| //=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | // This pass removes unnecessary copies/moves in BBs based on a dominating | 
 | // condition. | 
 | // | 
 | // We handle three cases: | 
 | // 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of | 
 | //    the CBZ/CBNZ source register is zero on the taken/not-taken path. For | 
 | //    instance, the copy instruction in the code below can be removed because | 
 | //    the CBZW jumps to %bb.2 when w0 is zero. | 
 | // | 
 | //  %bb.1: | 
 | //    cbz w0, .LBB0_2 | 
 | //  .LBB0_2: | 
 | //    mov w0, wzr  ; <-- redundant | 
 | // | 
 | // 2. If the flag setting instruction defines a register other than WZR/XZR, we | 
 | //    can remove a zero copy in some cases. | 
 | // | 
 | //  %bb.0: | 
 | //    subs w0, w1, w2 | 
 | //    str w0, [x1] | 
 | //    b.ne .LBB0_2 | 
 | //  %bb.1: | 
 | //    mov w0, wzr  ; <-- redundant | 
 | //    str w0, [x2] | 
 | //  .LBB0_2 | 
 | // | 
 | // 3. Finally, if the flag setting instruction is a comparison against a | 
 | //    constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate | 
 | //    in some cases. | 
 | // | 
 | //  %bb.0: | 
 | //    subs xzr, x0, #1 | 
 | //    b.eq .LBB0_1 | 
 | //  .LBB0_1: | 
 | //    orr x0, xzr, #0x1  ; <-- redundant | 
 | // | 
 | // This pass should be run after register allocation. | 
 | // | 
 | // FIXME: This could also be extended to check the whole dominance subtree below | 
 | // the comparison if the compile time regression is acceptable. | 
 | // | 
 | // FIXME: Add support for handling CCMP instructions. | 
 | // FIXME: If the known register value is zero, we should be able to rewrite uses | 
 | //        to use WZR/XZR directly in some cases. | 
 | //===----------------------------------------------------------------------===// | 
 | #include "AArch64.h" | 
 | #include "llvm/ADT/Optional.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/iterator_range.h" | 
 | #include "llvm/CodeGen/LiveRegUnits.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/Support/Debug.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "aarch64-copyelim" | 
 |  | 
 | STATISTIC(NumCopiesRemoved, "Number of copies removed."); | 
 |  | 
 | namespace { | 
 | class AArch64RedundantCopyElimination : public MachineFunctionPass { | 
 |   const MachineRegisterInfo *MRI; | 
 |   const TargetRegisterInfo *TRI; | 
 |  | 
 |   // DomBBClobberedRegs is used when computing known values in the dominating | 
 |   // BB. | 
 |   LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs; | 
 |  | 
 |   // OptBBClobberedRegs is used when optimizing away redundant copies/moves. | 
 |   LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs; | 
 |  | 
 | public: | 
 |   static char ID; | 
 |   AArch64RedundantCopyElimination() : MachineFunctionPass(ID) { | 
 |     initializeAArch64RedundantCopyEliminationPass( | 
 |         *PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   struct RegImm { | 
 |     MCPhysReg Reg; | 
 |     int32_t Imm; | 
 |     RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {} | 
 |   }; | 
 |  | 
 |   bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB, | 
 |                           SmallVectorImpl<RegImm> &KnownRegs, | 
 |                           MachineBasicBlock::iterator &FirstUse); | 
 |   bool optimizeBlock(MachineBasicBlock *MBB); | 
 |   bool runOnMachineFunction(MachineFunction &MF) override; | 
 |   MachineFunctionProperties getRequiredProperties() const override { | 
 |     return MachineFunctionProperties().set( | 
 |         MachineFunctionProperties::Property::NoVRegs); | 
 |   } | 
 |   StringRef getPassName() const override { | 
 |     return "AArch64 Redundant Copy Elimination"; | 
 |   } | 
 | }; | 
 | char AArch64RedundantCopyElimination::ID = 0; | 
 | } | 
 |  | 
 | INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim", | 
 |                 "AArch64 redundant copy elimination pass", false, false) | 
