|  | //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file includes support code use by SelectionDAGBuilder when lowering a | 
|  | // statepoint sequence in SelectionDAG IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "StatepointLowering.h" | 
|  | #include "SelectionDAGBuilder.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/GCMetadata.h" | 
|  | #include "llvm/CodeGen/GCStrategy.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/RuntimeLibcalls.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Statepoint.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "statepoint-lowering" | 
|  |  | 
|  | STATISTIC(NumSlotsAllocatedForStatepoints, | 
|  | "Number of stack slots allocated for statepoints"); | 
|  | STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered"); | 
|  | STATISTIC(StatepointMaxSlotsRequired, | 
|  | "Maximum number of stack slots required for a singe statepoint"); | 
|  |  | 
|  | static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops, | 
|  | SelectionDAGBuilder &Builder, uint64_t Value) { | 
|  | SDLoc L = Builder.getCurSDLoc(); | 
|  | Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L, | 
|  | MVT::i64)); | 
|  | Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64)); | 
|  | } | 
|  |  | 
|  | void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) { | 
|  | // Consistency check | 
|  | assert(PendingGCRelocateCalls.empty() && | 
|  | "Trying to visit statepoint before finished processing previous one"); | 
|  | Locations.clear(); | 
|  | NextSlotToAllocate = 0; | 
|  | // Need to resize this on each safepoint - we need the two to stay in sync and | 
|  | // the clear patterns of a SelectionDAGBuilder have no relation to | 
|  | // FunctionLoweringInfo.  Also need to ensure used bits get cleared. | 
|  | AllocatedStackSlots.clear(); | 
|  | AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size()); | 
|  | } | 
|  |  | 
|  | void StatepointLoweringState::clear() { | 
|  | Locations.clear(); | 
|  | AllocatedStackSlots.clear(); | 
|  | assert(PendingGCRelocateCalls.empty() && | 
|  | "cleared before statepoint sequence completed"); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | StatepointLoweringState::allocateStackSlot(EVT ValueType, | 
|  | SelectionDAGBuilder &Builder) { | 
|  | NumSlotsAllocatedForStatepoints++; | 
|  | MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); | 
|  |  | 
|  | unsigned SpillSize = ValueType.getStoreSize(); | 
|  | assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?"); | 
|  |  | 
|  | // First look for a previously created stack slot which is not in | 
|  | // use (accounting for the fact arbitrary slots may already be | 
|  | // reserved), or to create a new stack slot and use it. | 
|  |  | 
|  | const size_t NumSlots = AllocatedStackSlots.size(); | 
|  | assert(NextSlotToAllocate <= NumSlots && "Broken invariant"); | 
|  |  | 
|  | assert(AllocatedStackSlots.size() == | 
|  | Builder.FuncInfo.StatepointStackSlots.size() && | 
|  | "Broken invariant"); | 
|  |  | 
|  | for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) { | 
|  | if (!AllocatedStackSlots.test(NextSlotToAllocate)) { | 
|  | const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate]; | 
|  | if (MFI.getObjectSize(FI) == SpillSize) { | 
|  | AllocatedStackSlots.set(NextSlotToAllocate); | 
|  | // TODO: Is ValueType the right thing to use here? | 
|  | return Builder.DAG.getFrameIndex(FI, ValueType); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Couldn't find a free slot, so create a new one: | 
|  |  | 
|  | SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType); | 
|  | const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); | 
|  | MFI.markAsStatepointSpillSlotObjectIndex(FI); | 
|  |  | 
|  | Builder.FuncInfo.StatepointStackSlots.push_back(FI); | 
|  | AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true); | 
|  | assert(AllocatedStackSlots.size() == | 
|  | Builder.FuncInfo.StatepointStackSlots.size() && | 
|  | "Broken invariant"); | 
|  |  | 
|  | StatepointMaxSlotsRequired.updateMax( | 
|  | Builder.FuncInfo.StatepointStackSlots.size()); | 
|  |  | 
|  | return SpillSlot; | 
|  | } | 
|  |  | 
|  | /// Utility function for reservePreviousStackSlotForValue. Tries to find | 
|  | /// stack slot index to which we have spilled value for previous statepoints. | 
|  | /// LookUpDepth specifies maximum DFS depth this function is allowed to look. | 
|  | static Optional<int> findPreviousSpillSlot(const Value *Val, | 
|  | SelectionDAGBuilder &Builder, | 
|  | int LookUpDepth) { | 
|  | // Can not look any further - give up now | 
|  | if (LookUpDepth <= 0) | 
|  | return None; | 
|  |  | 
|  | // Spill location is known for gc relocates | 
|  | if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) { | 
|  | const auto &SpillMap = | 
|  | Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()]; | 
|  |  | 
|  | auto It = SpillMap.find(Relocate->getDerivedPtr()); | 
|  | if (It == SpillMap.end()) | 
|  | return None; | 
|  |  | 
|  | return It->second; | 
|  | } | 
|  |  | 
|  | // Look through bitcast instructions. | 
|  | if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) | 
|  | return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1); | 
|  |  | 
|  | // Look through phi nodes | 
|  | // All incoming values should have same known stack slot, otherwise result | 
|  | // is unknown. | 
|  | if (const PHINode *Phi = dyn_cast<PHINode>(Val)) { | 
|  | Optional<int> MergedResult = None; | 
|  |  | 
|  | for (auto &IncomingValue : Phi->incoming_values()) { | 
|  | Optional<int> SpillSlot = | 
|  | findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1); | 
|  | if (!SpillSlot.hasValue()) | 
|  | return None; | 
|  |  | 
|  | if (MergedResult.hasValue() && *MergedResult != *SpillSlot) | 
