| //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the ARM specific subclass of TargetSubtargetInfo. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "ARM.h" | 
 |  | 
 | #include "ARMCallLowering.h" | 
 | #include "ARMLegalizerInfo.h" | 
 | #include "ARMRegisterBankInfo.h" | 
 | #include "ARMSubtarget.h" | 
 | #include "ARMFrameLowering.h" | 
 | #include "ARMInstrInfo.h" | 
 | #include "ARMSubtarget.h" | 
 | #include "ARMTargetMachine.h" | 
 | #include "MCTargetDesc/ARMMCTargetDesc.h" | 
 | #include "Thumb1FrameLowering.h" | 
 | #include "Thumb1InstrInfo.h" | 
 | #include "Thumb2InstrInfo.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/ADT/Triple.h" | 
 | #include "llvm/ADT/Twine.h" | 
 | #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/GlobalValue.h" | 
 | #include "llvm/MC/MCAsmInfo.h" | 
 | #include "llvm/MC/MCTargetOptions.h" | 
 | #include "llvm/Support/CodeGen.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/TargetParser.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "arm-subtarget" | 
 |  | 
 | #define GET_SUBTARGETINFO_TARGET_DESC | 
 | #define GET_SUBTARGETINFO_CTOR | 
 | #include "ARMGenSubtargetInfo.inc" | 
 |  | 
 | static cl::opt<bool> | 
 | UseFusedMulOps("arm-use-mulops", | 
 |                cl::init(true), cl::Hidden); | 
 |  | 
 | enum ITMode { | 
 |   DefaultIT, | 
 |   RestrictedIT, | 
 |   NoRestrictedIT | 
 | }; | 
 |  | 
 | static cl::opt<ITMode> | 
 | IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), | 
 |    cl::ZeroOrMore, | 
 |    cl::values(clEnumValN(DefaultIT, "arm-default-it", | 
 |                          "Generate IT block based on arch"), | 
 |               clEnumValN(RestrictedIT, "arm-restrict-it", | 
 |                          "Disallow deprecated IT based on ARMv8"), | 
 |               clEnumValN(NoRestrictedIT, "arm-no-restrict-it", | 
 |                          "Allow IT blocks based on ARMv7"))); | 
 |  | 
 | /// ForceFastISel - Use the fast-isel, even for subtargets where it is not | 
 | /// currently supported (for testing only). | 
 | static cl::opt<bool> | 
 | ForceFastISel("arm-force-fast-isel", | 
 |                cl::init(false), cl::Hidden); | 
 |  | 
 | static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness", | 
 |                                           cl::init(false), cl::Hidden); | 
 |  | 
 | /// initializeSubtargetDependencies - Initializes using a CPU and feature string | 
 | /// so that we can use initializer lists for subtarget initialization. | 
 | ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU, | 
 |                                                             StringRef FS) { | 
 |   initializeEnvironment(); | 
 |   initSubtargetFeatures(CPU, FS); | 
 |   return *this; | 
 | } | 
 |  | 
 | ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU, | 
 |                                                         StringRef FS) { | 
 |   ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS); | 
 |   if (STI.isThumb1Only()) | 
 |     return (ARMFrameLowering *)new Thumb1FrameLowering(STI); | 
 |  | 
 |   return new ARMFrameLowering(STI); | 
 | } | 
 |  | 
 | ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU, | 
 |                            const std::string &FS, | 
 |                            const ARMBaseTargetMachine &TM, bool IsLittle, | 
 |                            bool MinSize) | 
 |     : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps), | 
 |       CPUString(CPU), OptMinSize(MinSize), IsLittle(IsLittle), | 
 |       TargetTriple(TT), Options(TM.Options), TM(TM), | 
 |       FrameLowering(initializeFrameLowering(CPU, FS)), | 
 |       // At this point initializeSubtargetDependencies has been called so | 
 |       // we can query directly. | 