 |  | 
 | /// It's possible to determine the value of a register based on a dominating | 
 | /// condition.  To do so, this function checks to see if the basic block \p MBB | 
 | /// is the target of a conditional branch \p CondBr with an equality comparison. | 
 | /// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero | 
 | /// in \p MBB for some cases.  Otherwise, we find and inspect the NZCV setting | 
 | /// instruction (e.g., SUBS, ADDS).  If this instruction defines a register | 
 | /// other than WZR/XZR, we know the value of the destination register is zero in | 
 | /// \p MMB for some cases.  In addition, if the NZCV setting instruction is | 
 | /// comparing against a constant we know the other source register is equal to | 
 | /// the constant in \p MBB for some cases.  If we find any constant values, push | 
 | /// a physical register and constant value pair onto the KnownRegs vector and | 
 | /// return true.  Otherwise, return false if no known values were found. | 
 | bool AArch64RedundantCopyElimination::knownRegValInBlock( | 
 |     MachineInstr &CondBr, MachineBasicBlock *MBB, | 
 |     SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) { | 
 |   unsigned Opc = CondBr.getOpcode(); | 
 |  | 
 |   // Check if the current basic block is the target block to which the | 
 |   // CBZ/CBNZ instruction jumps when its Wt/Xt is zero. | 
 |   if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) && | 
 |        MBB == CondBr.getOperand(1).getMBB()) || | 
 |       ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) && | 
 |        MBB != CondBr.getOperand(1).getMBB())) { | 
 |     FirstUse = CondBr; | 
 |     KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0)); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Otherwise, must be a conditional branch. | 
 |   if (Opc != AArch64::Bcc) | 
 |     return false; | 
 |  | 
 |   // Must be an equality check (i.e., == or !=). | 
 |   AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm(); | 
 |   if (CC != AArch64CC::EQ && CC != AArch64CC::NE) | 
 |     return false; | 
 |  | 
 |   MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB(); | 
 |   if ((CC == AArch64CC::EQ && BrTarget != MBB) || | 
 |       (CC == AArch64CC::NE && BrTarget == MBB)) | 
 |     return false; | 
 |  | 
 |   // Stop if we get to the beginning of PredMBB. | 
 |   MachineBasicBlock *PredMBB = *MBB->pred_begin(); | 
 |   assert(PredMBB == CondBr.getParent() && | 
 |          "Conditional branch not in predecessor block!"); | 
 |   if (CondBr == PredMBB->begin()) | 
 |     return false; | 
 |  | 
 |   // Registers clobbered in PredMBB between CondBr instruction and current | 
 |   // instruction being checked in loop. | 
 |   DomBBClobberedRegs.clear(); | 
 |   DomBBUsedRegs.clear(); | 
 |  | 
 |   // Find compare instruction that sets NZCV used by CondBr. | 
 |   MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator(); | 
 |   for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) { | 
 |  | 
 |     bool IsCMN = false; | 
 |     switch (PredI.getOpcode()) { | 
 |     default: | 
 |       break; | 
 |  | 
 |     // CMN is an alias for ADDS with a dead destination register. | 
 |     case AArch64::ADDSWri: | 
 |     case AArch64::ADDSXri: | 
 |       IsCMN = true; | 
 |       LLVM_FALLTHROUGH; | 
 |     // CMP is an alias for SUBS with a dead destination register. | 
 |     case AArch64::SUBSWri: | 
 |     case AArch64::SUBSXri: { | 
 |       // Sometimes the first operand is a FrameIndex. Bail if tht happens. | 
 |       if (!PredI.getOperand(1).isReg()) | 
 |         return false; | 
 |       MCPhysReg DstReg = PredI.getOperand(0).getReg(); | 
 |       MCPhysReg SrcReg = PredI.getOperand(1).getReg(); | 
 |  | 
 |       bool Res = false; | 
 |       // If we're comparing against a non-symbolic immediate and the source | 
 |       // register of the compare is not modified (including a self-clobbering | 