|  | return None; | 
|  |  | 
|  | MergedResult = SpillSlot; | 
|  | } | 
|  | return MergedResult; | 
|  | } | 
|  |  | 
|  | // TODO: We can do better for PHI nodes. In cases like this: | 
|  | //   ptr = phi(relocated_pointer, not_relocated_pointer) | 
|  | //   statepoint(ptr) | 
|  | // We will return that stack slot for ptr is unknown. And later we might | 
|  | // assign different stack slots for ptr and relocated_pointer. This limits | 
|  | // llvm's ability to remove redundant stores. | 
|  | // Unfortunately it's hard to accomplish in current infrastructure. | 
|  | // We use this function to eliminate spill store completely, while | 
|  | // in example we still need to emit store, but instead of any location | 
|  | // we need to use special "preferred" location. | 
|  |  | 
|  | // TODO: handle simple updates.  If a value is modified and the original | 
|  | // value is no longer live, it would be nice to put the modified value in the | 
|  | // same slot.  This allows folding of the memory accesses for some | 
|  | // instructions types (like an increment). | 
|  | //   statepoint (i) | 
|  | //   i1 = i+1 | 
|  | //   statepoint (i1) | 
|  | // However we need to be careful for cases like this: | 
|  | //   statepoint(i) | 
|  | //   i1 = i+1 | 
|  | //   statepoint(i, i1) | 
|  | // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just | 
|  | // put handling of simple modifications in this function like it's done | 
|  | // for bitcasts we might end up reserving i's slot for 'i+1' because order in | 
|  | // which we visit values is unspecified. | 
|  |  | 
|  | // Don't know any information about this instruction | 
|  | return None; | 
|  | } | 
|  |  | 
|  | /// Try to find existing copies of the incoming values in stack slots used for | 
|  | /// statepoint spilling.  If we can find a spill slot for the incoming value, | 
|  | /// mark that slot as allocated, and reuse the same slot for this safepoint. | 
|  | /// This helps to avoid series of loads and stores that only serve to reshuffle | 
|  | /// values on the stack between calls. | 
|  | static void reservePreviousStackSlotForValue(const Value *IncomingValue, | 
|  | SelectionDAGBuilder &Builder) { | 
|  | SDValue Incoming = Builder.getValue(IncomingValue); | 
|  |  | 
|  | if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) { | 
|  | // We won't need to spill this, so no need to check for previously | 
|  | // allocated stack slots | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming); | 
|  | if (OldLocation.getNode()) | 
|  | // Duplicates in input | 
|  | return; | 
|  |  | 
|  | const int LookUpDepth = 6; | 
|  | Optional<int> Index = | 
|  | findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth); | 
|  | if (!Index.hasValue()) | 
|  | return; | 
|  |  | 
|  | const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots; | 
|  |  | 
|  | auto SlotIt = find(StatepointSlots, *Index); | 
|  | assert(SlotIt != StatepointSlots.end() && | 
|  | "Value spilled to the unknown stack slot"); | 
|  |  | 
|  | // This is one of our dedicated lowering slots | 
|  | const int Offset = std::distance(StatepointSlots.begin(), SlotIt); | 
|  | if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) { | 
|  | // stack slot already assigned to someone else, can't use it! | 
|  | // TODO: currently we reserve space for gc arguments after doing | 
|  | // normal allocation for deopt arguments.  We should reserve for | 
|  | // _all_ deopt and gc arguments, then start allocating.  This | 
|  | // will prevent some moves being inserted when vm state changes, | 
|  | // but gc state doesn't between two calls. | 
|  | return; | 
|  | } | 
|  | // Reserve this stack slot | 
|  | Builder.StatepointLowering.reserveStackSlot(Offset); | 
|  |  | 
|  | // Cache this slot so we find it when going through the normal | 
|  | // assignment loop. | 
|  | SDValue Loc = | 
|  | Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy()); | 
|  | Builder.StatepointLowering.setLocation(Incoming, Loc); | 
|  | } | 
|  |  | 
|  | /// Remove any duplicate (as SDValues) from the derived pointer pairs.  This | 
|  | /// is not required for correctness.  It's purpose is to reduce the size of | 
|  | /// StackMap section.  It has no effect on the number of spill slots required | 
|  | /// or the actual lowering. | 
|  | static void | 
|  | removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases, | 
|  | SmallVectorImpl<const Value *> &Ptrs, | 
|  | SmallVectorImpl<const GCRelocateInst *> &Relocs, | 
|  | SelectionDAGBuilder &Builder, | 
|  | FunctionLoweringInfo::StatepointSpillMap &SSM) { | 
|  | DenseMap<SDValue, const Value *> Seen; | 
|  |  | 
|  | SmallVector<const Value *, 64> NewBases, NewPtrs; | 
|  | SmallVector<const GCRelocateInst *, 64> NewRelocs; | 
|  | for (size_t i = 0, e = Ptrs.size(); i < e; i++) { | 
|  | SDValue SD = Builder.getValue(Ptrs[i]); | 
|  | auto SeenIt = Seen.find(SD); | 
|  |  | 
|  | if (SeenIt == Seen.end()) { | 
|  | // Only add non-duplicates | 
|  | NewBases.push_back(Bases[i]); | 
|  | NewPtrs.push_back(Ptrs[i]); | 
|  | NewRelocs.push_back(Relocs[i]); | 
|  | Seen[SD] = Ptrs[i]; | 
|  | } else { | 
|  | // Duplicate pointer found, note in SSM and move on: | 
|  | SSM.DuplicateMap[Ptrs[i]] = SeenIt->second; | 
|  | } | 
|  | } | 
|  | assert(Bases.size() >= NewBases.size()); | 
|  | assert(Ptrs.size() >= NewPtrs.size()); | 
|  | assert(Relocs.size() >= NewRelocs.size()); | 
|  | Bases = NewBases; | 
|  | Ptrs = NewPtrs; | 
|  | Relocs = NewRelocs; | 
|  | assert(Ptrs.size() == Bases.size()); | 
|  | assert(Ptrs.size() == Relocs.size()); | 
|  | } | 
|  |  | 
|  | /// Extract call from statepoint, lower it and return pointer to the | 
|  | /// call node. Also update NodeMap so that getValue(statepoint) will | 
