| //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// @file |
| /// This file contains the declarations for the subclasses of Constant, |
| /// which represent the different flavors of constant values that live in LLVM. |
| /// Note that Constants are immutable (once created they never change) and are |
| /// fully shared by structural equivalence. This means that two structurally |
| /// equivalent constants will always have the same address. Constant's are |
| /// created on demand as needed and never deleted: thus clients don't have to |
| /// worry about the lifetime of the objects. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CONSTANTS_H |
| #define LLVM_CONSTANTS_H |
| |
| #include "llvm/Constant.h" |
| #include "llvm/OperandTraits.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/ArrayRef.h" |
| |
| namespace llvm { |
| |
| class ArrayType; |
| class IntegerType; |
| class StructType; |
| class PointerType; |
| class VectorType; |
| |
| template<class ConstantClass, class TypeClass, class ValType> |
| struct ConstantCreator; |
| template<class ConstantClass, class TypeClass> |
| struct ConvertConstantType; |
| |
| //===----------------------------------------------------------------------===// |
| /// This is the shared class of boolean and integer constants. This class |
| /// represents both boolean and integral constants. |
| /// @brief Class for constant integers. |
| class ConstantInt : public Constant { |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT |
| ConstantInt(IntegerType *Ty, const APInt& V); |
| APInt Val; |
| protected: |
| // allocate space for exactly zero operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 0); |
| } |
| public: |
| static ConstantInt *getTrue(LLVMContext &Context); |
| static ConstantInt *getFalse(LLVMContext &Context); |
| static Constant *getTrue(Type *Ty); |
| static Constant *getFalse(Type *Ty); |
| |
| /// If Ty is a vector type, return a Constant with a splat of the given |
| /// value. Otherwise return a ConstantInt for the given value. |
| static Constant *get(Type *Ty, uint64_t V, bool isSigned = false); |
| |
| /// Return a ConstantInt with the specified integer value for the specified |
| /// type. If the type is wider than 64 bits, the value will be zero-extended |
| /// to fit the type, unless isSigned is true, in which case the value will |
| /// be interpreted as a 64-bit signed integer and sign-extended to fit |
| /// the type. |
| /// @brief Get a ConstantInt for a specific value. |
| static ConstantInt *get(IntegerType *Ty, uint64_t V, |
| bool isSigned = false); |
| |
| /// Return a ConstantInt with the specified value for the specified type. The |
| /// value V will be canonicalized to a an unsigned APInt. Accessing it with |
| /// either getSExtValue() or getZExtValue() will yield a correctly sized and |
| /// signed value for the type Ty. |
| /// @brief Get a ConstantInt for a specific signed value. |
| static ConstantInt *getSigned(IntegerType *Ty, int64_t V); |
| static Constant *getSigned(Type *Ty, int64_t V); |
| |
| /// Return a ConstantInt with the specified value and an implied Type. The |
| /// type is the integer type that corresponds to the bit width of the value. |
| static ConstantInt *get(LLVMContext &Context, const APInt &V); |
| |
| /// Return a ConstantInt constructed from the string strStart with the given |
| /// radix. |
| static ConstantInt *get(IntegerType *Ty, StringRef Str, |
| uint8_t radix); |
| |
| /// If Ty is a vector type, return a Constant with a splat of the given |
| /// value. Otherwise return a ConstantInt for the given value. |
| static Constant *get(Type* Ty, const APInt& V); |
| |
| /// Return the constant as an APInt value reference. This allows clients to |
| /// obtain a copy of the value, with all its precision in tact. |
| /// @brief Return the constant's value. |
| inline const APInt &getValue() const { |
| return Val; |
| } |
| |
| /// getBitWidth - Return the bitwidth of this constant. |
| unsigned getBitWidth() const { return Val.getBitWidth(); } |
| |
| /// Return the constant as a 64-bit unsigned integer value after it |
| /// has been zero extended as appropriate for the type of this constant. Note |
| /// that this method can assert if the value does not fit in 64 bits. |
| /// @deprecated |
| /// @brief Return the zero extended value. |
| inline uint64_t getZExtValue() const { |
| return Val.getZExtValue(); |
| } |
| |
| /// Return the constant as a 64-bit integer value after it has been sign |
| /// extended as appropriate for the type of this constant. Note that |
