|  | //===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the AArch64ExpandImm stuff. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "AArch64.h" | 
|  | #include "AArch64ExpandImm.h" | 
|  | #include "MCTargetDesc/AArch64AddressingModes.h" | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | namespace AArch64_IMM { | 
|  |  | 
|  | /// Helper function which extracts the specified 16-bit chunk from a | 
|  | /// 64-bit value. | 
|  | static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) { | 
|  | assert(ChunkIdx < 4 && "Out of range chunk index specified!"); | 
|  |  | 
|  | return (Imm >> (ChunkIdx * 16)) & 0xFFFF; | 
|  | } | 
|  |  | 
|  | /// Check whether the given 16-bit chunk replicated to full 64-bit width | 
|  | /// can be materialized with an ORR instruction. | 
|  | static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) { | 
|  | Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk; | 
|  |  | 
|  | return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding); | 
|  | } | 
|  |  | 
|  | /// Check for identical 16-bit chunks within the constant and if so | 
|  | /// materialize them with a single ORR instruction. The remaining one or two | 
|  | /// 16-bit chunks will be materialized with MOVK instructions. | 
|  | /// | 
|  | /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order | 
|  | /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with | 
|  | /// an ORR instruction. | 
|  | static bool tryToreplicateChunks(uint64_t UImm, | 
|  | SmallVectorImpl<ImmInsnModel> &Insn) { | 
|  | using CountMap = DenseMap<uint64_t, unsigned>; | 
|  |  | 
|  | CountMap Counts; | 
|  |  | 
|  | // Scan the constant and count how often every chunk occurs. | 
|  | for (unsigned Idx = 0; Idx < 4; ++Idx) | 
|  | ++Counts[getChunk(UImm, Idx)]; | 
|  |  | 
|  | // Traverse the chunks to find one which occurs more than once. | 
|  | for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end(); | 
|  | Chunk != End; ++Chunk) { | 
|  | const uint64_t ChunkVal = Chunk->first; | 
|  | const unsigned Count = Chunk->second; | 
|  |  | 
|  | uint64_t Encoding = 0; | 
|  |  | 
|  | // We are looking for chunks which have two or three instances and can be | 
|  | // materialized with an ORR instruction. | 
|  | if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding)) | 
|  | continue; | 
|  |  | 
|  | const bool CountThree = Count == 3; | 
|  |  | 
|  | Insn.push_back({ AArch64::ORRXri, 0, Encoding }); | 
|  |  | 
|  | unsigned ShiftAmt = 0; | 
|  | uint64_t Imm16 = 0; | 
|  | // Find the first chunk not materialized with the ORR instruction. | 
|  | for (; ShiftAmt < 64; ShiftAmt += 16) { | 
|  | Imm16 = (UImm >> ShiftAmt) & 0xFFFF; | 
|  |  | 
|  | if (Imm16 != ChunkVal) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Create the first MOVK instruction. | 
|  | Insn.push_back({ AArch64::MOVKXi, Imm16, | 
|  | AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) }); | 
|  |  | 
|  | // In case we have three instances the whole constant is now materialized | 
|  | // and we can exit. | 
|  | if (CountThree) | 
|  | return true; | 
|  |  | 
|  | // Find the remaining chunk which needs to be materialized. | 
|  | for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) { | 
|  | Imm16 = (UImm >> ShiftAmt) & 0xFFFF; | 
|  |  | 
|  | if (Imm16 != ChunkVal) | 
|  | break; | 
|  | } | 
|  | Insn.push_back({ AArch64::MOVKXi, Imm16, | 
|  | AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) }); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check whether this chunk matches the pattern '1...0...'. This pattern | 
|  | /// starts a contiguous sequence of ones if we look at the bits from the LSB | 
|  | /// towards the MSB. | 
|  | static bool isStartChunk(uint64_t Chunk) { | 
|  | if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) | 
|  | return false; | 
|  |  | 
|  | return isMask_64(~Chunk); | 