 |       // compare) between the compare and conditional branch we known the value | 
 |       // of the 1st source operand. | 
 |       if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) && | 
 |           SrcReg != DstReg) { | 
 |         // We've found the instruction that sets NZCV. | 
 |         int32_t KnownImm = PredI.getOperand(2).getImm(); | 
 |         int32_t Shift = PredI.getOperand(3).getImm(); | 
 |         KnownImm <<= Shift; | 
 |         if (IsCMN) | 
 |           KnownImm = -KnownImm; | 
 |         FirstUse = PredI; | 
 |         KnownRegs.push_back(RegImm(SrcReg, KnownImm)); | 
 |         Res = true; | 
 |       } | 
 |  | 
 |       // If this instructions defines something other than WZR/XZR, we know it's | 
 |       // result is zero in some cases. | 
 |       if (DstReg == AArch64::WZR || DstReg == AArch64::XZR) | 
 |         return Res; | 
 |  | 
 |       // The destination register must not be modified between the NZCV setting | 
 |       // instruction and the conditional branch. | 
 |       if (!DomBBClobberedRegs.available(DstReg)) | 
 |         return Res; | 
 |  | 
 |       FirstUse = PredI; | 
 |       KnownRegs.push_back(RegImm(DstReg, 0)); | 
 |       return true; | 
 |     } | 
 |  | 
 |     // Look for NZCV setting instructions that define something other than | 
 |     // WZR/XZR. | 
 |     case AArch64::ADCSWr: | 
 |     case AArch64::ADCSXr: | 
 |     case AArch64::ADDSWrr: | 
 |     case AArch64::ADDSWrs: | 
 |     case AArch64::ADDSWrx: | 
 |     case AArch64::ADDSXrr: | 
 |     case AArch64::ADDSXrs: | 
 |     case AArch64::ADDSXrx: | 
 |     case AArch64::ADDSXrx64: | 
 |     case AArch64::ANDSWri: | 
 |     case AArch64::ANDSWrr: | 
 |     case AArch64::ANDSWrs: | 
 |     case AArch64::ANDSXri: | 
 |     case AArch64::ANDSXrr: | 
 |     case AArch64::ANDSXrs: | 
 |     case AArch64::BICSWrr: | 
 |     case AArch64::BICSWrs: | 
 |     case AArch64::BICSXrs: | 
 |     case AArch64::BICSXrr: | 
 |     case AArch64::SBCSWr: | 
 |     case AArch64::SBCSXr: | 
 |     case AArch64::SUBSWrr: | 
 |     case AArch64::SUBSWrs: | 
 |     case AArch64::SUBSWrx: | 
 |     case AArch64::SUBSXrr: | 
 |     case AArch64::SUBSXrs: | 
 |     case AArch64::SUBSXrx: | 
 |     case AArch64::SUBSXrx64: { | 
 |       MCPhysReg DstReg = PredI.getOperand(0).getReg(); | 
 |       if (DstReg == AArch64::WZR || DstReg == AArch64::XZR) | 
 |         return false; | 
 |  | 
 |       // The destination register of the NZCV setting instruction must not be | 
 |       // modified before the conditional branch. | 
 |       if (!DomBBClobberedRegs.available(DstReg)) | 
 |         return false; | 
 |  | 
 |       // We've found the instruction that sets NZCV whose DstReg == 0. | 
 |       FirstUse = PredI; | 
 |       KnownRegs.push_back(RegImm(DstReg, 0)); | 
 |       return true; | 
 |     } | 
 |     } | 
 |  | 
 |     // Bail if we see an instruction that defines NZCV that we don't handle. | 
 |     if (PredI.definesRegister(AArch64::NZCV)) | 
 |       return false; | 
 |  | 
 |     // Track clobbered and used registers. | 
 |     LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs, | 
 |                                       TRI); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) { | 
 |   // Check if the current basic block has a single predecessor. | 
 |   if (MBB->pred_size() != 1) | 
 |     return false; | 
 |  | 
 |   // Check if the predecessor has two successors, implying the block ends in a | 
 |   // conditional branch. | 
 |   MachineBasicBlock *PredMBB = *MBB->pred_begin(); | 
 |   if (PredMBB->succ_size() != 2) | 
 |     return false; | 
 |  | 
 |   MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr(); | 
 |   if (CondBr == PredMBB->end()) | 
 |     return false; | 
 |  | 
 |   // Keep track of the earliest point in the PredMBB block where kill markers | 
 |   // need to be removed if a COPY is removed. | 