| /// this method can assert if the value does not fit in 64 bits. |
| /// @deprecated |
| /// @brief Return the sign extended value. |
| inline int64_t getSExtValue() const { |
| return Val.getSExtValue(); |
| } |
| |
| /// A helper method that can be used to determine if the constant contained |
| /// within is equal to a constant. This only works for very small values, |
| /// because this is all that can be represented with all types. |
| /// @brief Determine if this constant's value is same as an unsigned char. |
| bool equalsInt(uint64_t V) const { |
| return Val == V; |
| } |
| |
| /// getType - Specialize the getType() method to always return an IntegerType, |
| /// which reduces the amount of casting needed in parts of the compiler. |
| /// |
| inline IntegerType *getType() const { |
| return reinterpret_cast<IntegerType*>(Value::getType()); |
| } |
| |
| /// This static method returns true if the type Ty is big enough to |
| /// represent the value V. This can be used to avoid having the get method |
| /// assert when V is larger than Ty can represent. Note that there are two |
| /// versions of this method, one for unsigned and one for signed integers. |
| /// Although ConstantInt canonicalizes everything to an unsigned integer, |
| /// the signed version avoids callers having to convert a signed quantity |
| /// to the appropriate unsigned type before calling the method. |
| /// @returns true if V is a valid value for type Ty |
| /// @brief Determine if the value is in range for the given type. |
| static bool isValueValidForType(Type *Ty, uint64_t V); |
| static bool isValueValidForType(Type *Ty, int64_t V); |
| |
| bool isNegative() const { return Val.isNegative(); } |
| |
| /// This is just a convenience method to make client code smaller for a |
| /// common code. It also correctly performs the comparison without the |
| /// potential for an assertion from getZExtValue(). |
| bool isZero() const { |
| return Val == 0; |
| } |
| |
| /// This is just a convenience method to make client code smaller for a |
| /// common case. It also correctly performs the comparison without the |
| /// potential for an assertion from getZExtValue(). |
| /// @brief Determine if the value is one. |
| bool isOne() const { |
| return Val == 1; |
| } |
| |
| /// This function will return true iff every bit in this constant is set |
| /// to true. |
| /// @returns true iff this constant's bits are all set to true. |
| /// @brief Determine if the value is all ones. |
| bool isMinusOne() const { |
| return Val.isAllOnesValue(); |
| } |
| |
| /// This function will return true iff this constant represents the largest |
| /// value that may be represented by the constant's type. |
| /// @returns true iff this is the largest value that may be represented |
| /// by this type. |
| /// @brief Determine if the value is maximal. |
| bool isMaxValue(bool isSigned) const { |
| if (isSigned) |
| return Val.isMaxSignedValue(); |
| else |
| return Val.isMaxValue(); |
| } |
| |
| /// This function will return true iff this constant represents the smallest |
| /// value that may be represented by this constant's type. |
| /// @returns true if this is the smallest value that may be represented by |
| /// this type. |
| /// @brief Determine if the value is minimal. |
| bool isMinValue(bool isSigned) const { |
| if (isSigned) |
| return Val.isMinSignedValue(); |
| else |
| return Val.isMinValue(); |
| } |
| |
| /// This function will return true iff this constant represents a value with |
| /// active bits bigger than 64 bits or a value greater than the given uint64_t |
| /// value. |
| /// @returns true iff this constant is greater or equal to the given number. |
| /// @brief Determine if the value is greater or equal to the given number. |
| bool uge(uint64_t Num) const { |
| return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num; |
| } |
| |
| /// getLimitedValue - If the value is smaller than the specified limit, |
| /// return it, otherwise return the limit value. This causes the value |
| /// to saturate to the limit. |
| /// @returns the min of the value of the constant and the specified value |
| /// @brief Get the constant's value with a saturation limit |
| uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { |
| return Val.getLimitedValue(Limit); |
| } |
| |
| /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const ConstantInt *) { return true; } |
| static bool classof(const Value *V) { |
| return V->getValueID() == ConstantIntVal; |
| } |