|  | } | 
|  |  | 
|  | /// Check whether this chunk matches the pattern '0...1...' This pattern | 
|  | /// ends a contiguous sequence of ones if we look at the bits from the LSB | 
|  | /// towards the MSB. | 
|  | static bool isEndChunk(uint64_t Chunk) { | 
|  | if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) | 
|  | return false; | 
|  |  | 
|  | return isMask_64(Chunk); | 
|  | } | 
|  |  | 
|  | /// Clear or set all bits in the chunk at the given index. | 
|  | static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) { | 
|  | const uint64_t Mask = 0xFFFF; | 
|  |  | 
|  | if (Clear) | 
|  | // Clear chunk in the immediate. | 
|  | Imm &= ~(Mask << (Idx * 16)); | 
|  | else | 
|  | // Set all bits in the immediate for the particular chunk. | 
|  | Imm |= Mask << (Idx * 16); | 
|  |  | 
|  | return Imm; | 
|  | } | 
|  |  | 
|  | /// Check whether the constant contains a sequence of contiguous ones, | 
|  | /// which might be interrupted by one or two chunks. If so, materialize the | 
|  | /// sequence of contiguous ones with an ORR instruction. | 
|  | /// Materialize the chunks which are either interrupting the sequence or outside | 
|  | /// of the sequence with a MOVK instruction. | 
|  | /// | 
|  | /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk | 
|  | /// which ends the sequence (0...1...). Then we are looking for constants which | 
|  | /// contain at least one S and E chunk. | 
|  | /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|. | 
|  | /// | 
|  | /// We are also looking for constants like |S|A|B|E| where the contiguous | 
|  | /// sequence of ones wraps around the MSB into the LSB. | 
|  | static bool trySequenceOfOnes(uint64_t UImm, | 
|  | SmallVectorImpl<ImmInsnModel> &Insn) { | 
|  | const int NotSet = -1; | 
|  | const uint64_t Mask = 0xFFFF; | 
|  |  | 
|  | int StartIdx = NotSet; | 
|  | int EndIdx = NotSet; | 
|  | // Try to find the chunks which start/end a contiguous sequence of ones. | 
|  | for (int Idx = 0; Idx < 4; ++Idx) { | 
|  | int64_t Chunk = getChunk(UImm, Idx); | 
|  | // Sign extend the 16-bit chunk to 64-bit. | 
|  | Chunk = (Chunk << 48) >> 48; | 
|  |  | 
|  | if (isStartChunk(Chunk)) | 
|  | StartIdx = Idx; | 
|  | else if (isEndChunk(Chunk)) | 
|  | EndIdx = Idx; | 
|  | } | 
|  |  | 
|  | // Early exit in case we can't find a start/end chunk. | 
|  | if (StartIdx == NotSet || EndIdx == NotSet) | 
|  | return false; | 
|  |  | 
|  | // Outside of the contiguous sequence of ones everything needs to be zero. | 
|  | uint64_t Outside = 0; | 
|  | // Chunks between the start and end chunk need to have all their bits set. | 
|  | uint64_t Inside = Mask; | 
|  |  | 
|  | // If our contiguous sequence of ones wraps around from the MSB into the LSB, | 
|  | // just swap indices and pretend we are materializing a contiguous sequence | 
|  | // of zeros surrounded by a contiguous sequence of ones. | 
|  | if (StartIdx > EndIdx) { | 
|  | std::swap(StartIdx, EndIdx); | 
|  | std::swap(Outside, Inside); | 
|  | } | 
|  |  | 
|  | uint64_t OrrImm = UImm; | 
|  | int FirstMovkIdx = NotSet; | 
|  | int SecondMovkIdx = NotSet; | 
|  |  | 
|  | // Find out which chunks we need to patch up to obtain a contiguous sequence | 
|  | // of ones. | 
|  | for (int Idx = 0; Idx < 4; ++Idx) { | 
|  | const uint64_t Chunk = getChunk(UImm, Idx); | 
|  |  | 
|  | // Check whether we are looking at a chunk which is not part of the | 
|  | // contiguous sequence of ones. | 
|  | if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) { | 
|  | OrrImm = updateImm(OrrImm, Idx, Outside == 0); | 
|  |  | 
|  | // Remember the index we need to patch. | 
|  | if (FirstMovkIdx == NotSet) | 
|  | FirstMovkIdx = Idx; | 
|  | else | 
|  | SecondMovkIdx = Idx; | 
|  |  | 
|  | // Check whether we are looking a chunk which is part of the contiguous | 
|  | // sequence of ones. | 