|  | /// reference lowered call result | 
|  | static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo( | 
|  | SelectionDAGBuilder::StatepointLoweringInfo &SI, | 
|  | SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) { | 
|  | SDValue ReturnValue, CallEndVal; | 
|  | std::tie(ReturnValue, CallEndVal) = | 
|  | Builder.lowerInvokable(SI.CLI, SI.EHPadBB); | 
|  | SDNode *CallEnd = CallEndVal.getNode(); | 
|  |  | 
|  | // Get a call instruction from the call sequence chain.  Tail calls are not | 
|  | // allowed.  The following code is essentially reverse engineering X86's | 
|  | // LowerCallTo. | 
|  | // | 
|  | // We are expecting DAG to have the following form: | 
|  | // | 
|  | // ch = eh_label (only in case of invoke statepoint) | 
|  | //   ch, glue = callseq_start ch | 
|  | //   ch, glue = X86::Call ch, glue | 
|  | //   ch, glue = callseq_end ch, glue | 
|  | //   get_return_value ch, glue | 
|  | // | 
|  | // get_return_value can either be a sequence of CopyFromReg instructions | 
|  | // to grab the return value from the return register(s), or it can be a LOAD | 
|  | // to load a value returned by reference via a stack slot. | 
|  |  | 
|  | bool HasDef = !SI.CLI.RetTy->isVoidTy(); | 
|  | if (HasDef) { | 
|  | if (CallEnd->getOpcode() == ISD::LOAD) | 
|  | CallEnd = CallEnd->getOperand(0).getNode(); | 
|  | else | 
|  | while (CallEnd->getOpcode() == ISD::CopyFromReg) | 
|  | CallEnd = CallEnd->getOperand(0).getNode(); | 
|  | } | 
|  |  | 
|  | assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!"); | 
|  | return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode()); | 
|  | } | 
|  |  | 
|  | static MachineMemOperand* getMachineMemOperand(MachineFunction &MF, | 
|  | FrameIndexSDNode &FI) { | 
|  | auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex()); | 
|  | auto MMOFlags = MachineMemOperand::MOStore | | 
|  | MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; | 
|  | auto &MFI = MF.getFrameInfo(); | 
|  | return MF.getMachineMemOperand(PtrInfo, MMOFlags, | 
|  | MFI.getObjectSize(FI.getIndex()), | 
|  | MFI.getObjectAlignment(FI.getIndex())); | 
|  | } | 
|  |  | 
|  | /// Spill a value incoming to the statepoint. It might be either part of | 
|  | /// vmstate | 
|  | /// or gcstate. In both cases unconditionally spill it on the stack unless it | 
|  | /// is a null constant. Return pair with first element being frame index | 
|  | /// containing saved value and second element with outgoing chain from the | 
|  | /// emitted store | 
|  | static std::tuple<SDValue, SDValue, MachineMemOperand*> | 
|  | spillIncomingStatepointValue(SDValue Incoming, SDValue Chain, | 
|  | SelectionDAGBuilder &Builder) { | 
|  | SDValue Loc = Builder.StatepointLowering.getLocation(Incoming); | 
|  | MachineMemOperand* MMO = nullptr; | 
|  |  | 
|  | // Emit new store if we didn't do it for this ptr before | 
|  | if (!Loc.getNode()) { | 
|  | Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(), | 
|  | Builder); | 
|  | int Index = cast<FrameIndexSDNode>(Loc)->getIndex(); | 
|  | // We use TargetFrameIndex so that isel will not select it into LEA | 
|  | Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy()); | 
|  |  | 
|  | // Right now we always allocate spill slots that are of the same | 
|  | // size as the value we're about to spill (the size of spillee can | 
|  | // vary since we spill vectors of pointers too).  At some point we | 
|  | // can consider allowing spills of smaller values to larger slots | 
|  | // (i.e. change the '==' in the assert below to a '>='). | 
|  | MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo(); | 
|  | assert((MFI.getObjectSize(Index) * 8) == | 
|  | (int64_t)Incoming.getValueSizeInBits() && | 
|  | "Bad spill:  stack slot does not match!"); | 
|  |  | 
|  | // Note: Using the alignment of the spill slot (rather than the abi or | 
|  | // preferred alignment) is required for correctness when dealing with spill | 
|  | // slots with preferred alignments larger than frame alignment.. | 
|  | auto &MF = Builder.DAG.getMachineFunction(); | 
|  | auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); | 
|  | auto *StoreMMO = | 
|  | MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, | 
|  | MFI.getObjectSize(Index), | 
|  | MFI.getObjectAlignment(Index)); | 
|  | Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc, | 
|  | StoreMMO); | 
|  |  | 
|  | MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc)); | 
|  |  | 
|  | Builder.StatepointLowering.setLocation(Incoming, Loc); | 
|  | } | 
|  |  | 
|  | assert(Loc.getNode()); | 
|  | return std::make_tuple(Loc, Chain, MMO); | 
|  | } | 
|  |  | 
|  | /// Lower a single value incoming to a statepoint node.  This value can be | 
|  | /// either a deopt value or a gc value, the handling is the same.  We special | 
|  | /// case constants and allocas, then fall back to spilling if required. | 
|  | static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly, | 
|  | SmallVectorImpl<SDValue> &Ops, | 
|  | SmallVectorImpl<MachineMemOperand*> &MemRefs, | 
|  | SelectionDAGBuilder &Builder) { | 
|  | // Note: We know all of these spills are independent, but don't bother to | 
|  | // exploit that chain wise.  DAGCombine will happily do so as needed, so | 
|  | // doing it here would be a small compile time win at most. | 
|  | SDValue Chain = Builder.getRoot(); | 
|  |  | 
|  | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) { | 
|  | // If the original value was a constant, make sure it gets recorded as | 
|  | // such in the stackmap.  This is required so that the consumer can | 
|  | // parse any internal format to the deopt state.  It also handles null | 
|  | // pointers and other constant pointers in GC states.  Note the constant | 
|  | // vectors do not appear to actually hit this path and that anything larger | 