| }; |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// ConstantFP - Floating Point Values [float, double] |
| /// |
| class ConstantFP : public Constant { |
| APFloat Val; |
| void *operator new(size_t, unsigned);// DO NOT IMPLEMENT |
| ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT |
| friend class LLVMContextImpl; |
| protected: |
| ConstantFP(Type *Ty, const APFloat& V); |
| protected: |
| // allocate space for exactly zero operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 0); |
| } |
| public: |
| /// Floating point negation must be implemented with f(x) = -0.0 - x. This |
| /// method returns the negative zero constant for floating point or vector |
| /// floating point types; for all other types, it returns the null value. |
| static Constant *getZeroValueForNegation(Type *Ty); |
| |
| /// get() - This returns a ConstantFP, or a vector containing a splat of a |
| /// ConstantFP, for the specified value in the specified type. This should |
| /// only be used for simple constant values like 2.0/1.0 etc, that are |
| /// known-valid both as host double and as the target format. |
| static Constant *get(Type* Ty, double V); |
| static Constant *get(Type* Ty, StringRef Str); |
| static ConstantFP *get(LLVMContext &Context, const APFloat &V); |
| static ConstantFP *getNegativeZero(Type* Ty); |
| static ConstantFP *getInfinity(Type *Ty, bool Negative = false); |
| |
| /// isValueValidForType - return true if Ty is big enough to represent V. |
| static bool isValueValidForType(Type *Ty, const APFloat &V); |
| inline const APFloat &getValueAPF() const { return Val; } |
| |
| /// isZero - Return true if the value is positive or negative zero. |
| bool isZero() const { return Val.isZero(); } |
| |
| /// isNegative - Return true if the sign bit is set. |
| bool isNegative() const { return Val.isNegative(); } |
| |
| /// isNaN - Return true if the value is a NaN. |
| bool isNaN() const { return Val.isNaN(); } |
| |
| /// isExactlyValue - We don't rely on operator== working on double values, as |
| /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
| /// As such, this method can be used to do an exact bit-for-bit comparison of |
| /// two floating point values. The version with a double operand is retained |
| /// because it's so convenient to write isExactlyValue(2.0), but please use |
| /// it only for simple constants. |
| bool isExactlyValue(const APFloat &V) const; |
| |
| bool isExactlyValue(double V) const { |
| bool ignored; |
| // convert is not supported on this type |
| if (&Val.getSemantics() == &APFloat::PPCDoubleDouble) |
| return false; |
| APFloat FV(V); |
| FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); |
| return isExactlyValue(FV); |
| } |
| /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const ConstantFP *) { return true; } |
| static bool classof(const Value *V) { |
| return V->getValueID() == ConstantFPVal; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// ConstantAggregateZero - All zero aggregate value |
| /// |
| class ConstantAggregateZero : public Constant { |
| friend struct ConstantCreator<ConstantAggregateZero, Type, char>; |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT |
| protected: |
| explicit ConstantAggregateZero(Type *ty) |
| : Constant(ty, ConstantAggregateZeroVal, 0, 0) {} |
| protected: |
| // allocate space for exactly zero operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 0); |
| } |
| public: |
| static ConstantAggregateZero* get(Type *Ty); |
| |
| virtual void destroyConstant(); |
| |
| /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| /// |
| static bool classof(const ConstantAggregateZero *) { return true; } |
| static bool classof(const Value *V) { |
| return V->getValueID() == ConstantAggregateZeroVal; |
| } |
| }; |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// ConstantArray - Constant Array Declarations |
| /// |
| class ConstantArray : public Constant { |
| friend struct ConstantCreator<ConstantArray, ArrayType, |
| std::vector<Constant*> >; |
| ConstantArray(const ConstantArray &); // DO NOT IMPLEMENT |
| protected: |
| ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); |
| public: |
| // ConstantArray accessors |
| static Constant *get(ArrayType *T, ArrayRef<Constant*> V); |
| |
| /// This method constructs a ConstantArray and initializes it with a text |
| /// string. The default behavior (AddNull==true) causes a null terminator to |
| /// be placed at the end of the array. This effectively increases the length |
| /// of the array by one (you've been warned). However, in some situations |