|  | } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) { | 
|  | OrrImm = updateImm(OrrImm, Idx, Inside != Mask); | 
|  |  | 
|  | // Remember the index we need to patch. | 
|  | if (FirstMovkIdx == NotSet) | 
|  | FirstMovkIdx = Idx; | 
|  | else | 
|  | SecondMovkIdx = Idx; | 
|  | } | 
|  | } | 
|  | assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!"); | 
|  |  | 
|  | // Create the ORR-immediate instruction. | 
|  | uint64_t Encoding = 0; | 
|  | AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding); | 
|  | Insn.push_back({ AArch64::ORRXri, 0, Encoding }); | 
|  |  | 
|  | const bool SingleMovk = SecondMovkIdx == NotSet; | 
|  | Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx), | 
|  | AArch64_AM::getShifterImm(AArch64_AM::LSL, | 
|  | FirstMovkIdx * 16) }); | 
|  |  | 
|  | // Early exit in case we only need to emit a single MOVK instruction. | 
|  | if (SingleMovk) | 
|  | return true; | 
|  |  | 
|  | // Create the second MOVK instruction. | 
|  | Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx), | 
|  | AArch64_AM::getShifterImm(AArch64_AM::LSL, | 
|  | SecondMovkIdx * 16) }); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a | 
|  | /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions. | 
|  | static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize, | 
|  | unsigned OneChunks, unsigned ZeroChunks, | 
|  | SmallVectorImpl<ImmInsnModel> &Insn) { | 
|  | const unsigned Mask = 0xFFFF; | 
|  |  | 
|  | // Use a MOVZ or MOVN instruction to set the high bits, followed by one or | 
|  | // more MOVK instructions to insert additional 16-bit portions into the | 
|  | // lower bits. | 
|  | bool isNeg = false; | 
|  |  | 
|  | // Use MOVN to materialize the high bits if we have more all one chunks | 
|  | // than all zero chunks. | 
|  | if (OneChunks > ZeroChunks) { | 
|  | isNeg = true; | 
|  | Imm = ~Imm; | 
|  | } | 
|  |  | 
|  | unsigned FirstOpc; | 
|  | if (BitSize == 32) { | 
|  | Imm &= (1LL << 32) - 1; | 
|  | FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi); | 
|  | } else { | 
|  | FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi); | 
|  | } | 
|  | unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN | 
|  | unsigned LastShift = 0; // LSL amount for last MOVK | 
|  | if (Imm != 0) { | 
|  | unsigned LZ = countLeadingZeros(Imm); | 
|  | unsigned TZ = countTrailingZeros(Imm); | 
|  | Shift = (TZ / 16) * 16; | 
|  | LastShift = ((63 - LZ) / 16) * 16; | 
|  | } | 
|  | unsigned Imm16 = (Imm >> Shift) & Mask; | 
|  |  | 
|  | Insn.push_back({ FirstOpc, Imm16, | 
|  | AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); | 
|  |  | 
|  | if (Shift == LastShift) | 
|  | return; | 
|  |  | 
|  | // If a MOVN was used for the high bits of a negative value, flip the rest | 
|  | // of the bits back for use with MOVK. | 
|  | if (isNeg) | 
|  | Imm = ~Imm; | 
|  |  | 
|  | unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi); | 
|  | while (Shift < LastShift) { | 
|  | Shift += 16; | 
|  | Imm16 = (Imm >> Shift) & Mask; | 
|  | if (Imm16 == (isNeg ? Mask : 0)) | 
|  | continue; // This 16-bit portion is already set correctly. | 
|  |  | 
|  | Insn.push_back({ Opc, Imm16, | 
|  | AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more | 
|  | /// real move-immediate instructions to synthesize the immediate. | 
|  | void expandMOVImm(uint64_t Imm, unsigned BitSize, | 
|  | SmallVectorImpl<ImmInsnModel> &Insn) { | 
|  | const unsigned Mask = 0xFFFF; | 
|  |  | 
|  | // Scan the immediate and count the number of 16-bit chunks which are either | 
|  | // all ones or all zeros. | 
|  | unsigned OneChunks = 0; | 
|  | unsigned ZeroChunks = 0; | 
|  | for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { | 
|  | const unsigned Chunk = (Imm >> Shift) & Mask; | 
|  | if (Chunk == Mask) | 
|  | OneChunks++; | 
|  | else if (Chunk == 0) | 
|  | ZeroChunks++; | 
|  | } | 
|  |  | 
