| //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the declaration of the Instruction class, which is the |
| // base class for all of the LLVM instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_INSTRUCTION_H |
| #define LLVM_INSTRUCTION_H |
| |
| #include "llvm/User.h" |
| #include "llvm/ADT/ilist_node.h" |
| #include "llvm/Support/DebugLoc.h" |
| |
| namespace llvm { |
| |
| class LLVMContext; |
| class MDNode; |
| |
| template<typename ValueSubClass, typename ItemParentClass> |
| class SymbolTableListTraits; |
| |
| class Instruction : public User, public ilist_node<Instruction> { |
| void operator=(const Instruction &); // Do not implement |
| Instruction(const Instruction &); // Do not implement |
| |
| BasicBlock *Parent; |
| DebugLoc DbgLoc; // 'dbg' Metadata cache. |
| |
| enum { |
| /// HasMetadataBit - This is a bit stored in the SubClassData field which |
| /// indicates whether this instruction has metadata attached to it or not. |
| HasMetadataBit = 1 << 15 |
| }; |
| public: |
| // Out of line virtual method, so the vtable, etc has a home. |
| ~Instruction(); |
| |
| /// use_back - Specialize the methods defined in Value, as we know that an |
| /// instruction can only be used by other instructions. |
| Instruction *use_back() { return cast<Instruction>(*use_begin());} |
| const Instruction *use_back() const { return cast<Instruction>(*use_begin());} |
| |
| inline const BasicBlock *getParent() const { return Parent; } |
| inline BasicBlock *getParent() { return Parent; } |
| |
| /// removeFromParent - This method unlinks 'this' from the containing basic |
| /// block, but does not delete it. |
| /// |
| void removeFromParent(); |
| |
| /// eraseFromParent - This method unlinks 'this' from the containing basic |
| /// block and deletes it. |
| /// |
| void eraseFromParent(); |
| |
| /// insertBefore - Insert an unlinked instructions into a basic block |
| /// immediately before the specified instruction. |
| void insertBefore(Instruction *InsertPos); |
| |
| /// insertAfter - Insert an unlinked instructions into a basic block |
| /// immediately after the specified instruction. |
| void insertAfter(Instruction *InsertPos); |
| |
| /// moveBefore - Unlink this instruction from its current basic block and |
| /// insert it into the basic block that MovePos lives in, right before |
| /// MovePos. |
| void moveBefore(Instruction *MovePos); |
| |
| //===--------------------------------------------------------------------===// |
| // Subclass classification. |
| //===--------------------------------------------------------------------===// |
| |
| /// getOpcode() returns a member of one of the enums like Instruction::Add. |
| unsigned getOpcode() const { return getValueID() - InstructionVal; } |
| |
| const char *getOpcodeName() const { return getOpcodeName(getOpcode()); } |
| bool isTerminator() const { return isTerminator(getOpcode()); } |
| bool isBinaryOp() const { return isBinaryOp(getOpcode()); } |
| bool isShift() { return isShift(getOpcode()); } |
| bool isCast() const { return isCast(getOpcode()); } |
| |
| static const char* getOpcodeName(unsigned OpCode); |
| |
| static inline bool isTerminator(unsigned OpCode) { |
| return OpCode >= TermOpsBegin && OpCode < TermOpsEnd; |
| } |
| |
| static inline bool isBinaryOp(unsigned Opcode) { |
| return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd; |
| } |
| |
| /// @brief Determine if the Opcode is one of the shift instructions. |
| static inline bool isShift(unsigned Opcode) { |
| return Opcode >= Shl && Opcode <= AShr; |
| } |
| |
| /// isLogicalShift - Return true if this is a logical shift left or a logical |
| /// shift right. |
| inline bool isLogicalShift() const { |
| return getOpcode() == Shl || getOpcode() == LShr; |
| } |
| |
| /// isArithmeticShift - Return true if this is an arithmetic shift right. |
| inline bool isArithmeticShift() const { |
| return getOpcode() == AShr; |
| } |
| |
| /// @brief Determine if the OpCode is one of the CastInst instructions. |
| static inline bool isCast(unsigned OpCode) { |
| return OpCode >= CastOpsBegin && OpCode < CastOpsEnd; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Metadata manipulation. |
| //===--------------------------------------------------------------------===// |
| |
| /// hasMetadata() - Return true if this instruction has any metadata attached |
| /// to it. |
| bool hasMetadata() const { |
| return !DbgLoc.isUnknown() || hasMetadataHashEntry(); |
| } |
| |
| /// hasMetadataOtherThanDebugLoc - Return true if this instruction has |
| /// metadata attached to it other than a debug location. |
| bool hasMetadataOtherThanDebugLoc() const { |
| return hasMetadataHashEntry(); |
| } |
| |
| /// getMetadata - Get the metadata of given kind attached to this Instruction. |
| /// If the metadata is not found then return null. |
| MDNode *getMetadata(unsigned KindID) const { |
| if (!hasMetadata()) return 0; |
| return getMetadataImpl(KindID); |
| } |
| |
| /// getMetadata - Get the metadata of given kind attached to this Instruction. |
| /// If the metadata is not found then return null. |