|  | // than an i64 value (not type!) will fail asserts here. | 
|  | pushStackMapConstant(Ops, Builder, C->getSExtValue()); | 
|  | } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { | 
|  | // This handles allocas as arguments to the statepoint (this is only | 
|  | // really meaningful for a deopt value.  For GC, we'd be trying to | 
|  | // relocate the address of the alloca itself?) | 
|  | assert(Incoming.getValueType() == Builder.getFrameIndexTy() && | 
|  | "Incoming value is a frame index!"); | 
|  | Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), | 
|  | Builder.getFrameIndexTy())); | 
|  |  | 
|  | auto &MF = Builder.DAG.getMachineFunction(); | 
|  | auto *MMO = getMachineMemOperand(MF, *FI); | 
|  | MemRefs.push_back(MMO); | 
|  |  | 
|  | } else if (LiveInOnly) { | 
|  | // If this value is live in (not live-on-return, or live-through), we can | 
|  | // treat it the same way patchpoint treats it's "live in" values.  We'll | 
|  | // end up folding some of these into stack references, but they'll be | 
|  | // handled by the register allocator.  Note that we do not have the notion | 
|  | // of a late use so these values might be placed in registers which are | 
|  | // clobbered by the call.  This is fine for live-in. | 
|  | Ops.push_back(Incoming); | 
|  | } else { | 
|  | // Otherwise, locate a spill slot and explicitly spill it so it | 
|  | // can be found by the runtime later.  We currently do not support | 
|  | // tracking values through callee saved registers to their eventual | 
|  | // spill location.  This would be a useful optimization, but would | 
|  | // need to be optional since it requires a lot of complexity on the | 
|  | // runtime side which not all would support. | 
|  | auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder); | 
|  | Ops.push_back(std::get<0>(Res)); | 
|  | if (auto *MMO = std::get<2>(Res)) | 
|  | MemRefs.push_back(MMO); | 
|  | Chain = std::get<1>(Res);; | 
|  | } | 
|  |  | 
|  | Builder.DAG.setRoot(Chain); | 
|  | } | 
|  |  | 
|  | /// Lower deopt state and gc pointer arguments of the statepoint.  The actual | 
|  | /// lowering is described in lowerIncomingStatepointValue.  This function is | 
|  | /// responsible for lowering everything in the right position and playing some | 
|  | /// tricks to avoid redundant stack manipulation where possible.  On | 
|  | /// completion, 'Ops' will contain ready to use operands for machine code | 
|  | /// statepoint. The chain nodes will have already been created and the DAG root | 
|  | /// will be set to the last value spilled (if any were). | 
|  | static void | 
|  | lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops, | 
|  | SmallVectorImpl<MachineMemOperand*> &MemRefs,                                    SelectionDAGBuilder::StatepointLoweringInfo &SI, | 
|  | SelectionDAGBuilder &Builder) { | 
|  | // Lower the deopt and gc arguments for this statepoint.  Layout will be: | 
|  | // deopt argument length, deopt arguments.., gc arguments... | 
|  | #ifndef NDEBUG | 
|  | if (auto *GFI = Builder.GFI) { | 
|  | // Check that each of the gc pointer and bases we've gotten out of the | 
|  | // safepoint is something the strategy thinks might be a pointer (or vector | 
|  | // of pointers) into the GC heap.  This is basically just here to help catch | 
|  | // errors during statepoint insertion. TODO: This should actually be in the | 
|  | // Verifier, but we can't get to the GCStrategy from there (yet). | 
|  | GCStrategy &S = GFI->getStrategy(); | 
|  | for (const Value *V : SI.Bases) { | 
|  | auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); | 
|  | if (Opt.hasValue()) { | 
|  | assert(Opt.getValue() && | 
|  | "non gc managed base pointer found in statepoint"); | 
|  | } | 
|  | } | 
|  | for (const Value *V : SI.Ptrs) { | 
|  | auto Opt = S.isGCManagedPointer(V->getType()->getScalarType()); | 
|  | if (Opt.hasValue()) { | 
|  | assert(Opt.getValue() && | 
|  | "non gc managed derived pointer found in statepoint"); | 
|  | } | 
|  | } | 
|  | assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!"); | 
|  | } else { | 
|  | assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!"); | 
|  | assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Figure out what lowering strategy we're going to use for each part | 
|  | // Note: Is is conservatively correct to lower both "live-in" and "live-out" | 
|  | // as "live-through". A "live-through" variable is one which is "live-in", | 
|  | // "live-out", and live throughout the lifetime of the call (i.e. we can find | 
|  | // it from any PC within the transitive callee of the statepoint).  In | 
|  | // particular, if the callee spills callee preserved registers we may not | 
|  | // be able to find a value placed in that register during the call.  This is | 
|  | // fine for live-out, but not for live-through.  If we were willing to make | 
|  | // assumptions about the code generator producing the callee, we could | 
|  | // potentially allow live-through values in callee saved registers. | 
|  | const bool LiveInDeopt = | 
|  | SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn; | 
|  |  | 
|  | auto isGCValue =[&](const Value *V) { | 
|  | return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V); | 
|  | }; | 
|  |  | 
|  | // Before we actually start lowering (and allocating spill slots for values), | 
|  | // reserve any stack slots which we judge to be profitable to reuse for a | 
|  | // particular value.  This is purely an optimization over the code below and | 
|  | // doesn't change semantics at all.  It is important for performance that we | 
|  | // reserve slots for both deopt and gc values before lowering either. | 
|  | for (const Value *V : SI.DeoptState) { | 
