blob: 0af4dba6cb758ded6fa8afda7a65468f55849d57 [file] [log] [blame]
// Copyright (c) 2025 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/opt/split_combined_image_sampler_pass.h"
#include <algorithm>
#include <cassert>
#include <memory>
#include "source/opt/instruction.h"
#include "source/opt/ir_builder.h"
#include "source/opt/ir_context.h"
#include "source/opt/type_manager.h"
#include "source/opt/types.h"
#include "source/util/make_unique.h"
#include "source/util/string_utils.h"
#include "spirv/unified1/spirv.h"
namespace spvtools {
namespace opt {
#define CHECK(cond) \
{ \
if ((cond) != SPV_SUCCESS) return Pass::Status::Failure; \
}
#define CHECK_STATUS(cond) \
{ \
if (auto c = (cond); c != SPV_SUCCESS) return c; \
}
IRContext::Analysis SplitCombinedImageSamplerPass::GetPreservedAnalyses() {
return
// def use manager is updated
IRContext::kAnalysisDefUse
// decorations are updated
| IRContext::kAnalysisDecorations
// control flow is not changed
| IRContext::kAnalysisCFG //
| IRContext::kAnalysisLoopAnalysis //
| IRContext::kAnalysisStructuredCFG
// type manager is updated
| IRContext::kAnalysisTypes;
}
Pass::Status SplitCombinedImageSamplerPass::Process() {
def_use_mgr_ = context()->get_def_use_mgr();
type_mgr_ = context()->get_type_mgr();
FindCombinedTextureSamplers();
if (combined_types_to_remove_.empty() && !sampled_image_used_as_param_) {
return Ok();
}
CHECK(RemapFunctions());
CHECK(RemapVars());
CHECK(RemoveDeadTypes());
def_use_mgr_ = nullptr;
type_mgr_ = nullptr;
return Ok();
}
spvtools::DiagnosticStream SplitCombinedImageSamplerPass::Fail() {
return std::move(
spvtools::DiagnosticStream({}, consumer(), "", SPV_ERROR_INVALID_BINARY)
<< "split-combined-image-sampler: ");
}
void SplitCombinedImageSamplerPass::FindCombinedTextureSamplers() {
for (auto& inst : context()->types_values()) {
RegisterGlobal(inst.result_id());
switch (inst.opcode()) {
case spv::Op::OpTypeSampler:
// Modules can't have duplicate sampler types.
assert(!sampler_type_);
sampler_type_ = &inst;
break;
case spv::Op::OpTypeSampledImage:
if (!first_sampled_image_type_) {
first_sampled_image_type_ = &inst;
}
combined_types_.insert(inst.result_id());
def_use_mgr_->WhileEachUser(inst.result_id(), [&](Instruction* i) {
sampled_image_used_as_param_ |=
i->opcode() == spv::Op::OpTypeFunction;
return !sampled_image_used_as_param_;
});
break;
case spv::Op::OpTypeArray:
case spv::Op::OpTypeRuntimeArray: {
auto pointee_id = inst.GetSingleWordInOperand(0);
if (combined_types_.find(pointee_id) != combined_types_.end()) {
combined_types_.insert(inst.result_id());
combined_types_to_remove_.push_back(inst.result_id());
}
} break;
case spv::Op::OpTypePointer: {
auto sc =
static_cast<spv::StorageClass>(inst.GetSingleWordInOperand(0));
if (sc == spv::StorageClass::UniformConstant) {
auto pointee_id = inst.GetSingleWordInOperand(1);
if (combined_types_.find(pointee_id) != combined_types_.end()) {
combined_types_.insert(inst.result_id());
combined_types_to_remove_.push_back(inst.result_id());
}
}
} break;
case spv::Op::OpVariable:
if (combined_types_.find(inst.type_id()) != combined_types_.end()) {
ordered_vars_.push_back(&inst);
}
break;
default:
break;
}
}
}