 |       InstrInfo(isThumb1Only() | 
 |                     ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this) | 
 |                     : !isThumb() | 
 |                           ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this) | 
 |                           : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)), | 
 |       TLInfo(TM, *this) { | 
 |  | 
 |   CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering())); | 
 |   Legalizer.reset(new ARMLegalizerInfo(*this)); | 
 |  | 
 |   auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo()); | 
 |  | 
 |   // FIXME: At this point, we can't rely on Subtarget having RBI. | 
 |   // It's awkward to mix passing RBI and the Subtarget; should we pass | 
 |   // TII/TRI as well? | 
 |   InstSelector.reset(createARMInstructionSelector( | 
 |       *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI)); | 
 |  | 
 |   RegBankInfo.reset(RBI); | 
 | } | 
 |  | 
 | const CallLowering *ARMSubtarget::getCallLowering() const { | 
 |   return CallLoweringInfo.get(); | 
 | } | 
 |  | 
 | InstructionSelector *ARMSubtarget::getInstructionSelector() const { | 
 |   return InstSelector.get(); | 
 | } | 
 |  | 
 | const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const { | 
 |   return Legalizer.get(); | 
 | } | 
 |  | 
 | const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const { | 
 |   return RegBankInfo.get(); | 
 | } | 
 |  | 
 | bool ARMSubtarget::isXRaySupported() const { | 
 |   // We don't currently suppport Thumb, but Windows requires Thumb. | 
 |   return hasV6Ops() && hasARMOps() && !isTargetWindows(); | 
 | } | 
 |  | 
 | void ARMSubtarget::initializeEnvironment() { | 
 |   // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this | 
 |   // directly from it, but we can try to make sure they're consistent when both | 
 |   // available. | 
 |   UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() && | 
 |                Options.ExceptionModel == ExceptionHandling::None) || | 
 |               Options.ExceptionModel == ExceptionHandling::SjLj; | 
 |   assert((!TM.getMCAsmInfo() || | 
 |           (TM.getMCAsmInfo()->getExceptionHandlingType() == | 
 |            ExceptionHandling::SjLj) == UseSjLjEH) && | 
 |          "inconsistent sjlj choice between CodeGen and MC"); | 
 | } | 
 |  | 
 | void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) { | 
 |   if (CPUString.empty()) { | 
 |     CPUString = "generic"; | 
 |  | 
 |     if (isTargetDarwin()) { | 
 |       StringRef ArchName = TargetTriple.getArchName(); | 
 |       ARM::ArchKind AK = ARM::parseArch(ArchName); | 
 |       if (AK == ARM::ArchKind::ARMV7S) | 
 |         // Default to the Swift CPU when targeting armv7s/thumbv7s. | 
 |         CPUString = "swift"; | 
 |       else if (AK == ARM::ArchKind::ARMV7K) | 
 |         // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k. | 
 |         // ARMv7k does not use SjLj exception handling. | 
 |         CPUString = "cortex-a7"; | 
 |     } | 
 |   } | 
 |  | 
 |   // Insert the architecture feature derived from the target triple into the | 
 |   // feature string. This is important for setting features that are implied | 
 |   // based on the architecture version. | 
 |   std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString); | 
 |   if (!FS.empty()) { | 
 |     if (!ArchFS.empty()) | 
 |       ArchFS = (Twine(ArchFS) + "," + FS).str(); | 
 |     else | 
 |       ArchFS = FS; | 
 |   } | 
 |   ParseSubtargetFeatures(CPUString, ArchFS); | 
 |  | 
 |   // FIXME: This used enable V6T2 support implicitly for Thumb2 mode. | 
 |   // Assert this for now to make the change obvious. | 
 |   assert(hasV6T2Ops() || !hasThumb2()); | 
 |  | 
 |   // Execute only support requires movt support | 