|  | if (!LiveInDeopt || isGCValue(V)) | 
|  | reservePreviousStackSlotForValue(V, Builder); | 
|  | } | 
|  | for (unsigned i = 0; i < SI.Bases.size(); ++i) { | 
|  | reservePreviousStackSlotForValue(SI.Bases[i], Builder); | 
|  | reservePreviousStackSlotForValue(SI.Ptrs[i], Builder); | 
|  | } | 
|  |  | 
|  | // First, prefix the list with the number of unique values to be | 
|  | // lowered.  Note that this is the number of *Values* not the | 
|  | // number of SDValues required to lower them. | 
|  | const int NumVMSArgs = SI.DeoptState.size(); | 
|  | pushStackMapConstant(Ops, Builder, NumVMSArgs); | 
|  |  | 
|  | // The vm state arguments are lowered in an opaque manner.  We do not know | 
|  | // what type of values are contained within. | 
|  | for (const Value *V : SI.DeoptState) { | 
|  | SDValue Incoming; | 
|  | // If this is a function argument at a static frame index, generate it as | 
|  | // the frame index. | 
|  | if (const Argument *Arg = dyn_cast<Argument>(V)) { | 
|  | int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg); | 
|  | if (FI != INT_MAX) | 
|  | Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy()); | 
|  | } | 
|  | if (!Incoming.getNode()) | 
|  | Incoming = Builder.getValue(V); | 
|  | const bool LiveInValue = LiveInDeopt && !isGCValue(V); | 
|  | lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, MemRefs, Builder); | 
|  | } | 
|  |  | 
|  | // Finally, go ahead and lower all the gc arguments.  There's no prefixed | 
|  | // length for this one.  After lowering, we'll have the base and pointer | 
|  | // arrays interwoven with each (lowered) base pointer immediately followed by | 
|  | // it's (lowered) derived pointer.  i.e | 
|  | // (base[0], ptr[0], base[1], ptr[1], ...) | 
|  | for (unsigned i = 0; i < SI.Bases.size(); ++i) { | 
|  | const Value *Base = SI.Bases[i]; | 
|  | lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false, | 
|  | Ops, MemRefs, Builder); | 
|  |  | 
|  | const Value *Ptr = SI.Ptrs[i]; | 
|  | lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false, | 
|  | Ops, MemRefs, Builder); | 
|  | } | 
|  |  | 
|  | // If there are any explicit spill slots passed to the statepoint, record | 
|  | // them, but otherwise do not do anything special.  These are user provided | 
|  | // allocas and give control over placement to the consumer.  In this case, | 
|  | // it is the contents of the slot which may get updated, not the pointer to | 
|  | // the alloca | 
|  | for (Value *V : SI.GCArgs) { | 
|  | SDValue Incoming = Builder.getValue(V); | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) { | 
|  | // This handles allocas as arguments to the statepoint | 
|  | assert(Incoming.getValueType() == Builder.getFrameIndexTy() && | 
|  | "Incoming value is a frame index!"); | 
|  | Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(), | 
|  | Builder.getFrameIndexTy())); | 
|  |  | 
|  | auto &MF = Builder.DAG.getMachineFunction(); | 
|  | auto *MMO = getMachineMemOperand(MF, *FI); | 
|  | MemRefs.push_back(MMO); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Record computed locations for all lowered values. | 
|  | // This can not be embedded in lowering loops as we need to record *all* | 
|  | // values, while previous loops account only values with unique SDValues. | 
|  | const Instruction *StatepointInstr = SI.StatepointInstr; | 
|  | auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr]; | 
|  |  | 
|  | for (const GCRelocateInst *Relocate : SI.GCRelocates) { | 
|  | const Value *V = Relocate->getDerivedPtr(); | 
|  | SDValue SDV = Builder.getValue(V); | 
|  | SDValue Loc = Builder.StatepointLowering.getLocation(SDV); | 
|  |  | 
|  | if (Loc.getNode()) { | 
|  | SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex(); | 
|  | } else { | 
|  | // Record value as visited, but not spilled. This is case for allocas | 
|  | // and constants. For this values we can avoid emitting spill load while | 
|  | // visiting corresponding gc_relocate. | 
|  | // Actually we do not need to record them in this map at all. | 
|  | // We do this only to check that we are not relocating any unvisited | 
|  | // value. | 
|  | SpillMap.SlotMap[V] = None; | 
|  |  | 
|  | // Default llvm mechanisms for exporting values which are used in | 
|  | // different basic blocks does not work for gc relocates. | 
|  | // Note that it would be incorrect to teach llvm that all relocates are | 
|  | // uses of the corresponding values so that it would automatically | 
|  | // export them. Relocates of the spilled values does not use original | 
|  | // value. | 
|  | if (Relocate->getParent() != StatepointInstr->getParent()) | 
|  | Builder.ExportFromCurrentBlock(V); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SelectionDAGBuilder::LowerAsSTATEPOINT( | 
|  | SelectionDAGBuilder::StatepointLoweringInfo &SI) { | 
|  | // The basic scheme here is that information about both the original call and | 
|  | // the safepoint is encoded in the CallInst.  We create a temporary call and | 
|  | // lower it, then reverse engineer the calling sequence. | 
|  |  | 
|  | NumOfStatepoints++; | 
|  | // Clear state | 
|  | StatepointLowering.startNewStatepoint(*this); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // We schedule gc relocates before removeDuplicateGCPtrs since we _will_ | 
|  | // encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs. | 
|  | for (auto *Reloc : SI.GCRelocates) | 
|  | if (Reloc->getParent() == SI.StatepointInstr->getParent()) | 
|  | StatepointLowering.scheduleRelocCall(*Reloc); | 
|  | #endif | 
|  |  | 
|  | // Remove any redundant llvm::Values which map to the same SDValue as another | 
|  | // input.  Also has the effect of removing duplicates in the original | 
|  | // llvm::Value input list as well.  This is a useful optimization for | 