| /// this is not desired so if AddNull==false then the string is copied without |
| /// null termination. |
| static Constant *get(LLVMContext &Context, StringRef Initializer, |
| bool AddNull = true); |
| |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
| |
| /// getType - Specialize the getType() method to always return an ArrayType, |
| /// which reduces the amount of casting needed in parts of the compiler. |
| /// |
| inline ArrayType *getType() const { |
| return reinterpret_cast<ArrayType*>(Value::getType()); |
| } |
| |
| /// isString - This method returns true if the array is an array of i8 and |
| /// the elements of the array are all ConstantInt's. |
| bool isString() const; |
| |
| /// isCString - This method returns true if the array is a string (see |
| /// @verbatim |
| /// isString) and it ends in a null byte \0 and does not contains any other |
| /// @endverbatim |
| /// null bytes except its terminator. |
| bool isCString() const; |
| |
| /// getAsString - If this array is isString(), then this method converts the |
| /// array to an std::string and returns it. Otherwise, it asserts out. |
| /// |
| std::string getAsString() const; |
| |
| /// getAsCString - If this array is isCString(), then this method converts the |
| /// array (without the trailing null byte) to an std::string and returns it. |
| /// Otherwise, it asserts out. |
| /// |
| std::string getAsCString() const; |
| |
| virtual void destroyConstant(); |
| virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); |
| |
| /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const ConstantArray *) { return true; } |
| static bool classof(const Value *V) { |
| return V->getValueID() == ConstantArrayVal; |
| } |
| }; |
| |
| template <> |
| struct OperandTraits<ConstantArray> : |
| public VariadicOperandTraits<ConstantArray> { |
| }; |
| |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant) |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantStruct - Constant Struct Declarations |
| // |
| class ConstantStruct : public Constant { |
| friend struct ConstantCreator<ConstantStruct, StructType, |
| std::vector<Constant*> >; |
| ConstantStruct(const ConstantStruct &); // DO NOT IMPLEMENT |
| protected: |
| ConstantStruct(StructType *T, ArrayRef<Constant *> Val); |
| public: |
| // ConstantStruct accessors |
| static Constant *get(StructType *T, ArrayRef<Constant*> V); |
| static Constant *get(StructType *T, ...) END_WITH_NULL; |
| |
| /// getAnon - Return an anonymous struct that has the specified |
| /// elements. If the struct is possibly empty, then you must specify a |
| /// context. |
| static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) { |
| return get(getTypeForElements(V, Packed), V); |
| } |
| static Constant *getAnon(LLVMContext &Ctx, |
| ArrayRef<Constant*> V, bool Packed = false) { |
| return get(getTypeForElements(Ctx, V, Packed), V); |
| } |
| |
| /// getTypeForElements - Return an anonymous struct type to use for a constant |
| /// with the specified set of elements. The list must not be empty. |
| static StructType *getTypeForElements(ArrayRef<Constant*> V, |
| bool Packed = false); |
| /// getTypeForElements - This version of the method allows an empty list. |
| static StructType *getTypeForElements(LLVMContext &Ctx, |
| ArrayRef<Constant*> V, |
| bool Packed = false); |
| |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
| |
| /// getType() specialization - Reduce amount of casting... |
| /// |
| inline StructType *getType() const { |
| return reinterpret_cast<StructType*>(Value::getType()); |
| } |
| |
| virtual void destroyConstant(); |
| virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); |
| |
| /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const ConstantStruct *) { return true; } |
| static bool classof(const Value *V) { |
| return V->getValueID() == ConstantStructVal; |
| } |
| }; |
| |
| template <> |
| struct OperandTraits<ConstantStruct> : |
| public VariadicOperandTraits<ConstantStruct> { |
| }; |
| |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant) |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// ConstantVector - Constant Vector Declarations |
| /// |
| class ConstantVector : public Constant { |
| friend struct ConstantCreator<ConstantVector, VectorType, |
| std::vector<Constant*> >; |
| ConstantVector(const ConstantVector &); // DO NOT IMPLEMENT |
| protected: |
| ConstantVector(VectorType *T, ArrayRef<Constant *> Val); |
| public: |
| // ConstantVector accessors |