| MDNode *getMetadata(const char *Kind) const { |
| if (!hasMetadata()) return 0; |
| return getMetadataImpl(Kind); |
| } |
| |
| /// getAllMetadata - Get all metadata attached to this Instruction. The first |
| /// element of each pair returned is the KindID, the second element is the |
| /// metadata value. This list is returned sorted by the KindID. |
| void getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode*> > &MDs)const{ |
| if (hasMetadata()) |
| getAllMetadataImpl(MDs); |
| } |
| |
| /// getAllMetadataOtherThanDebugLoc - This does the same thing as |
| /// getAllMetadata, except that it filters out the debug location. |
| void getAllMetadataOtherThanDebugLoc(SmallVectorImpl<std::pair<unsigned, |
| MDNode*> > &MDs) const { |
| if (hasMetadataOtherThanDebugLoc()) |
| getAllMetadataOtherThanDebugLocImpl(MDs); |
| } |
| |
| /// setMetadata - Set the metadata of the specified kind to the specified |
| /// node. This updates/replaces metadata if already present, or removes it if |
| /// Node is null. |
| void setMetadata(unsigned KindID, MDNode *Node); |
| void setMetadata(const char *Kind, MDNode *Node); |
| |
| /// setDebugLoc - Set the debug location information for this instruction. |
| void setDebugLoc(const DebugLoc &Loc) { DbgLoc = Loc; } |
| |
| /// getDebugLoc - Return the debug location for this node as a DebugLoc. |
| const DebugLoc &getDebugLoc() const { return DbgLoc; } |
| |
| private: |
| /// hasMetadataHashEntry - Return true if we have an entry in the on-the-side |
| /// metadata hash. |
| bool hasMetadataHashEntry() const { |
| return (getSubclassDataFromValue() & HasMetadataBit) != 0; |
| } |
| |
| // These are all implemented in Metadata.cpp. |
| MDNode *getMetadataImpl(unsigned KindID) const; |
| MDNode *getMetadataImpl(const char *Kind) const; |
| void getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,MDNode*> > &)const; |
| void getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl<std::pair<unsigned, |
| MDNode*> > &) const; |
| void clearMetadataHashEntries(); |
| public: |
| //===--------------------------------------------------------------------===// |
| // Predicates and helper methods. |
| //===--------------------------------------------------------------------===// |
| |
| |
| /// isAssociative - Return true if the instruction is associative: |
| /// |
| /// Associative operators satisfy: x op (y op z) === (x op y) op z |
| /// |
| /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. |
| /// |
| bool isAssociative() const { return isAssociative(getOpcode()); } |
| static bool isAssociative(unsigned op); |
| |
| /// isCommutative - Return true if the instruction is commutative: |
| /// |
| /// Commutative operators satisfy: (x op y) === (y op x) |
| /// |
| /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when |
| /// applied to any type. |
| /// |
| bool isCommutative() const { return isCommutative(getOpcode()); } |
| static bool isCommutative(unsigned op); |
| |
| /// mayWriteToMemory - Return true if this instruction may modify memory. |
| /// |
| bool mayWriteToMemory() const; |
| |
| /// mayReadFromMemory - Return true if this instruction may read memory. |
| /// |
| bool mayReadFromMemory() const; |
| |
| /// mayReadOrWriteMemory - Return true if this instruction may read or |
| /// write memory. |
| /// |
| bool mayReadOrWriteMemory() const { |
| return mayReadFromMemory() || mayWriteToMemory(); |
| } |
| |
| /// mayThrow - Return true if this instruction may throw an exception. |
| /// |
| bool mayThrow() const; |
| |
| /// mayHaveSideEffects - Return true if the instruction may have side effects. |
| /// |
| /// Note that this does not consider malloc and alloca to have side |
| /// effects because the newly allocated memory is completely invisible to |
| /// instructions which don't used the returned value. For cases where this |
| /// matters, isSafeToSpeculativelyExecute may be more appropriate. |
| bool mayHaveSideEffects() const { |
| return mayWriteToMemory() || mayThrow(); |
| } |
| |
| /// isSafeToSpeculativelyExecute - Return true if the instruction does not |
| /// have any effects besides calculating the result and does not have |
| /// undefined behavior. |
| /// |
| /// This method never returns true for an instruction that returns true for |
| /// mayHaveSideEffects; however, this method also does some other checks in |
| /// addition. It checks for undefined behavior, like dividing by zero or |
| /// loading from an invalid pointer (but not for undefined results, like a |
| /// shift with a shift amount larger than the width of the result). It checks |
| /// for malloc and alloca because speculatively executing them might cause a |
| /// memory leak. It also returns false for instructions related to control |
| /// flow, specifically terminators and PHI nodes. |
| /// |
| /// This method only looks at the instruction itself and its operands, so if |
| /// this method returns true, it is safe to move the instruction as long as |
| /// the correct dominance relationships for the operands and users hold. |