 |   MachineBasicBlock::iterator FirstUse; | 
 |   // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ | 
 |   // or a compare (i.e., SUBS).  In the latter case, we must take care when | 
 |   // updating FirstUse when scanning for COPY instructions.  In particular, if | 
 |   // there's a COPY in between the compare and branch the COPY should not | 
 |   // update FirstUse. | 
 |   bool SeenFirstUse = false; | 
 |   // Registers that contain a known value at the start of MBB. | 
 |   SmallVector<RegImm, 4> KnownRegs; | 
 |  | 
 |   MachineBasicBlock::iterator Itr = std::next(CondBr); | 
 |   do { | 
 |     --Itr; | 
 |  | 
 |     if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse)) | 
 |       continue; | 
 |  | 
 |     // Reset the clobbered and used register units. | 
 |     OptBBClobberedRegs.clear(); | 
 |     OptBBUsedRegs.clear(); | 
 |  | 
 |     // Look backward in PredMBB for COPYs from the known reg to find other | 
 |     // registers that are known to be a constant value. | 
 |     for (auto PredI = Itr;; --PredI) { | 
 |       if (FirstUse == PredI) | 
 |         SeenFirstUse = true; | 
 |  | 
 |       if (PredI->isCopy()) { | 
 |         MCPhysReg CopyDstReg = PredI->getOperand(0).getReg(); | 
 |         MCPhysReg CopySrcReg = PredI->getOperand(1).getReg(); | 
 |         for (auto &KnownReg : KnownRegs) { | 
 |           if (!OptBBClobberedRegs.available(KnownReg.Reg)) | 
 |             continue; | 
 |           // If we have X = COPY Y, and Y is known to be zero, then now X is | 
 |           // known to be zero. | 
 |           if (CopySrcReg == KnownReg.Reg && | 
 |               OptBBClobberedRegs.available(CopyDstReg)) { | 
 |             KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm)); | 
 |             if (SeenFirstUse) | 
 |               FirstUse = PredI; | 
 |             break; | 
 |           } | 
 |           // If we have X = COPY Y, and X is known to be zero, then now Y is | 
 |           // known to be zero. | 
 |           if (CopyDstReg == KnownReg.Reg && | 
 |               OptBBClobberedRegs.available(CopySrcReg)) { | 
 |             KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm)); | 
 |             if (SeenFirstUse) | 
 |               FirstUse = PredI; | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Stop if we get to the beginning of PredMBB. | 
 |       if (PredI == PredMBB->begin()) | 
 |         break; | 
 |  | 
 |       LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs, | 
 |                                         OptBBUsedRegs, TRI); | 
 |       // Stop if all of the known-zero regs have been clobbered. | 
 |       if (all_of(KnownRegs, [&](RegImm KnownReg) { | 
 |             return !OptBBClobberedRegs.available(KnownReg.Reg); | 
 |           })) | 
 |         break; | 
 |     } | 
 |     break; | 
 |  | 
 |   } while (Itr != PredMBB->begin() && Itr->isTerminator()); | 
 |  | 
 |   // We've not found a registers with a known value, time to bail out. | 
 |   if (KnownRegs.empty()) | 
 |     return false; | 
 |  | 
 |   bool Changed = false; | 
 |   // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB. | 
 |   SmallSetVector<unsigned, 4> UsedKnownRegs; | 
 |   MachineBasicBlock::iterator LastChange = MBB->begin(); | 
 |   // Remove redundant copy/move instructions unless KnownReg is modified. | 
 |   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { | 
 |     MachineInstr *MI = &*I; | 
 |     ++I; | 
 |     bool RemovedMI = false; | 
 |     bool IsCopy = MI->isCopy(); | 
 |     bool IsMoveImm = MI->isMoveImmediate(); | 
 |     if (IsCopy || IsMoveImm) { | 
 |       Register DefReg = MI->getOperand(0).getReg(); | 
 |       Register SrcReg = IsCopy ? MI->getOperand(1).getReg() : Register(); | 
 |       int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0; | 
 |       if (!MRI->isReserved(DefReg) && | 
 |           ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) || | 