| static Constant *get(ArrayRef<Constant*> V); |
| |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
| |
| /// getType - Specialize the getType() method to always return a VectorType, |
| /// which reduces the amount of casting needed in parts of the compiler. |
| /// |
| inline VectorType *getType() const { |
| return reinterpret_cast<VectorType*>(Value::getType()); |
| } |
| |
| /// This function will return true iff every element in this vector constant |
| /// is set to all ones. |
| /// @returns true iff this constant's emements are all set to all ones. |
| /// @brief Determine if the value is all ones. |
| bool isAllOnesValue() const; |
| |
| /// getSplatValue - If this is a splat constant, meaning that all of the |
| /// elements have the same value, return that value. Otherwise return NULL. |
| Constant *getSplatValue() const; |
| |
| virtual void destroyConstant(); |
| virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); |
| |
| /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const ConstantVector *) { return true; } |
| static bool classof(const Value *V) { |
| return V->getValueID() == ConstantVectorVal; |
| } |
| }; |
| |
| template <> |
| struct OperandTraits<ConstantVector> : |
| public VariadicOperandTraits<ConstantVector> { |
| }; |
| |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant) |
| |
| //===----------------------------------------------------------------------===// |
| /// ConstantPointerNull - a constant pointer value that points to null |
| /// |
| class ConstantPointerNull : public Constant { |
| friend struct ConstantCreator<ConstantPointerNull, PointerType, char>; |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT |
| protected: |
| explicit ConstantPointerNull(PointerType *T) |
| : Constant(reinterpret_cast<Type*>(T), |
| Value::ConstantPointerNullVal, 0, 0) {} |
| |
| protected: |
| // allocate space for exactly zero operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 0); |
| } |
| public: |
| /// get() - Static factory methods - Return objects of the specified value |
| static ConstantPointerNull *get(PointerType *T); |
| |
| virtual void destroyConstant(); |
| |
| /// getType - Specialize the getType() method to always return an PointerType, |
| /// which reduces the amount of casting needed in parts of the compiler. |
| /// |
| inline PointerType *getType() const { |
| return reinterpret_cast<PointerType*>(Value::getType()); |
| } |
| |
| /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const ConstantPointerNull *) { return true; } |
| static bool classof(const Value *V) { |
| return V->getValueID() == ConstantPointerNullVal; |
| } |
| }; |
| |
| /// BlockAddress - The address of a basic block. |
| /// |
| class BlockAddress : public Constant { |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| void *operator new(size_t s) { return User::operator new(s, 2); } |
| BlockAddress(Function *F, BasicBlock *BB); |
| public: |
| /// get - Return a BlockAddress for the specified function and basic block. |
| static BlockAddress *get(Function *F, BasicBlock *BB); |
| |
| /// get - Return a BlockAddress for the specified basic block. The basic |
| /// block must be embedded into a function. |
| static BlockAddress *get(BasicBlock *BB); |
| |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
| |
| Function *getFunction() const { return (Function*)Op<0>().get(); } |
| BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); } |
| |
| virtual void destroyConstant(); |
| virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); |
| |
| /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const BlockAddress *) { return true; } |
| static inline bool classof(const Value *V) { |
| return V->getValueID() == BlockAddressVal; |
| } |
| }; |
| |
| template <> |
| struct OperandTraits<BlockAddress> : |
| public FixedNumOperandTraits<BlockAddress, 2> { |
| }; |
| |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// ConstantExpr - a constant value that is initialized with an expression using |
| /// other constant values. |
| /// |
| /// This class uses the standard Instruction opcodes to define the various |
| /// constant expressions. The Opcode field for the ConstantExpr class is |
| /// maintained in the Value::SubclassData field. |
| class ConstantExpr : public Constant { |
| friend struct ConstantCreator<ConstantExpr,Type, |
| std::pair<unsigned, std::vector<Constant*> > >; |
| friend struct ConvertConstantType<ConstantExpr, Type>; |
| |
| protected: |
| ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) |