Instruction* SplitCombinedImageSamplerPass::GetSamplerType() {
if (!sampler_type_) {
analysis::Sampler s;
uint32_t sampler_type_id = type_mgr_->GetTypeInstruction(&s);
sampler_type_ = def_use_mgr_->GetDef(sampler_type_id);
assert(first_sampled_image_type_);
sampler_type_->InsertBefore(first_sampled_image_type_);
RegisterNewGlobal(sampler_type_->result_id());
}
return sampler_type_;
}
spv_result_t SplitCombinedImageSamplerPass::RemapVars() {
for (Instruction* var : ordered_vars_) {
CHECK_STATUS(RemapVar(var));
}
return SPV_SUCCESS;
}
std::pair<Instruction*, Instruction*> SplitCombinedImageSamplerPass::SplitType(
Instruction& combined_kind_type) {
if (auto where = type_remap_.find(combined_kind_type.result_id());
where != type_remap_.end()) {
auto& type_remap = where->second;
return {type_remap.image_kind_type, type_remap.sampler_kind_type};
}
switch (combined_kind_type.opcode()) {
case spv::Op::OpTypeSampledImage: {
auto* image_type =
def_use_mgr_->GetDef(combined_kind_type.GetSingleWordInOperand(0));
auto* sampler_type = GetSamplerType();
type_remap_[combined_kind_type.result_id()] = {&combined_kind_type,
image_type, sampler_type};
return {image_type, sampler_type};
break;
}
case spv::Op::OpTypePointer: {
auto sc = static_cast<spv::StorageClass>(
combined_kind_type.GetSingleWordInOperand(0));
if (sc == spv::StorageClass::UniformConstant) {
auto* pointee =
def_use_mgr_->GetDef(combined_kind_type.GetSingleWordInOperand(1));
auto [image_pointee, sampler_pointee] = SplitType(*pointee);
// These would be null if the pointee is an image type or a sampler
// type. Don't decompose them. Currently this method does not check the
// assumption that it is being only called on combined types. So code
// this defensively.
if (image_pointee && sampler_pointee) {
auto* ptr_image = MakeUniformConstantPointer(image_pointee);
auto* ptr_sampler = MakeUniformConstantPointer(sampler_pointee);
type_remap_[combined_kind_type.result_id()] = {
&combined_kind_type, ptr_image, ptr_sampler};
return {ptr_image, ptr_sampler};
}
}
break;
}
case spv::Op::OpTypeArray: {
const auto* array_ty =
type_mgr_->GetType(combined_kind_type.result_id())->AsArray();
assert(array_ty);
const auto* sampled_image_ty = array_ty->element_type()->AsSampledImage();
assert(sampled_image_ty);
const analysis::Type* image_ty = sampled_image_ty->image_type();
assert(image_ty);
analysis::Array array_image_ty(image_ty, array_ty->length_info());
const uint32_t array_image_ty_id =
type_mgr_->GetTypeInstruction(&array_image_ty);
auto* array_image_ty_inst = def_use_mgr_->GetDef(array_image_ty_id);
if (!IsKnownGlobal(array_image_ty_id)) {
array_image_ty_inst->InsertBefore(&combined_kind_type);
RegisterNewGlobal(array_image_ty_id);
// GetTypeInstruction also updated the def-use manager.
}
analysis::Array sampler_array_ty(
type_mgr_->GetType(GetSamplerType()->result_id()),
array_ty->length_info());
const uint32_t array_sampler_ty_id =
type_mgr_->GetTypeInstruction(&sampler_array_ty);
auto* array_sampler_ty_inst = def_use_mgr_->GetDef(array_sampler_ty_id);
if (!IsKnownGlobal(array_sampler_ty_id)) {
array_sampler_ty_inst->InsertBefore(&combined_kind_type);
RegisterNewGlobal(array_sampler_ty_id);
// GetTypeInstruction also updated the def-use manager.