|  | // reducing the size of the StackMap section.  It has no other impact. | 
|  | removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this, | 
|  | FuncInfo.StatepointSpillMaps[SI.StatepointInstr]); | 
|  | assert(SI.Bases.size() == SI.Ptrs.size() && | 
|  | SI.Ptrs.size() == SI.GCRelocates.size()); | 
|  |  | 
|  | // Lower statepoint vmstate and gcstate arguments | 
|  | SmallVector<SDValue, 10> LoweredMetaArgs; | 
|  | SmallVector<MachineMemOperand*, 16> MemRefs; | 
|  | lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, SI, *this); | 
|  |  | 
|  | // Now that we've emitted the spills, we need to update the root so that the | 
|  | // call sequence is ordered correctly. | 
|  | SI.CLI.setChain(getRoot()); | 
|  |  | 
|  | // Get call node, we will replace it later with statepoint | 
|  | SDValue ReturnVal; | 
|  | SDNode *CallNode; | 
|  | std::tie(ReturnVal, CallNode) = | 
|  | lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports); | 
|  |  | 
|  | // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END | 
|  | // nodes with all the appropriate arguments and return values. | 
|  |  | 
|  | // Call Node: Chain, Target, {Args}, RegMask, [Glue] | 
|  | SDValue Chain = CallNode->getOperand(0); | 
|  |  | 
|  | SDValue Glue; | 
|  | bool CallHasIncomingGlue = CallNode->getGluedNode(); | 
|  | if (CallHasIncomingGlue) { | 
|  | // Glue is always last operand | 
|  | Glue = CallNode->getOperand(CallNode->getNumOperands() - 1); | 
|  | } | 
|  |  | 
|  | // Build the GC_TRANSITION_START node if necessary. | 
|  | // | 
|  | // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the | 
|  | // order in which they appear in the call to the statepoint intrinsic. If | 
|  | // any of the operands is a pointer-typed, that operand is immediately | 
|  | // followed by a SRCVALUE for the pointer that may be used during lowering | 
|  | // (e.g. to form MachinePointerInfo values for loads/stores). | 
|  | const bool IsGCTransition = | 
|  | (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) == | 
|  | (uint64_t)StatepointFlags::GCTransition; | 
|  | if (IsGCTransition) { | 
|  | SmallVector<SDValue, 8> TSOps; | 
|  |  | 
|  | // Add chain | 
|  | TSOps.push_back(Chain); | 
|  |  | 
|  | // Add GC transition arguments | 
|  | for (const Value *V : SI.GCTransitionArgs) { | 
|  | TSOps.push_back(getValue(V)); | 
|  | if (V->getType()->isPointerTy()) | 
|  | TSOps.push_back(DAG.getSrcValue(V)); | 
|  | } | 
|  |  | 
|  | // Add glue if necessary | 
|  | if (CallHasIncomingGlue) | 
|  | TSOps.push_back(Glue); | 
|  |  | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | SDValue GCTransitionStart = | 
|  | DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps); | 
|  |  | 
|  | Chain = GCTransitionStart.getValue(0); | 
|  | Glue = GCTransitionStart.getValue(1); | 
|  | } | 
|  |  | 
|  | // TODO: Currently, all of these operands are being marked as read/write in | 
|  | // PrologEpilougeInserter.cpp, we should special case the VMState arguments | 
|  | // and flags to be read-only. | 
|  | SmallVector<SDValue, 40> Ops; | 
|  |  | 
|  | // Add the <id> and <numBytes> constants. | 
|  | Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64)); | 
|  | Ops.push_back( | 
|  | DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32)); | 
|  |  | 
|  | // Calculate and push starting position of vmstate arguments | 
|  | // Get number of arguments incoming directly into call node | 
|  | unsigned NumCallRegArgs = | 
|  | CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3); | 
|  | Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32)); | 
|  |  | 
|  | // Add call target | 
|  | SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0); | 
|  | Ops.push_back(CallTarget); | 
|  |  | 
|  | // Add call arguments | 
|  | // Get position of register mask in the call | 
|  | SDNode::op_iterator RegMaskIt; | 
|  | if (CallHasIncomingGlue) | 
|  | RegMaskIt = CallNode->op_end() - 2; | 
|  | else | 
|  | RegMaskIt = CallNode->op_end() - 1; | 
|  | Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt); | 
|  |  | 
|  | // Add a constant argument for the calling convention | 
|  | pushStackMapConstant(Ops, *this, SI.CLI.CallConv); | 
|  |  | 
|  | // Add a constant argument for the flags | 
|  | uint64_t Flags = SI.StatepointFlags; | 
|  | assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) && | 
|  | "Unknown flag used"); | 
|  | pushStackMapConstant(Ops, *this, Flags); | 
|  |  | 
|  | // Insert all vmstate and gcstate arguments | 
|  | Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end()); | 
|  |  | 
|  | // Add register mask from call node | 
|  | Ops.push_back(*RegMaskIt); | 
|  |  | 
|  | // Add chain | 
|  | Ops.push_back(Chain); | 
|  |  | 
|  | // Same for the glue, but we add it only if original call had it | 
|  | if (Glue.getNode()) | 
|  | Ops.push_back(Glue); | 
|  |  | 
|  | // Compute return values.  Provide a glue output since we consume one as | 
|  | // input.  This allows someone else to chain off us as needed. | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | MachineSDNode *StatepointMCNode = | 
|  | DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops); | 
|  | DAG.setNodeMemRefs(StatepointMCNode, MemRefs); | 
|  |  | 
|  | SDNode *SinkNode = StatepointMCNode; | 
|  |  | 
|  | // Build the GC_TRANSITION_END node if necessary. | 
|  | // | 
|  | // See the comment above regarding GC_TRANSITION_START for the layout of | 
|  | // the operands to the GC_TRANSITION_END node. | 
|  | if (IsGCTransition) { | 
|  | SmallVector<SDValue, 8> TEOps; | 
|  |  | 
|  | // Add chain | 
|  | TEOps.push_back(SDValue(StatepointMCNode, 0)); | 
|  |  | 
|  | // Add GC transition arguments | 
|  | for (const Value *V : SI.GCTransitionArgs) { | 
|  | TEOps.push_back(getValue(V)); | 