| : Constant(ty, ConstantExprVal, Ops, NumOps) { |
| // Operation type (an Instruction opcode) is stored as the SubclassData. |
| setValueSubclassData(Opcode); |
| } |
| |
| public: |
| // Static methods to construct a ConstantExpr of different kinds. Note that |
| // these methods may return a object that is not an instance of the |
| // ConstantExpr class, because they will attempt to fold the constant |
| // expression into something simpler if possible. |
| |
| /// getAlignOf constant expr - computes the alignment of a type in a target |
| /// independent way (Note: the return type is an i64). |
| static Constant *getAlignOf(Type *Ty); |
| |
| /// getSizeOf constant expr - computes the (alloc) size of a type (in |
| /// address-units, not bits) in a target independent way (Note: the return |
| /// type is an i64). |
| /// |
| static Constant *getSizeOf(Type *Ty); |
| |
| /// getOffsetOf constant expr - computes the offset of a struct field in a |
| /// target independent way (Note: the return type is an i64). |
| /// |
| static Constant *getOffsetOf(StructType *STy, unsigned FieldNo); |
| |
| /// getOffsetOf constant expr - This is a generalized form of getOffsetOf, |
| /// which supports any aggregate type, and any Constant index. |
| /// |
| static Constant *getOffsetOf(Type *Ty, Constant *FieldNo); |
| |
| static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false); |
| static Constant *getFNeg(Constant *C); |
| static Constant *getNot(Constant *C); |
| static Constant *getAdd(Constant *C1, Constant *C2, |
| bool HasNUW = false, bool HasNSW = false); |
| static Constant *getFAdd(Constant *C1, Constant *C2); |
| static Constant *getSub(Constant *C1, Constant *C2, |
| bool HasNUW = false, bool HasNSW = false); |
| static Constant *getFSub(Constant *C1, Constant *C2); |
| static Constant *getMul(Constant *C1, Constant *C2, |
| bool HasNUW = false, bool HasNSW = false); |
| static Constant *getFMul(Constant *C1, Constant *C2); |
| static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false); |
| static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false); |
| static Constant *getFDiv(Constant *C1, Constant *C2); |
| static Constant *getURem(Constant *C1, Constant *C2); |
| static Constant *getSRem(Constant *C1, Constant *C2); |
| static Constant *getFRem(Constant *C1, Constant *C2); |
| static Constant *getAnd(Constant *C1, Constant *C2); |
| static Constant *getOr(Constant *C1, Constant *C2); |
| static Constant *getXor(Constant *C1, Constant *C2); |
| static Constant *getShl(Constant *C1, Constant *C2, |
| bool HasNUW = false, bool HasNSW = false); |
| static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false); |
| static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false); |
| static Constant *getTrunc (Constant *C, Type *Ty); |
| static Constant *getSExt (Constant *C, Type *Ty); |
| static Constant *getZExt (Constant *C, Type *Ty); |
| static Constant *getFPTrunc (Constant *C, Type *Ty); |
| static Constant *getFPExtend(Constant *C, Type *Ty); |
| static Constant *getUIToFP (Constant *C, Type *Ty); |
| static Constant *getSIToFP (Constant *C, Type *Ty); |
| static Constant *getFPToUI (Constant *C, Type *Ty); |
| static Constant *getFPToSI (Constant *C, Type *Ty); |
| static Constant *getPtrToInt(Constant *C, Type *Ty); |
| static Constant *getIntToPtr(Constant *C, Type *Ty); |
| static Constant *getBitCast (Constant *C, Type *Ty); |
| |
| static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); } |
| static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); } |
| static Constant *getNSWAdd(Constant *C1, Constant *C2) { |
| return getAdd(C1, C2, false, true); |
| } |
| static Constant *getNUWAdd(Constant *C1, Constant *C2) { |
| return getAdd(C1, C2, true, false); |
| } |
| static Constant *getNSWSub(Constant *C1, Constant *C2) { |
| return getSub(C1, C2, false, true); |
| } |
| static Constant *getNUWSub(Constant *C1, Constant *C2) { |
| return getSub(C1, C2, true, false); |
| } |
| static Constant *getNSWMul(Constant *C1, Constant *C2) { |
| return getMul(C1, C2, false, true); |
| } |
| static Constant *getNUWMul(Constant *C1, Constant *C2) { |
| return getMul(C1, C2, true, false); |
| } |
| static Constant *getNSWShl(Constant *C1, Constant *C2) { |
| return getShl(C1, C2, false, true); |
| } |
| static Constant *getNUWShl(Constant *C1, Constant *C2) { |
| return getShl(C1, C2, true, false); |
| } |
| static Constant *getExactSDiv(Constant *C1, Constant *C2) { |
| return getSDiv(C1, C2, true); |
| } |
| static Constant *getExactUDiv(Constant *C1, Constant *C2) { |