|  | // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias. | 
|  | if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) { | 
|  | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Try a single ORR. | 
|  | uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize); | 
|  | uint64_t Encoding; | 
|  | if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) { | 
|  | unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri); | 
|  | Insn.push_back({ Opc, 0, Encoding }); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // One to up three instruction sequences. | 
|  | // | 
|  | // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the | 
|  | // fastest sequence with fast literal generation. | 
|  | if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) { | 
|  | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(BitSize == 64 && "All 32-bit immediates can be expanded with a" | 
|  | "MOVZ/MOVK pair"); | 
|  |  | 
|  | // Try other two-instruction sequences. | 
|  |  | 
|  | // 64-bit ORR followed by MOVK. | 
|  | // We try to construct the ORR immediate in three different ways: either we | 
|  | // zero out the chunk which will be replaced, we fill the chunk which will | 
|  | // be replaced with ones, or we take the bit pattern from the other half of | 
|  | // the 64-bit immediate. This is comprehensive because of the way ORR | 
|  | // immediates are constructed. | 
|  | for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { | 
|  | uint64_t ShiftedMask = (0xFFFFULL << Shift); | 
|  | uint64_t ZeroChunk = UImm & ~ShiftedMask; | 
|  | uint64_t OneChunk = UImm | ShiftedMask; | 
|  | uint64_t RotatedImm = (UImm << 32) | (UImm >> 32); | 
|  | uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask); | 
|  | if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) || | 
|  | AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) || | 
|  | AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize, | 
|  | Encoding)) { | 
|  | // Create the ORR-immediate instruction. | 
|  | Insn.push_back({ AArch64::ORRXri, 0, Encoding }); | 
|  |  | 
|  | // Create the MOVK instruction. | 
|  | const unsigned Imm16 = getChunk(UImm, Shift / 16); | 
|  | Insn.push_back({ AArch64::MOVKXi, Imm16, | 
|  | AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) }); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Add more two-instruction sequences. | 
|  |  | 
|  | // Three instruction sequences. | 
|  | // | 
|  | // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly | 
|  | // the fastest sequence with fast literal generation. (If neither MOVK is | 
|  | // part of a fast literal generation pair, it could be slower than the | 
|  | // four-instruction sequence, but we won't worry about that for now.) | 
|  | if (OneChunks || ZeroChunks) { | 
|  | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check for identical 16-bit chunks within the constant and if so materialize | 
|  | // them with a single ORR instruction. The remaining one or two 16-bit chunks | 
|  | // will be materialized with MOVK instructions. | 
|  | if (BitSize == 64 && tryToreplicateChunks(UImm, Insn)) | 
|  | return; | 
|  |  | 
|  | // Check whether the constant contains a sequence of contiguous ones, which | 
|  | // might be interrupted by one or two chunks. If so, materialize the sequence | 
|  | // of contiguous ones with an ORR instruction. Materialize the chunks which | 
|  | // are either interrupting the sequence or outside of the sequence with a | 
|  | // MOVK instruction. | 
|  | if (BitSize == 64 && trySequenceOfOnes(UImm, Insn)) | 
|  | return; | 
|  |  | 
|  | // We found no possible two or three instruction sequence; use the general | 
|  | // four-instruction sequence. | 
|  | expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn); | 
|  | } | 
|  |  | 
|  | } // end namespace AArch64_AM | 
|  |  | 
|  | } // end namespace llvm |