 |   if (genExecuteOnly()) { | 
 |     NoMovt = false; | 
 |     assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target"); | 
 |   } | 
 |  | 
 |   // Keep a pointer to static instruction cost data for the specified CPU. | 
 |   SchedModel = getSchedModelForCPU(CPUString); | 
 |  | 
 |   // Initialize scheduling itinerary for the specified CPU. | 
 |   InstrItins = getInstrItineraryForCPU(CPUString); | 
 |  | 
 |   // FIXME: this is invalid for WindowsCE | 
 |   if (isTargetWindows()) | 
 |     NoARM = true; | 
 |  | 
 |   if (isAAPCS_ABI()) | 
 |     stackAlignment = Align(8); | 
 |   if (isTargetNaCl() || isAAPCS16_ABI()) | 
 |     stackAlignment = Align(16); | 
 |  | 
 |   // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo:: | 
 |   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as | 
 |   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation | 
 |   // support in the assembler and linker to be used. This would need to be | 
 |   // fixed to fully support tail calls in Thumb1. | 
 |   // | 
 |   // For ARMv8-M, we /do/ implement tail calls.  Doing this is tricky for v8-M | 
 |   // baseline, since the LDM/POP instruction on Thumb doesn't take LR.  This | 
 |   // means if we need to reload LR, it takes extra instructions, which outweighs | 
 |   // the value of the tail call; but here we don't know yet whether LR is going | 
 |   // to be used. We take the optimistic approach of generating the tail call and | 
 |   // perhaps taking a hit if we need to restore the LR. | 
 |  | 
 |   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, | 
 |   // but we need to make sure there are enough registers; the only valid | 
 |   // registers are the 4 used for parameters.  We don't currently do this | 
 |   // case. | 
 |  | 
 |   SupportsTailCall = !isThumb() || hasV8MBaselineOps(); | 
 |  | 
 |   if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0)) | 
 |     SupportsTailCall = false; | 
 |  | 
 |   switch (IT) { | 
 |   case DefaultIT: | 
 |     RestrictIT = hasV8Ops(); | 
 |     break; | 
 |   case RestrictedIT: | 
 |     RestrictIT = true; | 
 |     break; | 
 |   case NoRestrictedIT: | 
 |     RestrictIT = false; | 
 |     break; | 
 |   } | 
 |  | 
 |   // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default. | 
 |   const FeatureBitset &Bits = getFeatureBits(); | 
 |   if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters | 
 |       (Options.UnsafeFPMath || isTargetDarwin())) | 
 |     UseNEONForSinglePrecisionFP = true; | 
 |  | 
 |   if (isRWPI()) | 
 |     ReserveR9 = true; | 
 |  | 
 |   // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2 | 
 |   if (MVEVectorCostFactor == 0) | 
 |     MVEVectorCostFactor = 2; | 
 |  | 
 |   // FIXME: Teach TableGen to deal with these instead of doing it manually here. | 
 |   switch (ARMProcFamily) { | 
 |   case Others: | 
 |   case CortexA5: | 
 |     break; | 
 |   case CortexA7: | 
 |     LdStMultipleTiming = DoubleIssue; | 
 |     break; | 
 |   case CortexA8: | 
 |     LdStMultipleTiming = DoubleIssue; | 
 |     break; | 
 |   case CortexA9: | 
 |     LdStMultipleTiming = DoubleIssueCheckUnalignedAccess; | 
 |     PreISelOperandLatencyAdjustment = 1; | 
 |     break; | 
 |   case CortexA12: | 
 |     break; | 
 |   case CortexA15: | 
 |     MaxInterleaveFactor = 2; | 
 |     PreISelOperandLatencyAdjustment = 1; | 
 |     PartialUpdateClearance = 12; | 
 |     break; | 
 |   case CortexA17: | 
 |   case CortexA32: | 
 |   case CortexA35: | 
 |   case CortexA53: | 
 |   case CortexA55: | 
 |   case CortexA57: | 
 |   case CortexA72: | 
 |   case CortexA73: | 
 |   case CortexA75: | 
 |   case CortexA76: | 
 |   case CortexR4: | 
 |   case CortexR4F: | 
 |   case CortexR5: | 
 |   case CortexR7: | 
