!I.isExact() &&
(match(Op1, m_Power2(Op1C)) || match(Op1, m_NegatedPower2(Op1C))) &&
KnownDividend.countMinTrailingZeros() >= Op1C->countTrailingZeros()) {
I.setIsExact();
return &I;
}
if (KnownDividend.isNonNegative()) {
// If both operands are unsigned, turn this into a udiv.
if (isKnownNonNegative(Op1, DL, 0, &AC, &I, &DT)) {
auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
BO->setIsExact(I.isExact());
return BO;
}
if (match(Op1, m_NegatedPower2())) {
// X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
// -> -(X udiv (1 << C)) -> -(X u>> C)
Constant *CNegLog2 = ConstantExpr::getExactLogBase2(
ConstantExpr::getNeg(cast<Constant>(Op1)));
Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact());
return BinaryOperator::CreateNeg(Shr);
}
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
// X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
// Safe because the only negative value (1 << Y) can take on is
// INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
// the sign bit set.
auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
BO->setIsExact(I.isExact());
return BO;
}
}
return nullptr;
}
/// Remove negation and try to convert division into multiplication.
Instruction *InstCombinerImpl::foldFDivConstantDivisor(BinaryOperator &I) {
Constant *C;
if (!match(I.getOperand(1), m_Constant(C)))
return nullptr;
// -X / C --> X / -C
Value *X;
const DataLayout &DL = I.getModule()->getDataLayout();
if (match(I.getOperand(0), m_FNeg(m_Value(X))))
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
return BinaryOperator::CreateFDivFMF(X, NegC, &I);
// nnan X / +0.0 -> copysign(inf, X)
if (I.hasNoNaNs() && match(I.getOperand(1), m_Zero())) {
IRBuilder<> B(&I);
// TODO: nnan nsz X / -0.0 -> copysign(inf, X)
CallInst *CopySign = B.CreateIntrinsic(
Intrinsic::copysign, {C->getType()},
{ConstantFP::getInfinity(I.getType()), I.getOperand(0)}, &I);
CopySign->takeName(&I);
return replaceInstUsesWith(I, CopySign);
}
// If the constant divisor has an exact inverse, this is always safe. If not,
// then we can still create a reciprocal if fast-math-flags allow it and the
// constant is a regular number (not zero, infinite, or denormal).
if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
return nullptr;
// Disallow denormal constants because we don't know what would happen
// on all targets.
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
// denorms are flushed?
auto *RecipC = ConstantFoldBinaryOpOperands(
Instruction::FDiv, ConstantFP::get(I.getType(), 1.0), C, DL);
if (!RecipC || !RecipC->isNormalFP())
return nullptr;
// X / C --> X * (1 / C)
return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
}
/// Remove negation and try to reassociate constant math.
static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
Constant *C;
if (!match(I.getOperand(0), m_Constant(C)))
return nullptr;
// C / -X --> -C / X
Value *X;
const DataLayout &DL = I.getModule()->getDataLayout();
if (match(I.getOperand(1), m_FNeg(m_Value(X))))
if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
return BinaryOperator::CreateFDivFMF(NegC, X, &I);
if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
return nullptr;
// Try to reassociate C / X expressions where X includes another constant.
Constant *C2, *NewC = nullptr;
if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
// C / (X * C2) --> (C / C2) / X
NewC = ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C2, DL);
} else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
// C / (X / C2) --> (C * C2) / X
NewC = ConstantFoldBinaryOpOperands(Instruction::FMul, C, C2, DL);
}
// Disallow denormal constants because we don't know what would happen
// on all targets.
// TODO: Use Intrinsic::canonicalize or let function attributes tell us that
// denorms are flushed?
if (!NewC || !NewC->isNormalFP())
return nullptr;
return BinaryOperator::CreateFDivFMF(NewC, X, &I);
}
/// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
static Instruction *foldFDivPowDivisor(BinaryOperator &I,
InstCombiner::BuilderTy &Builder) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
auto *II = dyn_cast<IntrinsicInst>(Op1);
if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
!I.hasAllowReciprocal())
return nullptr;
// Z / pow(X, Y) --> Z * pow(X, -Y)
// Z / exp{2}(Y) --> Z * exp{2}(-Y)
// In the general case, this creates an extra instruction, but fmul allows
// for better canonicalization and optimization than fdiv.
Intrinsic::ID IID = II->getIntrinsicID();
SmallVector<Value *> Args;
switch (IID) {
case Intrinsic::pow:
Args.push_back(II->getArgOperand(0));
Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
break;
case Intrinsic::powi: {
// Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
// That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
// dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
// non-standard results, so this corner case should be acceptable if the
// code rules out INF values.
if (!I.hasNoInfs())
return nullptr;
Args.push_back(II->getArgOperand(0));
Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
}
case Intrinsic::exp:
case Intrinsic::exp2:
Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
break;
default:
return nullptr;
}
Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
}
Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
Module *M = I.getModule();
if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
if (Instruction *R = foldFDivConstantDivisor(I))
return R;
if (Instruction *R = foldFDivConstantDividend(I))
return R;
if (Instruction *R = foldFPSignBitOps(I))
return R;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (isa<Constant>(Op0))
if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (isa<Constant>(Op1))
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
Value *X, *Y;
if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
(!isa<Constant>(Y) || !isa<Constant>(Op1))) {
// (X / Y) / Z => X / (Y * Z)
Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
return BinaryOperator::CreateFDivFMF(X, YZ, &I);
}
if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
(!isa<Constant>(Y) || !isa<Constant>(Op0))) {
// Z / (X / Y) => (Y * Z) / X
Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
return BinaryOperator::CreateFDivFMF(YZ, X, &I);
}
// Z / (1.0 / Y) => (Y * Z)
//
// This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
// m_OneUse check is avoided because even in the case of the multiple uses
// for 1.0/Y, the number of instructions remain the same and a division is
// replaced by a multiplication.
