| // Copyright (c) 2023-2025 Arm Ltd. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // Validates correctness of tensor instructions. |
| |
| #include "source/opcode.h" |
| #include "source/val/validate.h" |
| #include "source/val/validation_state.h" |
| |
| namespace spvtools { |
| namespace val { |
| namespace { |
| |
| bool IsRankedTensor(ValidationState_t& _, uint32_t id) { |
| auto inst = _.FindDef(id); |
| if (!inst || inst->opcode() != spv::Op::OpTypeTensorARM || |
| inst->words().size() <= 3) { |
| return false; |
| } |
| return true; |
| } |
| |
| uint64_t GetTensorTypeRank(ValidationState_t& _, uint32_t id) { |
| auto inst = _.FindDef(id); |
| if (!inst || inst->opcode() != spv::Op::OpTypeTensorARM || |
| inst->words().size() <= 3) { |
| return 0; |
| } |
| uint64_t rank = 0; |
| if (!_.EvalConstantValUint64(inst->word(3), &rank)) { |
| return 0; |
| } |
| return rank; |
| } |
| |
| bool IsScalarTypeOrOrArrayOfScalarType(ValidationState_t& _, uint32_t id) { |
| auto inst = _.FindDef(id); |
| if (!inst) { |
| return false; |
| } |
| return _.IsScalarType(id) || (inst->opcode() == spv::Op::OpTypeArray && |
| _.IsScalarType(inst->word(2))); |
| } |
| |
| spv_result_t ValidateTensorRead(ValidationState_t& _, const Instruction* inst) { |
| // Result Type must be a scalar type or array of scalar type. |
| if (!IsScalarTypeOrOrArrayOfScalarType(_, inst->type_id())) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "Expected Result Type to be a scalar type or array of " |
| "scalar type."; |
| } |
| |
| // Tensor must be a Ranked Tensor. |
| auto op_tensor = inst->word(3); |
| auto inst_tensor = _.FindDef(op_tensor); |
| if (!inst_tensor || !IsRankedTensor(_, inst_tensor->type_id())) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "Expected Tensor to be an OpTypeTensorARM whose Rank is " |
| "specified"; |
| } |
| |
| // The scalar type must be the same as the Element Type of Tensor. |
| if (_.GetComponentType(inst_tensor->type_id()) != |
| _.GetComponentType(inst->type_id())) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "Expected Result Type to be the same as the Element Type of " |
| "Tensor."; |
| } |
| |
| // Coordinates is an array whose Element Type must be an integer type and |
| // whose Length must be equal to the Rank of Tensor. |
| auto op_coord = inst->word(4); |
| auto inst_coord = _.FindDef(op_coord); |
| auto tensor_rank = GetTensorTypeRank(_, inst_tensor->type_id()); |
| if (!_.IsIntArrayType(inst_coord->type_id(), tensor_rank)) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "Expected Coordinates to be an array whose Element Type is an " |
| "integer type and whose Length is equal to the Rank of Tensor."; |
| } |
| |
| // Validate Tensor Operands |
| if (inst->words().size() > 5) { |
| auto toperands = static_cast<spv::TensorOperandsMask>(inst->word(5)); |
| if ((toperands & spv::TensorOperandsMask::OutOfBoundsValueARM) != |
| spv::TensorOperandsMask::MaskNone) { |
| if (inst->words().size() < 7) { |
| return _.diag(SPV_ERROR_INVALID_ID, inst) |
| << "A value must be provided after the OutOfBoundsValueARM " |
| "Tensor Operand."; |
| } |
| auto op_oobval = inst->word(6); |
| auto inst_oobval = _.FindDef(op_oobval); |
| if (_.GetComponentType(inst_tensor->type_id()) != |
| _.GetComponentType(inst_oobval->type_id())) { |
| return _.diag(SPV_ERROR_INVALID_ID, inst) |
| << "Expected the type of the OutOfBoundsValueARM value to be " |
| "the same " |
| "as the Element Type of Tensor."; |
| } |
| } |
| if ((toperands & spv::TensorOperandsMask::MakeElementAvailableARM) != |
| spv::TensorOperandsMask::MaskNone) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "MakeElementAvailableARM cannot be used with OpTensorReadARM."; |
| } |
| if (((toperands & spv::TensorOperandsMask::MakeElementVisibleARM) != |
| spv::TensorOperandsMask::MaskNone) && |
| ((toperands & spv::TensorOperandsMask::NonPrivateElementARM) == |
| spv::TensorOperandsMask::MaskNone)) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "MakeElementAvailableARM requires NonPrivateElementARM."; |
| } |
| } |
| |
| return SPV_SUCCESS; |
| } |
| |
| spv_result_t ValidateTensorWrite(ValidationState_t& _, |
| const Instruction* inst) { |
| // Tensor must be a Ranked Tensor. |
| auto op_tensor = inst->word(1); |
| auto inst_tensor = _.FindDef(op_tensor); |