| return getUDiv(C1, C2, true); |
| } |
| static Constant *getExactAShr(Constant *C1, Constant *C2) { |
| return getAShr(C1, C2, true); |
| } |
| static Constant *getExactLShr(Constant *C1, Constant *C2) { |
| return getLShr(C1, C2, true); |
| } |
| |
| /// Transparently provide more efficient getOperand methods. |
| DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
| |
| // @brief Convenience function for getting one of the casting operations |
| // using a CastOps opcode. |
| static Constant *getCast( |
| unsigned ops, ///< The opcode for the conversion |
| Constant *C, ///< The constant to be converted |
| Type *Ty ///< The type to which the constant is converted |
| ); |
| |
| // @brief Create a ZExt or BitCast cast constant expression |
| static Constant *getZExtOrBitCast( |
| Constant *C, ///< The constant to zext or bitcast |
| Type *Ty ///< The type to zext or bitcast C to |
| ); |
| |
| // @brief Create a SExt or BitCast cast constant expression |
| static Constant *getSExtOrBitCast( |
| Constant *C, ///< The constant to sext or bitcast |
| Type *Ty ///< The type to sext or bitcast C to |
| ); |
| |
| // @brief Create a Trunc or BitCast cast constant expression |
| static Constant *getTruncOrBitCast( |
| Constant *C, ///< The constant to trunc or bitcast |
| Type *Ty ///< The type to trunc or bitcast C to |
| ); |
| |
| /// @brief Create a BitCast or a PtrToInt cast constant expression |
| static Constant *getPointerCast( |
| Constant *C, ///< The pointer value to be casted (operand 0) |
| Type *Ty ///< The type to which cast should be made |
| ); |
| |
| /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts |
| static Constant *getIntegerCast( |
| Constant *C, ///< The integer constant to be casted |
| Type *Ty, ///< The integer type to cast to |
| bool isSigned ///< Whether C should be treated as signed or not |
| ); |
| |
| /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts |
| static Constant *getFPCast( |
| Constant *C, ///< The integer constant to be casted |
| Type *Ty ///< The integer type to cast to |
| ); |
| |
| /// @brief Return true if this is a convert constant expression |
| bool isCast() const; |
| |
| /// @brief Return true if this is a compare constant expression |
| bool isCompare() const; |
| |
| /// @brief Return true if this is an insertvalue or extractvalue expression, |
| /// and the getIndices() method may be used. |
| bool hasIndices() const; |
| |
| /// @brief Return true if this is a getelementptr expression and all |
| /// the index operands are compile-time known integers within the |
| /// corresponding notional static array extents. Note that this is |
| /// not equivalant to, a subset of, or a superset of the "inbounds" |
| /// property. |
| bool isGEPWithNoNotionalOverIndexing() const; |
| |
| /// Select constant expr |
| /// |
| static Constant *getSelect(Constant *C, Constant *V1, Constant *V2); |
| |
| /// get - Return a binary or shift operator constant expression, |
| /// folding if possible. |
| /// |
| static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, |
| unsigned Flags = 0); |
| |
| /// @brief Return an ICmp or FCmp comparison operator constant expression. |
| static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2); |
| |
| /// get* - Return some common constants without having to |
| /// specify the full Instruction::OPCODE identifier. |
| /// |
| static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS); |
| static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS); |
| |
| /// Getelementptr form. Value* is only accepted for convenience; |
| /// all elements must be Constant's. |
| /// |
| static Constant *getGetElementPtr(Constant *C, |
| ArrayRef<Constant *> IdxList, |
| bool InBounds = false) { |
| return getGetElementPtr(C, makeArrayRef((Value * const *)IdxList.data(), |
| IdxList.size()), |
| InBounds); |
| } |
| static Constant *getGetElementPtr(Constant *C, |
| Constant *Idx, |
| bool InBounds = false) { |
| // This form of the function only exists to avoid ambiguous overload |
| // warnings about whether to convert Idx to ArrayRef<Constant *> or |
| // ArrayRef<Value *>. |
| return getGetElementPtr(C, cast<Value>(Idx), InBounds); |
| } |
| static Constant *getGetElementPtr(Constant *C, |
| ArrayRef<Value *> IdxList, |
| bool InBounds = false); |
| |
| /// Create an "inbounds" getelementptr. See the documentation for the |
| /// "inbounds" flag in LangRef.html for details. |
| static Constant *getInBoundsGetElementPtr(Constant *C, |
| ArrayRef<Constant *> IdxList) { |