| /// However, this method can return true for instructions that read memory; |
| /// for such instructions, moving them may change the resulting value. |
| bool isSafeToSpeculativelyExecute() const; |
| |
| /// clone() - Create a copy of 'this' instruction that is identical in all |
| /// ways except the following: |
| /// * The instruction has no parent |
| /// * The instruction has no name |
| /// |
| Instruction *clone() const; |
| |
| /// isIdenticalTo - Return true if the specified instruction is exactly |
| /// identical to the current one. This means that all operands match and any |
| /// extra information (e.g. load is volatile) agree. |
| bool isIdenticalTo(const Instruction *I) const; |
| |
| /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it |
| /// ignores the SubclassOptionalData flags, which specify conditions |
| /// under which the instruction's result is undefined. |
| bool isIdenticalToWhenDefined(const Instruction *I) const; |
| |
| /// This function determines if the specified instruction executes the same |
| /// operation as the current one. This means that the opcodes, type, operand |
| /// types and any other factors affecting the operation must be the same. This |
| /// is similar to isIdenticalTo except the operands themselves don't have to |
| /// be identical. |
| /// @returns true if the specified instruction is the same operation as |
| /// the current one. |
| /// @brief Determine if one instruction is the same operation as another. |
| bool isSameOperationAs(const Instruction *I) const; |
| |
| /// isUsedOutsideOfBlock - Return true if there are any uses of this |
| /// instruction in blocks other than the specified block. Note that PHI nodes |
| /// are considered to evaluate their operands in the corresponding predecessor |
| /// block. |
| bool isUsedOutsideOfBlock(const BasicBlock *BB) const; |
| |
| |
| /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const Instruction *) { return true; } |
| static inline bool classof(const Value *V) { |
| return V->getValueID() >= Value::InstructionVal; |
| } |
| |
| //---------------------------------------------------------------------- |
| // Exported enumerations. |
| // |
| enum TermOps { // These terminate basic blocks |
| #define FIRST_TERM_INST(N) TermOpsBegin = N, |
| #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N, |
| #define LAST_TERM_INST(N) TermOpsEnd = N+1 |
| #include "llvm/Instruction.def" |
| }; |
| |
| enum BinaryOps { |
| #define FIRST_BINARY_INST(N) BinaryOpsBegin = N, |
| #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N, |
| #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1 |
| #include "llvm/Instruction.def" |
| }; |
| |
| enum MemoryOps { |
| #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N, |
| #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N, |
| #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1 |
| #include "llvm/Instruction.def" |
| }; |
| |
| enum CastOps { |
| #define FIRST_CAST_INST(N) CastOpsBegin = N, |
| #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N, |
| #define LAST_CAST_INST(N) CastOpsEnd = N+1 |
| #include "llvm/Instruction.def" |
| }; |
| |
| enum OtherOps { |
| #define FIRST_OTHER_INST(N) OtherOpsBegin = N, |
| #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N, |
| #define LAST_OTHER_INST(N) OtherOpsEnd = N+1 |
| #include "llvm/Instruction.def" |
| }; |
| private: |
| // Shadow Value::setValueSubclassData with a private forwarding method so that |
| // subclasses cannot accidentally use it. |
| void setValueSubclassData(unsigned short D) { |
| Value::setValueSubclassData(D); |
| } |
| unsigned short getSubclassDataFromValue() const { |
| return Value::getSubclassDataFromValue(); |
| } |
| |
| void setHasMetadataHashEntry(bool V) { |
| setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) | |
| (V ? HasMetadataBit : 0)); |
| } |
| |
| friend class SymbolTableListTraits<Instruction, BasicBlock>; |
| void setParent(BasicBlock *P); |
| protected: |
| // Instruction subclasses can stick up to 15 bits of stuff into the |
| // SubclassData field of instruction with these members. |
| |
| // Verify that only the low 15 bits are used. |
| void setInstructionSubclassData(unsigned short D) { |
| assert((D & HasMetadataBit) == 0 && "Out of range value put into field"); |
| setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D); |
| } |
| |
| unsigned getSubclassDataFromInstruction() const { |
| return getSubclassDataFromValue() & ~HasMetadataBit; |
| } |
| |
| Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, |
| Instruction *InsertBefore = 0); |
| Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, |
| BasicBlock *InsertAtEnd); |
| virtual Instruction *clone_impl() const = 0; |
| |
| }; |
| |
| // Instruction* is only 4-byte aligned. |
| template<> |
| class PointerLikeTypeTraits<Instruction*> { |
| typedef Instruction* PT; |
| public: |
| static inline void *getAsVoidPointer(PT P) { return P; } |
| static inline PT getFromVoidPointer(void *P) { |
| return static_cast<PT>(P); |
| } |
| enum { NumLowBitsAvailable = 2 }; |
| }; |
| |
| } // End llvm namespace |
| |
| #endif |