 |   case CortexM3: | 
 |   case CortexR52: | 
 |     break; | 
 |   case Exynos: | 
 |     LdStMultipleTiming = SingleIssuePlusExtras; | 
 |     MaxInterleaveFactor = 4; | 
 |     if (!isThumb()) | 
 |       PrefLoopLogAlignment = 3; | 
 |     break; | 
 |   case Kryo: | 
 |     break; | 
 |   case Krait: | 
 |     PreISelOperandLatencyAdjustment = 1; | 
 |     break; | 
 |   case NeoverseN1: | 
 |     break; | 
 |   case Swift: | 
 |     MaxInterleaveFactor = 2; | 
 |     LdStMultipleTiming = SingleIssuePlusExtras; | 
 |     PreISelOperandLatencyAdjustment = 1; | 
 |     PartialUpdateClearance = 12; | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); } | 
 |  | 
 | bool ARMSubtarget::isAPCS_ABI() const { | 
 |   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); | 
 |   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS; | 
 | } | 
 | bool ARMSubtarget::isAAPCS_ABI() const { | 
 |   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); | 
 |   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS || | 
 |          TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; | 
 | } | 
 | bool ARMSubtarget::isAAPCS16_ABI() const { | 
 |   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN); | 
 |   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16; | 
 | } | 
 |  | 
 | bool ARMSubtarget::isROPI() const { | 
 |   return TM.getRelocationModel() == Reloc::ROPI || | 
 |          TM.getRelocationModel() == Reloc::ROPI_RWPI; | 
 | } | 
 | bool ARMSubtarget::isRWPI() const { | 
 |   return TM.getRelocationModel() == Reloc::RWPI || | 
 |          TM.getRelocationModel() == Reloc::ROPI_RWPI; | 
 | } | 
 |  | 
 | bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const { | 
 |   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) | 
 |     return true; | 
 |  | 
 |   // 32 bit macho has no relocation for a-b if a is undefined, even if b is in | 
 |   // the section that is being relocated. This means we have to use o load even | 
 |   // for GVs that are known to be local to the dso. | 
 |   if (isTargetMachO() && TM.isPositionIndependent() && | 
 |       (GV->isDeclarationForLinker() || GV->hasCommonLinkage())) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const { | 
 |   return isTargetELF() && TM.isPositionIndependent() && | 
 |          !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); | 
 | } | 
 |  | 
 | unsigned ARMSubtarget::getMispredictionPenalty() const { | 
 |   return SchedModel.MispredictPenalty; | 
 | } | 
 |  | 
 | bool ARMSubtarget::enableMachineScheduler() const { | 
 |   // The MachineScheduler can increase register usage, so we use more high | 
 |   // registers and end up with more T2 instructions that cannot be converted to | 
 |   // T1 instructions. At least until we do better at converting to thumb1 | 
 |   // instructions, on cortex-m at Oz where we are size-paranoid, don't use the | 
 |   // Machine scheduler, relying on the DAG register pressure scheduler instead. | 
 |   if (isMClass() && hasMinSize()) | 
 |     return false; | 
 |   // Enable the MachineScheduler before register allocation for subtargets | 
 |   // with the use-misched feature. | 
 |   return useMachineScheduler(); | 
 | } | 
 |  | 
 | bool ARMSubtarget::enableSubRegLiveness() const { return EnableSubRegLiveness; } | 
 |  | 
 | // This overrides the PostRAScheduler bit in the SchedModel for any CPU. | 
 | bool ARMSubtarget::enablePostRAScheduler() const { | 
 |   if (enableMachineScheduler()) | 
 |     return false; | 
 |   if (disablePostRAScheduler()) | 
 |     return false; | 
 |   // Thumb1 cores will generally not benefit from post-ra scheduling | 
 |   return !isThumb1Only(); | 
 | } | 
 |  | 
 | bool ARMSubtarget::enablePostRAMachineScheduler() const { | 