}
return {array_image_ty_inst, array_sampler_ty_inst};
}
case spv::Op::OpTypeRuntimeArray: {
// This is like the sized-array case, but there is no length parameter.
auto* array_ty =
type_mgr_->GetType(combined_kind_type.result_id())->AsRuntimeArray();
assert(array_ty);
auto* sampled_image_ty = array_ty->element_type()->AsSampledImage();
assert(sampled_image_ty);
const analysis::Type* image_ty = sampled_image_ty->image_type();
assert(image_ty);
analysis::RuntimeArray array_image_ty(image_ty);
const uint32_t array_image_ty_id =
type_mgr_->GetTypeInstruction(&array_image_ty);
auto* array_image_ty_inst = def_use_mgr_->GetDef(array_image_ty_id);
if (!IsKnownGlobal(array_image_ty_id)) {
array_image_ty_inst->InsertBefore(&combined_kind_type);
RegisterNewGlobal(array_image_ty_id);
// GetTypeInstruction also updated the def-use manager.
}
analysis::RuntimeArray sampler_array_ty(
type_mgr_->GetType(GetSamplerType()->result_id()));
const uint32_t array_sampler_ty_id =
type_mgr_->GetTypeInstruction(&sampler_array_ty);
auto* array_sampler_ty_inst = def_use_mgr_->GetDef(array_sampler_ty_id);
if (!IsKnownGlobal(array_sampler_ty_id)) {
array_sampler_ty_inst->InsertBefore(&combined_kind_type);
RegisterNewGlobal(array_sampler_ty_id);
// GetTypeInstruction also updated the def-use manager.
}
return {array_image_ty_inst, array_sampler_ty_inst};
}
default:
break;
}
return {nullptr, nullptr};
}
spv_result_t SplitCombinedImageSamplerPass::RemapVar(
Instruction* combined_var) {
InstructionBuilder builder(context(), combined_var,
IRContext::kAnalysisDefUse);
// Create an image variable, and a sampler variable.
auto* combined_var_type = def_use_mgr_->GetDef(combined_var->type_id());
auto [ptr_image_ty, ptr_sampler_ty] = SplitType(*combined_var_type);
assert(ptr_image_ty);
assert(ptr_sampler_ty);
Instruction* sampler_var = builder.AddVariable(
ptr_sampler_ty->result_id(), SpvStorageClassUniformConstant);
Instruction* image_var = builder.AddVariable(ptr_image_ty->result_id(),
SpvStorageClassUniformConstant);
modified_ = true;
return RemapUses(combined_var, image_var, sampler_var);
}
spv_result_t SplitCombinedImageSamplerPass::RemapUses(
Instruction* combined, Instruction* image_part, Instruction* sampler_part) {
// The instructions to delete.
std::unordered_set<Instruction*> dead_insts;
// The insertion point should be updated before using this builder.
// We needed *something* here.
InstructionBuilder builder(context(), combined, IRContext::kAnalysisDefUse);
// This code must maintain the SPIR-V "Data rule" about sampled image values:
// > All OpSampledImage instructions, or instructions that load an image or
// > sampler reference, must be in the same block in which their Result <id>
// > are consumed.
//
// When the code below inserts OpSampledImage instructions, it is always
// either:
// - in the same block as the previous OpSampledImage instruction it is
// replacing, or
// - in the same block as the instruction using sampled image value it is
// replacing.
//
// Assuming that rule is already honoured by the module, these updates will
// continue to honour the rule.
// Represents a single use of a value to be remapped.
struct RemapUse {
uint32_t used_id; // The ID that is being used.
Instruction* user;
uint32_t index;
Instruction* image_part; // The image part of the replacement.
Instruction* sampler_part; // The sampler part of the replacement.
};
// The work list of uses to be remapped.
std::vector<RemapUse> uses;
// Adds remap records for each use of a value to be remapped.