|  | if (V->getType()->isPointerTy()) | 
|  | TEOps.push_back(DAG.getSrcValue(V)); | 
|  | } | 
|  |  | 
|  | // Add glue | 
|  | TEOps.push_back(SDValue(StatepointMCNode, 1)); | 
|  |  | 
|  | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | 
|  |  | 
|  | SDValue GCTransitionStart = | 
|  | DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps); | 
|  |  | 
|  | SinkNode = GCTransitionStart.getNode(); | 
|  | } | 
|  |  | 
|  | // Replace original call | 
|  | DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root | 
|  | // Remove original call node | 
|  | DAG.DeleteNode(CallNode); | 
|  |  | 
|  | // DON'T set the root - under the assumption that it's already set past the | 
|  | // inserted node we created. | 
|  |  | 
|  | // TODO: A better future implementation would be to emit a single variable | 
|  | // argument, variable return value STATEPOINT node here and then hookup the | 
|  | // return value of each gc.relocate to the respective output of the | 
|  | // previously emitted STATEPOINT value.  Unfortunately, this doesn't appear | 
|  | // to actually be possible today. | 
|  |  | 
|  | return ReturnVal; | 
|  | } | 
|  |  | 
|  | void | 
|  | SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP, | 
|  | const BasicBlock *EHPadBB /*= nullptr*/) { | 
|  | assert(ISP.getCall()->getCallingConv() != CallingConv::AnyReg && | 
|  | "anyregcc is not supported on statepoints!"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // If this is a malformed statepoint, report it early to simplify debugging. | 
|  | // This should catch any IR level mistake that's made when constructing or | 
|  | // transforming statepoints. | 
|  | ISP.verify(); | 
|  |  | 
|  | // Check that the associated GCStrategy expects to encounter statepoints. | 
|  | assert(GFI->getStrategy().useStatepoints() && | 
|  | "GCStrategy does not expect to encounter statepoints"); | 
|  | #endif | 
|  |  | 
|  | SDValue ActualCallee; | 
|  |  | 
|  | if (ISP.getNumPatchBytes() > 0) { | 
|  | // If we've been asked to emit a nop sequence instead of a call instruction | 
|  | // for this statepoint then don't lower the call target, but use a constant | 
|  | // `null` instead.  Not lowering the call target lets statepoint clients get | 
|  | // away without providing a physical address for the symbolic call target at | 
|  | // link time. | 
|  |  | 
|  | const auto &TLI = DAG.getTargetLoweringInfo(); | 
|  | const auto &DL = DAG.getDataLayout(); | 
|  |  | 
|  | unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace(); | 
|  | ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS)); | 
|  | } else { | 
|  | ActualCallee = getValue(ISP.getCalledValue()); | 
|  | } | 
|  |  | 
|  | StatepointLoweringInfo SI(DAG); | 
|  | populateCallLoweringInfo(SI.CLI, ISP.getCall(), | 
|  | ImmutableStatepoint::CallArgsBeginPos, | 
|  | ISP.getNumCallArgs(), ActualCallee, | 
|  | ISP.getActualReturnType(), false /* IsPatchPoint */); | 
|  |  | 
|  | for (const GCRelocateInst *Relocate : ISP.getRelocates()) { | 
|  | SI.GCRelocates.push_back(Relocate); | 
|  | SI.Bases.push_back(Relocate->getBasePtr()); | 
|  | SI.Ptrs.push_back(Relocate->getDerivedPtr()); | 
|  | } | 
|  |  | 
|  | SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); | 
|  | SI.StatepointInstr = ISP.getInstruction(); | 
|  | SI.GCTransitionArgs = | 
|  | ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end()); | 
|  | SI.ID = ISP.getID(); | 
|  | SI.DeoptState = ArrayRef<const Use>(ISP.deopt_begin(), ISP.deopt_end()); | 
|  | SI.StatepointFlags = ISP.getFlags(); | 
|  | SI.NumPatchBytes = ISP.getNumPatchBytes(); | 
|  | SI.EHPadBB = EHPadBB; | 
|  |  | 
|  | SDValue ReturnValue = LowerAsSTATEPOINT(SI); | 
|  |  | 
|  | // Export the result value if needed | 
|  | const GCResultInst *GCResult = ISP.getGCResult(); | 
|  | Type *RetTy = ISP.getActualReturnType(); | 
|  | if (!RetTy->isVoidTy() && GCResult) { | 
|  | if (GCResult->getParent() != ISP.getCall()->getParent()) { | 
|  | // Result value will be used in a different basic block so we need to | 
|  | // export it now.  Default exporting mechanism will not work here because | 
|  | // statepoint call has a different type than the actual call. It means | 
|  | // that by default llvm will create export register of the wrong type | 
|  | // (always i32 in our case). So instead we need to create export register | 
|  | // with correct type manually. | 
|  | // TODO: To eliminate this problem we can remove gc.result intrinsics | 
|  | //       completely and make statepoint call to return a tuple. | 
|  | unsigned Reg = FuncInfo.CreateRegs(RetTy); | 
|  | RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), | 
|  | DAG.getDataLayout(), Reg, RetTy, | 
|  | ISP.getCall()->getCallingConv()); | 
|  | SDValue Chain = DAG.getEntryNode(); | 
|  |  | 
|  | RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr); | 
|  | PendingExports.push_back(Chain); | 
|  | FuncInfo.ValueMap[ISP.getInstruction()] = Reg; | 
|  | } else { | 
|  | // Result value will be used in a same basic block. Don't export it or | 
|  | // perform any explicit register copies. | 
|  | // We'll replace the actuall call node shortly. gc_result will grab | 
|  | // this value. | 
|  | setValue(ISP.getInstruction(), ReturnValue); | 
|  | } | 
|  | } else { | 
|  | // The token value is never used from here on, just generate a poison value | 
|  | setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc())); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl( | 
|  | const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB, | 
|  | bool VarArgDisallowed, bool ForceVoidReturnTy) { | 
|  | StatepointLoweringInfo SI(DAG); | 
|  | unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin(); | 
|  | populateCallLoweringInfo( | 