if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
}
if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
// sin(X) / cos(X) -> tan(X)
// cos(X) / sin(X) -> 1/tan(X) (cotangent)
Value *X;
bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
bool IsCot =
!IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan,
LibFunc_tanf, LibFunc_tanl)) {
IRBuilder<> B(&I);
IRBuilder<>::FastMathFlagGuard FMFGuard(B);
B.setFastMathFlags(I.getFastMathFlags());
AttributeList Attrs =
cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
LibFunc_tanl, B, Attrs);
if (IsCot)
Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
return replaceInstUsesWith(I, Res);
}
}
// X / (X * Y) --> 1.0 / Y
// Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
// We can ignore the possibility that X is infinity because INF/INF is NaN.
Value *X, *Y;
if (I.hasNoNaNs() && I.hasAllowReassoc() &&
match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
replaceOperand(I, 1, Y);
return &I;
}
// X / fabs(X) -> copysign(1.0, X)
// fabs(X) / X -> copysign(1.0, X)
if (I.hasNoNaNs() && I.hasNoInfs() &&
(match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
Value *V = Builder.CreateBinaryIntrinsic(
Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
return replaceInstUsesWith(I, V);
}
if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
return Mul;
// pow(X, Y) / X --> pow(X, Y-1)
if (I.hasAllowReassoc() &&
match(Op0, m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Specific(Op1),
m_Value(Y))))) {
Value *Y1 =
Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), -1.0), &I);
Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, Op1, Y1, &I);
return replaceInstUsesWith(I, Pow);
}
return nullptr;
}
/// This function implements the transforms common to both integer remainder
/// instructions (urem and srem). It is called by the visitors to those integer
/// remainder instructions.
/// Common integer remainder transforms
Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// The RHS is known non-zero.
if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
return replaceOperand(I, 1, V);
// Handle cases involving: rem X, (select Cond, Y, Z)
if (simplifyDivRemOfSelectWithZeroOp(I))
return &I;
// If the divisor is a select-of-constants, try to constant fold all rem ops:
// C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC)
// TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
if (match(Op0, m_ImmConstant()) &&
match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
/*FoldWithMultiUse*/ true))
return R;
}
if (isa<Constant>(Op1)) {
if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
if (Instruction *R = FoldOpIntoSelect(I, SI))
return R;
} else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
const APInt *Op1Int;
if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
(I.getOpcode() == Instruction::URem ||
!Op1Int->isMinSignedValue())) {
// foldOpIntoPhi will speculate instructions to the end of the PHI's
// predecessor blocks, so do this only if we know the srem or urem
// will not fault.
if (Instruction *NV = foldOpIntoPhi(I, PN))
return NV;
}
}
// See if we can fold away this rem instruction.
if (SimplifyDemandedInstructionBits(I))
return &I;
}
}
return nullptr;
}
Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *common = commonIRemTransforms(I))
return common;
if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
return NarrowRem;
// X urem Y -> X and Y-1, where Y is a power of 2,
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Type *Ty = I.getType();
if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
// This may increase instruction count, we don't enforce that Y is a
// constant.
Constant *N1 = Constant::getAllOnesValue(Ty);
Value *Add = Builder.CreateAdd(Op1, N1);
return BinaryOperator::CreateAnd(Op0, Add);
}
// 1 urem X -> zext(X != 1)
if (match(Op0, m_One())) {
Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
return CastInst::CreateZExtOrBitCast(Cmp, Ty);
}
// Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit.
// Op0 must be frozen because we are increasing its number of uses.
if (match(Op1, m_Negative())) {
Value *F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr");
Value *Cmp = Builder.CreateICmpULT(F0, Op1);
Value *Sub = Builder.CreateSub(F0, Op1);
return SelectInst::Create(Cmp, F0, Sub);
}
// If the divisor is a sext of a boolean, then the divisor must be max
// unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
// max unsigned value. In that case, the remainder is 0:
// urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
Value *X;
if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
}
return nullptr;
}
Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
// Handle the integer rem common cases
if (Instruction *Common = commonIRemTransforms(I))
return Common;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
{
const APInt *Y;
// X % -Y -> X % Y
if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
}
// -X srem Y --> -(X srem Y)
Value *X, *Y;
if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a urem.
APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
MaskedValueIsZero(Op0, Mask, 0, &I)) {
// X srem Y -> X urem Y, iff X and Y don't have sign bit set
return BinaryOperator::CreateURem(Op0, Op1, I.getName());
}
// If it's a constant vector, flip any negative values positive.
if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
Constant *C = cast<Constant>(Op1);
unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
bool hasNegative = false;
bool hasMissing = false;
for (unsigned i = 0; i != VWidth; ++i) {
Constant *Elt = C->getAggregateElement(i);
if (!Elt) {
hasMissing = true;
break;
}
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
if (RHS->isNegative())
hasNegative = true;
}
if (hasNegative && !hasMissing) {
SmallVector<Constant *, 16> Elts(VWidth);
for (unsigned i = 0; i != VWidth; ++i) {
Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
if (RHS->isNegative())
Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
}
}
Constant *NewRHSV = ConstantVector::get(Elts);
if (NewRHSV != C) // Don't loop on -MININT
return replaceOperand(I, 1, NewRHSV);
}
}
return nullptr;
}
Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1),
I.getFastMathFlags(),
SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
if (Instruction *X = foldVectorBinop(I))
return X;
if (Instruction *Phi = foldBinopWithPhiOperands(I))
return Phi;
return nullptr;
}