 |            IsMoveImm)) { | 
 |         for (RegImm &KnownReg : KnownRegs) { | 
 |           if (KnownReg.Reg != DefReg && | 
 |               !TRI->isSuperRegister(DefReg, KnownReg.Reg)) | 
 |             continue; | 
 |  | 
 |           // For a copy, the known value must be a zero. | 
 |           if (IsCopy && KnownReg.Imm != 0) | 
 |             continue; | 
 |  | 
 |           if (IsMoveImm) { | 
 |             // For a move immediate, the known immediate must match the source | 
 |             // immediate. | 
 |             if (KnownReg.Imm != SrcImm) | 
 |               continue; | 
 |  | 
 |             // Don't remove a move immediate that implicitly defines the upper | 
 |             // bits when only the lower 32 bits are known. | 
 |             MCPhysReg CmpReg = KnownReg.Reg; | 
 |             if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) { | 
 |                   return !O.isDead() && O.isReg() && O.isDef() && | 
 |                          O.getReg() != CmpReg; | 
 |                 })) | 
 |               continue; | 
 |           } | 
 |  | 
 |           if (IsCopy) | 
 |             LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI); | 
 |           else | 
 |             LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI); | 
 |  | 
 |           MI->eraseFromParent(); | 
 |           Changed = true; | 
 |           LastChange = I; | 
 |           NumCopiesRemoved++; | 
 |           UsedKnownRegs.insert(KnownReg.Reg); | 
 |           RemovedMI = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Skip to the next instruction if we removed the COPY/MovImm. | 
 |     if (RemovedMI) | 
 |       continue; | 
 |  | 
 |     // Remove any regs the MI clobbers from the KnownConstRegs set. | 
 |     for (unsigned RI = 0; RI < KnownRegs.size();) | 
 |       if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) { | 
 |         std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]); | 
 |         KnownRegs.pop_back(); | 
 |         // Don't increment RI since we need to now check the swapped-in | 
 |         // KnownRegs[RI]. | 
 |       } else { | 
 |         ++RI; | 
 |       } | 
 |  | 
 |     // Continue until the KnownRegs set is empty. | 
 |     if (KnownRegs.empty()) | 
 |       break; | 
 |   } | 
 |  | 
 |   if (!Changed) | 
 |     return false; | 
 |  | 
 |   // Add newly used regs to the block's live-in list if they aren't there | 
 |   // already. | 
 |   for (MCPhysReg KnownReg : UsedKnownRegs) | 
 |     if (!MBB->isLiveIn(KnownReg)) | 
 |       MBB->addLiveIn(KnownReg); | 
 |  | 
 |   // Clear kills in the range where changes were made.  This is conservative, | 
 |   // but should be okay since kill markers are being phased out. | 
 |   LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse | 
 |                     << "\tLastChange: " << *LastChange); | 
 |   for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end())) | 
 |     MMI.clearKillInfo(); | 
 |   for (MachineInstr &MMI : make_range(MBB->begin(), LastChange)) | 
 |     MMI.clearKillInfo(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool AArch64RedundantCopyElimination::runOnMachineFunction( | 
 |     MachineFunction &MF) { | 
 |   if (skipFunction(MF.getFunction())) | 
 |     return false; | 
 |   TRI = MF.getSubtarget().getRegisterInfo(); | 
 |   MRI = &MF.getRegInfo(); | 
 |  | 
 |   // Resize the clobbered and used register unit trackers.  We do this once per | 
 |   // function. | 
 |   DomBBClobberedRegs.init(*TRI); | 
 |   DomBBUsedRegs.init(*TRI); | 
 |   OptBBClobberedRegs.init(*TRI); | 
 |   OptBBUsedRegs.init(*TRI); | 
 |  | 
 |   bool Changed = false; | 
 |   for (MachineBasicBlock &MBB : MF) | 
 |     Changed |= optimizeBlock(&MBB); | 
 |   return Changed; | 
 | } | 
 |  | 
 | FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() { | 
 |   return new AArch64RedundantCopyElimination(); | 
 | } |