 |   if (!enableMachineScheduler()) | 
 |     return false; | 
 |   if (disablePostRAScheduler()) | 
 |     return false; | 
 |   return !isThumb1Only(); | 
 | } | 
 |  | 
 | bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); } | 
 |  | 
 | bool ARMSubtarget::useStride4VFPs() const { | 
 |   // For general targets, the prologue can grow when VFPs are allocated with | 
 |   // stride 4 (more vpush instructions). But WatchOS uses a compact unwind | 
 |   // format which it's more important to get right. | 
 |   return isTargetWatchABI() || | 
 |          (useWideStrideVFP() && !OptMinSize); | 
 | } | 
 |  | 
 | bool ARMSubtarget::useMovt() const { | 
 |   // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit | 
 |   // immediates as it is inherently position independent, and may be out of | 
 |   // range otherwise. | 
 |   return !NoMovt && hasV8MBaselineOps() && | 
 |          (isTargetWindows() || !OptMinSize || genExecuteOnly()); | 
 | } | 
 |  | 
 | bool ARMSubtarget::useFastISel() const { | 
 |   // Enable fast-isel for any target, for testing only. | 
 |   if (ForceFastISel) | 
 |     return true; | 
 |  | 
 |   // Limit fast-isel to the targets that are or have been tested. | 
 |   if (!hasV6Ops()) | 
 |     return false; | 
 |  | 
 |   // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. | 
 |   return TM.Options.EnableFastISel && | 
 |          ((isTargetMachO() && !isThumb1Only()) || | 
 |           (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb())); | 
 | } | 
 |  | 
 | unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const { | 
 |   // The GPR register class has multiple possible allocation orders, with | 
 |   // tradeoffs preferred by different sub-architectures and optimisation goals. | 
 |   // The allocation orders are: | 
 |   // 0: (the default tablegen order, not used) | 
 |   // 1: r14, r0-r13 | 
 |   // 2: r0-r7 | 
 |   // 3: r0-r7, r12, lr, r8-r11 | 
 |   // Note that the register allocator will change this order so that | 
 |   // callee-saved registers are used later, as they require extra work in the | 
 |   // prologue/epilogue (though we sometimes override that). | 
 |  | 
 |   // For thumb1-only targets, only the low registers are allocatable. | 
 |   if (isThumb1Only()) | 
 |     return 2; | 
 |  | 
 |   // Allocate low registers first, so we can select more 16-bit instructions. | 
 |   // We also (in ignoreCSRForAllocationOrder) override  the default behaviour | 
 |   // with regards to callee-saved registers, because pushing extra registers is | 
 |   // much cheaper (in terms of code size) than using high registers. After | 
 |   // that, we allocate r12 (doesn't need to be saved), lr (saving it means we | 
 |   // can return with the pop, don't need an extra "bx lr") and then the rest of | 
 |   // the high registers. | 
 |   if (isThumb2() && MF.getFunction().hasMinSize()) | 
 |     return 3; | 
 |  | 
 |   // Otherwise, allocate in the default order, using LR first because saving it | 
 |   // allows a shorter epilogue sequence. | 
 |   return 1; | 
 | } | 
 |  | 
 | bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF, | 
 |                                                unsigned PhysReg) const { | 
 |   // To minimize code size in Thumb2, we prefer the usage of low regs (lower | 
 |   // cost per use) so we can  use narrow encoding. By default, caller-saved | 
 |   // registers (e.g. lr, r12) are always  allocated first, regardless of | 
 |   // their cost per use. When optForMinSize, we prefer the low regs even if | 
 |   // they are CSR because usually push/pop can be folded into existing ones. | 
 |   return isThumb2() && MF.getFunction().hasMinSize() && | 
 |          ARM::GPRRegClass.contains(PhysReg); | 
 | } |