// Also schedules the original value for deletion.
auto add_remap = [this, &dead_insts, &uses](Instruction* combined_arg,
Instruction* image_part_arg,
Instruction* sampler_part_arg) {
const uint32_t used_combined_id = combined_arg->result_id();
def_use_mgr_->ForEachUse(
combined_arg, [&](Instruction* user, uint32_t use_index) {
uses.push_back({used_combined_id, user, use_index, image_part_arg,
sampler_part_arg});
});
dead_insts.insert(combined_arg);
};
add_remap(combined, image_part, sampler_part);
// Use index-based iteration because we can add to the work list as we go
// along, and reallocation would invalidate ordinary iterators.
for (size_t use_index = 0; use_index < uses.size(); ++use_index) {
auto& use = uses[use_index];
switch (use.user->opcode()) {
case spv::Op::OpCopyObject: {
// Append the uses of this OpCopyObject to the work list.
add_remap(use.user, image_part, sampler_part);
break;
}
case spv::Op::OpLoad: {
assert(use.index == 2 && "variable used as non-pointer index on load");
Instruction* load = use.user;
// Assume the loaded value is a sampled image.
assert(def_use_mgr_->GetDef(load->type_id())->opcode() ==
spv::Op::OpTypeSampledImage);
// Create loads for the image part and sampler part.
builder.SetInsertPoint(load);
auto* image = builder.AddLoad(PointeeTypeId(use.image_part),
use.image_part->result_id());
auto* sampler = builder.AddLoad(PointeeTypeId(use.sampler_part),
use.sampler_part->result_id());
// Move decorations, such as RelaxedPrecision.
auto* deco_mgr = context()->get_decoration_mgr();
deco_mgr->CloneDecorations(load->result_id(), image->result_id());
deco_mgr->CloneDecorations(load->result_id(), sampler->result_id());
deco_mgr->RemoveDecorationsFrom(load->result_id());
// Create a sampled image from the loads of the two parts.
auto* sampled_image = builder.AddSampledImage(
load->type_id(), image->result_id(), sampler->result_id());
// Replace the original sampled image value with the new one.
std::unordered_set<Instruction*> users;
def_use_mgr_->ForEachUse(
load, [&users, sampled_image](Instruction* user, uint32_t index) {
user->SetOperand(index, {sampled_image->result_id()});
users.insert(user);
});
for (auto* user : users) {
def_use_mgr_->AnalyzeInstUse(user);
}
dead_insts.insert(load);
break;
}
case spv::Op::OpDecorate: {
assert(use.index == 0 && "variable used as non-target index");
builder.SetInsertPoint(use.user);
spv::Decoration deco{use.user->GetSingleWordInOperand(1)};
std::vector<uint32_t> literals;
for (uint32_t i = 2; i < use.user->NumInOperands(); i++) {
literals.push_back(use.user->GetSingleWordInOperand(i));
}
builder.AddDecoration(use.image_part->result_id(), deco, literals);
builder.AddDecoration(use.sampler_part->result_id(), deco, literals);
// KillInst will delete names and decorations, so don't schedule a
// deletion of this instruction.
break;
}
case spv::Op::OpEntryPoint: {
// The entry point lists variables in the shader interface, i.e.
// module-scope variables referenced by the static call tree rooted
// at the entry point. (It can be a proper superset). Before SPIR-V
// 1.4, only Input and Output variables are listed; in 1.4 and later,
// module-scope variables in all storage classes are listed.
// If a combined image+sampler is listed by the entry point, then
// the separated image and sampler variables should be.
assert(use.index >= 3 &&
"variable used in OpEntryPoint but not as an interface ID");
use.user->SetOperand(use.index, {use.image_part->result_id()});
use.user->InsertOperand(
use.user->NumOperands(),
{SPV_OPERAND_TYPE_ID, {use.sampler_part->result_id()}});
def_use_mgr_->AnalyzeInstUse(use.user);
break;
}
case spv::Op::OpName: {
// Synthesize new names from the old.
const auto name = use.user->GetOperand(1).AsString();
AddOpName(use.image_part->result_id(), name + "_image");
AddOpName(use.sampler_part->result_id(), name + "_sampler");
// KillInst will delete names and decorations, so don't schedule a
// deletion of this instruction.
break;
}
case spv::Op::OpFunctionCall: {
// Replace each combined arg with two args: the image part, then the
// sampler part.
// The combined value could have been used twice in the argument list.