| if (!IsRankedTensor(_, inst_tensor->type_id())) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "Expected Tensor to be an OpTypeTensorARM whose Rank is " |
| "specified"; |
| } |
| |
| // Coordinates is an array whose Element Type must be an integer type and |
| // whose Length must be equal to the Rank of Tensor. |
| auto op_coord = inst->word(2); |
| auto inst_coord = _.FindDef(op_coord); |
| auto tensor_rank = GetTensorTypeRank(_, inst_tensor->type_id()); |
| if (!_.IsIntArrayType(inst_coord->type_id(), tensor_rank)) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "Expected Coordinates to be an array whose Element Type is an " |
| "integer type and whose Length is equal to the Rank of Tensor."; |
| } |
| |
| // Object must be an object of scalar type or array of scalar type. |
| // The scalar type must be the same as the Element Type of Tensor. |
| auto op_object = inst->word(3); |
| auto inst_object = _.FindDef(op_object); |
| if (!IsScalarTypeOrOrArrayOfScalarType(_, inst_object->type_id()) || |
| (_.GetComponentType(inst_object->type_id()) != |
| _.GetComponentType(inst_tensor->type_id()))) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "Expected Object to be a scalar type or array of scalar " |
| "type that is the same as the Element Type of Tensor."; |
| } |
| |
| // Validate Tensor Operands |
| if (inst->words().size() > 5) { |
| auto toperands = static_cast<spv::TensorOperandsMask>(inst->word(4)); |
| if ((toperands & spv::TensorOperandsMask::OutOfBoundsValueARM) != |
| spv::TensorOperandsMask::MaskNone) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "OutOfBoundsValue Tensor Operand not allowed with " |
| "OpTensorWriteARM."; |
| } |
| if ((toperands & spv::TensorOperandsMask::MakeElementVisibleARM) != |
| spv::TensorOperandsMask::MaskNone) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "MakeElementVisibleARM not allowed with OpTensorWriteARM."; |
| } |
| if (((toperands & spv::TensorOperandsMask::MakeElementAvailableARM) != |
| spv::TensorOperandsMask::MaskNone) && |
| ((toperands & spv::TensorOperandsMask::NonPrivateElementARM) == |
| spv::TensorOperandsMask::MaskNone)) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "MakeElementAvailableARM requires NonPrivateElementARM."; |
| } |
| } |
| |
| return SPV_SUCCESS; |
| } |
| |
| spv_result_t ValidateTensorQuerySize(ValidationState_t& _, |
| const Instruction* inst) { |
| // Check result type |
| if (!_.IsIntScalarType(inst->type_id())) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "Expected Result Type to be an integer type scalar"; |
| } |
| |
| // Check Tensor operand |
| auto op_tensor = inst->word(3); |
| auto inst_tensor = _.FindDef(op_tensor); |
| if (!inst_tensor || !IsRankedTensor(_, inst_tensor->type_id())) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "Expected Tensor to be an OpTypeTensorARM whose Rank is " |
| "specified"; |
| } |
| |
| // Check Dimension operand |
| auto op_dim = inst->word(4); |
| auto inst_dim = _.FindDef(op_dim); |
| if (!spvOpcodeIsConstant(inst_dim->opcode()) || |
| !_.IsIntScalarType(inst_dim->type_id())) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "Dimension must come from a constant instruction of scalar " |
| "integer type."; |
| } |
| |
| auto inst_tensor_type = _.FindDef(inst_tensor->type_id()); |
| auto op_tensor_rank = inst_tensor_type->word(3); |
| uint64_t tensor_rank = 0; |
| uint64_t dim; |
| if (_.EvalConstantValUint64(op_tensor_rank, &tensor_rank) && |
| _.EvalConstantValUint64(op_dim, &dim) && (dim >= tensor_rank)) { |
| return _.diag(SPV_ERROR_INVALID_DATA, inst) |
| << "Dimension (" << dim << ") must be less than the Rank of Tensor (" |
| << tensor_rank << ")."; |
| } |
| |
| return SPV_SUCCESS; |
| } |
| |
| } // namespace |
| |
| // Validates correctness of tensor instructions. |
| spv_result_t TensorPass(ValidationState_t& _, const Instruction* inst) { |
| (void)_; |
| const spv::Op opcode = inst->opcode(); |
| switch (opcode) { |
| case spv::Op::OpTensorReadARM: |
| return ValidateTensorRead(_, inst); |
| case spv::Op::OpTensorWriteARM: |
| return ValidateTensorWrite(_, inst); |
| case spv::Op::OpTensorQuerySizeARM: |
| return ValidateTensorQuerySize(_, inst); |
| default: |
| break; |
| } |
| return SPV_SUCCESS; |
| } |
| |
| } // namespace val |
| } // namespace spvtools |