|  | SI.CLI, Call, ArgBeginIndex, Call->getNumArgOperands(), Callee, | 
|  | ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(), | 
|  | false); | 
|  | if (!VarArgDisallowed) | 
|  | SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg(); | 
|  |  | 
|  | auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt); | 
|  |  | 
|  | unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID; | 
|  |  | 
|  | auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); | 
|  | SI.ID = SD.StatepointID.getValueOr(DefaultID); | 
|  | SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0); | 
|  |  | 
|  | SI.DeoptState = | 
|  | ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end()); | 
|  | SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None); | 
|  | SI.EHPadBB = EHPadBB; | 
|  |  | 
|  | // NB! The GC arguments are deliberately left empty. | 
|  |  | 
|  | if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) { | 
|  | ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal); | 
|  | setValue(Call, ReturnVal); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle( | 
|  | const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) { | 
|  | LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB, | 
|  | /* VarArgDisallowed = */ false, | 
|  | /* ForceVoidReturnTy  = */ false); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) { | 
|  | // The result value of the gc_result is simply the result of the actual | 
|  | // call.  We've already emitted this, so just grab the value. | 
|  | const Instruction *I = CI.getStatepoint(); | 
|  |  | 
|  | if (I->getParent() != CI.getParent()) { | 
|  | // Statepoint is in different basic block so we should have stored call | 
|  | // result in a virtual register. | 
|  | // We can not use default getValue() functionality to copy value from this | 
|  | // register because statepoint and actual call return types can be | 
|  | // different, and getValue() will use CopyFromReg of the wrong type, | 
|  | // which is always i32 in our case. | 
|  | PointerType *CalleeType = cast<PointerType>( | 
|  | ImmutableStatepoint(I).getCalledValue()->getType()); | 
|  | Type *RetTy = | 
|  | cast<FunctionType>(CalleeType->getElementType())->getReturnType(); | 
|  | SDValue CopyFromReg = getCopyFromRegs(I, RetTy); | 
|  |  | 
|  | assert(CopyFromReg.getNode()); | 
|  | setValue(&CI, CopyFromReg); | 
|  | } else { | 
|  | setValue(&CI, getValue(I)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) { | 
|  | #ifndef NDEBUG | 
|  | // Consistency check | 
|  | // We skip this check for relocates not in the same basic block as their | 
|  | // statepoint. It would be too expensive to preserve validation info through | 
|  | // different basic blocks. | 
|  | if (Relocate.getStatepoint()->getParent() == Relocate.getParent()) | 
|  | StatepointLowering.relocCallVisited(Relocate); | 
|  |  | 
|  | auto *Ty = Relocate.getType()->getScalarType(); | 
|  | if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty)) | 
|  | assert(*IsManaged && "Non gc managed pointer relocated!"); | 
|  | #endif | 
|  |  | 
|  | const Value *DerivedPtr = Relocate.getDerivedPtr(); | 
|  | SDValue SD = getValue(DerivedPtr); | 
|  |  | 
|  | auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()]; | 
|  | auto SlotIt = SpillMap.find(DerivedPtr); | 
|  | assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value"); | 
|  | Optional<int> DerivedPtrLocation = SlotIt->second; | 
|  |  | 
|  | // We didn't need to spill these special cases (constants and allocas). | 
|  | // See the handling in spillIncomingValueForStatepoint for detail. | 
|  | if (!DerivedPtrLocation) { | 
|  | setValue(&Relocate, SD); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned Index = *DerivedPtrLocation; | 
|  | SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy()); | 
|  |  | 
|  | // Note: We know all of these reloads are independent, but don't bother to | 
|  | // exploit that chain wise.  DAGCombine will happily do so as needed, so | 
|  | // doing it here would be a small compile time win at most. | 
|  | SDValue Chain = getRoot(); | 
|  |  | 
|  | auto &MF = DAG.getMachineFunction(); | 
|  | auto &MFI = MF.getFrameInfo(); | 
|  | auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index); | 
|  | auto *LoadMMO = | 
|  | MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, | 
|  | MFI.getObjectSize(Index), | 
|  | MFI.getObjectAlignment(Index)); | 
|  |  | 
|  | auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), | 
|  | Relocate.getType()); | 
|  |  | 
|  | SDValue SpillLoad = DAG.getLoad(LoadVT, getCurSDLoc(), Chain, | 
|  | SpillSlot, LoadMMO); | 
|  |  | 
|  | DAG.setRoot(SpillLoad.getValue(1)); | 
|  |  | 
|  | assert(SpillLoad.getNode()); | 
|  | setValue(&Relocate, SpillLoad); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) { | 
|  | const auto &TLI = DAG.getTargetLoweringInfo(); | 
|  | SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE), | 
|  | TLI.getPointerTy(DAG.getDataLayout())); | 
|  |  | 
|  | // We don't lower calls to __llvm_deoptimize as varargs, but as a regular | 
|  | // call.  We also do not lower the return value to any virtual register, and | 
|  | // change the immediately following return to a trap instruction. | 
|  | LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr, | 
|  | /* VarArgDisallowed = */ true, | 
|  | /* ForceVoidReturnTy = */ true); | 
|  | } | 
|  |  | 
|  | void SelectionDAGBuilder::LowerDeoptimizingReturn() { | 
|  | // We do not lower the return value from llvm.deoptimize to any virtual | 
|  | // register, and change the immediately following return to a trap | 
|  | // instruction. | 
|  | if (DAG.getTarget().Options.TrapUnreachable) | 
|  | DAG.setRoot( | 
|  | DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); | 
|  | } |