// Moving things around now will invalidate the 'use' list above.
// So don't trust the use index value.
auto& call = *use.user;
// The insert API only takes absolute arg IDs, not "in" arg IDs.
const auto first_arg_operand_index = 3; // Skip the callee ID
for (uint32_t i = first_arg_operand_index; i < call.NumOperands();
++i) {
if (use.used_id == call.GetSingleWordOperand(i)) {
call.SetOperand(i, {use.sampler_part->result_id()});
call.InsertOperand(
i, {SPV_OPERAND_TYPE_ID, {use.image_part->result_id()}});
++i;
}
}
def_use_mgr_->AnalyzeInstUse(&call);
break;
}
case spv::Op::OpAccessChain:
case spv::Op::OpInBoundsAccessChain: {
auto* original_access_chain = use.user;
builder.SetInsertPoint(original_access_chain);
// It can only be the base pointer
assert(use.index == 2);
// Replace the original access chain with access chains for the image
// part and the sampler part.
std::vector<uint32_t> indices;
for (uint32_t i = 3; i < original_access_chain->NumOperands(); i++) {
indices.push_back(original_access_chain->GetSingleWordOperand(i));
}
auto [result_image_part_ty, result_sampler_part_ty] =
SplitType(*def_use_mgr_->GetDef(original_access_chain->type_id()));
auto* result_image_part = builder.AddOpcodeAccessChain(
use.user->opcode(), result_image_part_ty->result_id(),
use.image_part->result_id(), indices);
auto* result_sampler_part = builder.AddOpcodeAccessChain(
use.user->opcode(), result_sampler_part_ty->result_id(),
use.sampler_part->result_id(), indices);
// Remap uses of the original access chain.
add_remap(original_access_chain, result_image_part,
result_sampler_part);
break;
}
default: {
uint32_t used_type_id = def_use_mgr_->GetDef(use.used_id)->type_id();
auto* used_type = def_use_mgr_->GetDef(used_type_id);
if (used_type->opcode() == spv::Op::OpTypeSampledImage) {
// This value being used is a sampled image value. But it's
// being replaced, so recreate it here.
// Example: used by OpImage, OpImageSampleExplicitLod, etc.
builder.SetInsertPoint(use.user);
auto* sampled_image =
builder.AddSampledImage(used_type_id, use.image_part->result_id(),
use.sampler_part->result_id());
use.user->SetOperand(use.index, {sampled_image->result_id()});
def_use_mgr_->AnalyzeInstUse(use.user);
break;
}
return Fail() << "unhandled user: " << *use.user;
}
}
}
for (auto* inst : dead_insts) {
KillInst(inst);
}
return SPV_SUCCESS;
}
spv_result_t SplitCombinedImageSamplerPass::RemapFunctions() {
// Remap function types. A combined type can appear as a parameter, but not as
// the return type.
{
std::unordered_set<Instruction*> dead_insts;
for (auto& inst : context()->types_values()) {
if (inst.opcode() != spv::Op::OpTypeFunction) {
continue;
}
analysis::Function* f_ty =
type_mgr_->GetType(inst.result_id())->AsFunction();
std::vector<const analysis::Type*> new_params;
for (const auto* param_ty : f_ty->param_types()) {
const auto param_ty_id = type_mgr_->GetId(param_ty);
if (combined_types_.find(param_ty_id) != combined_types_.end()) {
auto* param_type = def_use_mgr_->GetDef(param_ty_id);
auto [image_type, sampler_type] = SplitType(*param_type);
assert(image_type);
assert(sampler_type);
// The image and sampler types must already exist, so there is no
// need to move them to the right spot.
new_params.push_back(type_mgr_->GetType(image_type->result_id()));
new_params.push_back(type_mgr_->GetType(sampler_type->result_id()));
} else {
new_params.push_back(param_ty);
}
}
if (new_params.size() != f_ty->param_types().size()) {
// Replace this type.