| return getGetElementPtr(C, IdxList, true); |
| } |
| static Constant *getInBoundsGetElementPtr(Constant *C, |
| Constant *Idx) { |
| // This form of the function only exists to avoid ambiguous overload |
| // warnings about whether to convert Idx to ArrayRef<Constant *> or |
| // ArrayRef<Value *>. |
| return getGetElementPtr(C, Idx, true); |
| } |
| static Constant *getInBoundsGetElementPtr(Constant *C, |
| ArrayRef<Value *> IdxList) { |
| return getGetElementPtr(C, IdxList, true); |
| } |
| |
| static Constant *getExtractElement(Constant *Vec, Constant *Idx); |
| static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx); |
| static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask); |
| static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs); |
| static Constant *getInsertValue(Constant *Agg, Constant *Val, |
| ArrayRef<unsigned> Idxs); |
| |
| /// getOpcode - Return the opcode at the root of this constant expression |
| unsigned getOpcode() const { return getSubclassDataFromValue(); } |
| |
| /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is |
| /// not an ICMP or FCMP constant expression. |
| unsigned getPredicate() const; |
| |
| /// getIndices - Assert that this is an insertvalue or exactvalue |
| /// expression and return the list of indices. |
| ArrayRef<unsigned> getIndices() const; |
| |
| /// getOpcodeName - Return a string representation for an opcode. |
| const char *getOpcodeName() const; |
| |
| /// getWithOperandReplaced - Return a constant expression identical to this |
| /// one, but with the specified operand set to the specified value. |
| Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; |
| |
| /// getWithOperands - This returns the current constant expression with the |
| /// operands replaced with the specified values. The specified array must |
| /// have the same number of operands as our current one. |
| Constant *getWithOperands(ArrayRef<Constant*> Ops) const { |
| return getWithOperands(Ops, getType()); |
| } |
| |
| /// getWithOperands - This returns the current constant expression with the |
| /// operands replaced with the specified values and with the specified result |
| /// type. The specified array must have the same number of operands as our |
| /// current one. |
| Constant *getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const; |
| |
| virtual void destroyConstant(); |
| virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U); |
| |
| /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const ConstantExpr *) { return true; } |
| static inline bool classof(const Value *V) { |
| return V->getValueID() == ConstantExprVal; |
| } |
| |
| private: |
| // Shadow Value::setValueSubclassData with a private forwarding method so that |
| // subclasses cannot accidentally use it. |
| void setValueSubclassData(unsigned short D) { |
| Value::setValueSubclassData(D); |
| } |
| }; |
| |
| template <> |
| struct OperandTraits<ConstantExpr> : |
| public VariadicOperandTraits<ConstantExpr, 1> { |
| }; |
| |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) |
| |
| //===----------------------------------------------------------------------===// |
| /// UndefValue - 'undef' values are things that do not have specified contents. |
| /// These are used for a variety of purposes, including global variable |
| /// initializers and operands to instructions. 'undef' values can occur with |
| /// any first-class type. |
| /// |
| /// Undef values aren't exactly constants; if they have multiple uses, they |
| /// can appear to have different bit patterns at each use. See |
| /// LangRef.html#undefvalues for details. |
| /// |
| class UndefValue : public Constant { |
| friend struct ConstantCreator<UndefValue, Type, char>; |
| void *operator new(size_t, unsigned); // DO NOT IMPLEMENT |
| UndefValue(const UndefValue &); // DO NOT IMPLEMENT |
| protected: |
| explicit UndefValue(Type *T) : Constant(T, UndefValueVal, 0, 0) {} |
| protected: |
| // allocate space for exactly zero operands |
| void *operator new(size_t s) { |
| return User::operator new(s, 0); |
| } |
| public: |
| /// get() - Static factory methods - Return an 'undef' object of the specified |
| /// type. |
| /// |
| static UndefValue *get(Type *T); |
| |
| virtual void destroyConstant(); |
| |
| /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| static inline bool classof(const UndefValue *) { return true; } |
| static bool classof(const Value *V) { |
| return V->getValueID() == UndefValueVal; |
| } |
| }; |
| |
| } // End llvm namespace |
| |
| #endif |