analysis::Function new_f_ty(f_ty->return_type(), new_params);
const uint32_t new_f_ty_id = type_mgr_->GetTypeInstruction(&new_f_ty);
std::unordered_set<Instruction*> users;
def_use_mgr_->ForEachUse(
&inst,
[&users, new_f_ty_id](Instruction* user, uint32_t use_index) {
user->SetOperand(use_index, {new_f_ty_id});
users.insert(user);
});
for (auto* user : users) {
def_use_mgr_->AnalyzeInstUse(user);
}
dead_insts.insert(&inst);
}
}
for (auto* inst : dead_insts) {
KillInst(inst);
}
}
// Rewite OpFunctionParameter in function definitions.
for (Function& fn : *context()->module()) {
// Rewrite the function parameters and record their replacements.
struct Replacement {
Instruction* combined;
Instruction* image;
Instruction* sampler;
};
std::vector<Replacement> replacements;
Function::RewriteParamFn rewriter =
[&](std::unique_ptr<Instruction>&& param,
std::back_insert_iterator<Function::ParamList>& appender) {
if (combined_types_.count(param->type_id()) == 0) {
appender = std::move(param);
return;
}
// Replace this parameter with two new parameters.
auto* combined_inst = param.release();
auto* combined_type = def_use_mgr_->GetDef(combined_inst->type_id());
auto [image_type, sampler_type] = SplitType(*combined_type);
auto image_param = MakeUnique<Instruction>(
context(), spv::Op::OpFunctionParameter, image_type->result_id(),
context()->TakeNextId(), Instruction::OperandList{});
auto sampler_param = MakeUnique<Instruction>(
context(), spv::Op::OpFunctionParameter,
sampler_type->result_id(), context()->TakeNextId(),
Instruction::OperandList{});
replacements.push_back(
{combined_inst, image_param.get(), sampler_param.get()});
appender = std::move(image_param);
appender = std::move(sampler_param);
};
fn.RewriteParams(rewriter);
for (auto& r : replacements) {
modified_ = true;
def_use_mgr_->AnalyzeInstDefUse(r.image);
def_use_mgr_->AnalyzeInstDefUse(r.sampler);
CHECK_STATUS(RemapUses(r.combined, r.image, r.sampler));
}
}
return SPV_SUCCESS;
}
Instruction* SplitCombinedImageSamplerPass::MakeUniformConstantPointer(
Instruction* pointee) {
uint32_t ptr_id = type_mgr_->FindPointerToType(
pointee->result_id(), spv::StorageClass::UniformConstant);
auto* ptr = def_use_mgr_->GetDef(ptr_id);
if (!IsKnownGlobal(ptr_id)) {
// The pointer type was created at the end. Put it right after the
// pointee.
ptr->InsertBefore(pointee);
pointee->InsertBefore(ptr);
RegisterNewGlobal(ptr_id);
// FindPointerToType also updated the def-use manager.
}
return ptr;
}
void SplitCombinedImageSamplerPass::AddOpName(uint32_t id,
const std::string& name) {
std::unique_ptr<Instruction> opname{new Instruction{
context(),
spv::Op::OpName,
0u,
0u,
{{SPV_OPERAND_TYPE_ID, {id}},
{SPV_OPERAND_TYPE_LITERAL_STRING,
utils::MakeVector<spvtools::opt::Operand::OperandData>(name)}}}};
context()->AddDebug2Inst(std::move(opname));
}
spv_result_t SplitCombinedImageSamplerPass::RemoveDeadTypes() {
for (auto dead_type_id : combined_types_to_remove_) {
if (auto* ty = def_use_mgr_->GetDef(dead_type_id)) {
KillInst(ty);
}
}
return SPV_SUCCESS;
}
void SplitCombinedImageSamplerPass::KillInst(Instruction* inst) {
// IRContext::KillInst will remove associated debug instructions and
// decorations. It will delete the object only if it is already in a list.
const bool was_in_list = inst->IsInAList();
context()->KillInst(inst);
if (!was_in_list) {
// Avoid leaking
delete inst;
}
modified_ = true;
}
} // namespace opt
} // namespace spvtools