| //===---- ADT/SCCIterator.h - Strongly Connected Comp. Iter. ----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This builds on the llvm/ADT/GraphTraits.h file to find the strongly connected |
| // components (SCCs) of a graph in O(N+E) time using Tarjan's DFS algorithm. |
| // |
| // The SCC iterator has the important property that if a node in SCC S1 has an |
| // edge to a node in SCC S2, then it visits S1 *after* S2. |
| // |
| // To visit S1 *before* S2, use the scc_iterator on the Inverse graph. |
| // (NOTE: This requires some simple wrappers and is not supported yet.) |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_SCCITERATOR_H |
| #define LLVM_ADT_SCCITERATOR_H |
| |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include <vector> |
| |
| namespace llvm { |
| |
| //===----------------------------------------------------------------------===// |
| /// |
| /// scc_iterator - Enumerate the SCCs of a directed graph, in |
| /// reverse topological order of the SCC DAG. |
| /// |
| template<class GraphT, class GT = GraphTraits<GraphT> > |
| class scc_iterator |
| : public std::iterator<std::forward_iterator_tag, |
| std::vector<typename GT::NodeType>, ptrdiff_t> { |
| typedef typename GT::NodeType NodeType; |
| typedef typename GT::ChildIteratorType ChildItTy; |
| typedef std::vector<NodeType*> SccTy; |
| typedef std::iterator<std::forward_iterator_tag, |
| std::vector<typename GT::NodeType>, ptrdiff_t> super; |
| typedef typename super::reference reference; |
| typedef typename super::pointer pointer; |
| |
| // The visit counters used to detect when a complete SCC is on the stack. |
| // visitNum is the global counter. |
| // nodeVisitNumbers are per-node visit numbers, also used as DFS flags. |
| unsigned visitNum; |
| DenseMap<NodeType *, unsigned> nodeVisitNumbers; |
| |
| // SCCNodeStack - Stack holding nodes of the SCC. |
| std::vector<NodeType *> SCCNodeStack; |
| |
| // CurrentSCC - The current SCC, retrieved using operator*(). |
| SccTy CurrentSCC; |
| |
| // VisitStack - Used to maintain the ordering. Top = current block |
| // First element is basic block pointer, second is the 'next child' to visit |
| std::vector<std::pair<NodeType *, ChildItTy> > VisitStack; |
| |
| // MinVisitNumStack - Stack holding the "min" values for each node in the DFS. |
| // This is used to track the minimum uplink values for all children of |
| // the corresponding node on the VisitStack. |
| std::vector<unsigned> MinVisitNumStack; |
| |
| // A single "visit" within the non-recursive DFS traversal. |
| void DFSVisitOne(NodeType *N) { |
| ++visitNum; // Global counter for the visit order |
| nodeVisitNumbers[N] = visitNum; |
| SCCNodeStack.push_back(N); |
| MinVisitNumStack.push_back(visitNum); |
| VisitStack.push_back(std::make_pair(N, GT::child_begin(N))); |
| //dbgs() << "TarjanSCC: Node " << N << |
| // " : visitNum = " << visitNum << "\n"; |
| } |
| |
| // The stack-based DFS traversal; defined below. |
| void DFSVisitChildren() { |
| assert(!VisitStack.empty()); |
| while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) { |
| // TOS has at least one more child so continue DFS |
| NodeType *childN = *VisitStack.back().second++; |
| if (!nodeVisitNumbers.count(childN)) { |
| // this node has never been seen. |
| DFSVisitOne(childN); |
| continue; |
| } |
| |
| unsigned childNum = nodeVisitNumbers[childN]; |
| if (MinVisitNumStack.back() > childNum) |
| MinVisitNumStack.back() = childNum; |
| } |
| } |
| |
| // Compute the next SCC using the DFS traversal. |
| void GetNextSCC() { |
| assert(VisitStack.size() == MinVisitNumStack.size()); |
| CurrentSCC.clear(); // Prepare to compute the next SCC |
| while (!VisitStack.empty()) { |
| DFSVisitChildren(); |
| assert(VisitStack.back().second ==GT::child_end(VisitStack.back().first)); |
| NodeType *visitingN = VisitStack.back().first; |
| unsigned minVisitNum = MinVisitNumStack.back(); |
| VisitStack.pop_back(); |
| MinVisitNumStack.pop_back(); |
| if (!MinVisitNumStack.empty() && MinVisitNumStack.back() > minVisitNum) |
| MinVisitNumStack.back() = minVisitNum; |
| |
| //dbgs() << "TarjanSCC: Popped node " << visitingN << |
| // " : minVisitNum = " << minVisitNum << "; Node visit num = " << |
| // nodeVisitNumbers[visitingN] << "\n"; |
| |
| if (minVisitNum != nodeVisitNumbers[visitingN]) |
| continue; |
| |
| // A full SCC is on the SCCNodeStack! It includes all nodes below |
| // visitingN on the stack. Copy those nodes to CurrentSCC, |
| // reset their minVisit values, and return (this suspends |
| // the DFS traversal till the next ++). |
| do { |
| CurrentSCC.push_back(SCCNodeStack.back()); |
| SCCNodeStack.pop_back(); |
| nodeVisitNumbers[CurrentSCC.back()] = ~0U; |
| } while (CurrentSCC.back() != visitingN); |
| return; |
| } |
| } |
| |
| inline scc_iterator(NodeType *entryN) : visitNum(0) { |
| DFSVisitOne(entryN); |
| GetNextSCC(); |
| } |
| inline scc_iterator() { /* End is when DFS stack is empty */ } |
| |
| public: |
| typedef scc_iterator<GraphT, GT> _Self; |
| |
| // Provide static "constructors"... |
| static inline _Self begin(const GraphT &G){return _Self(GT::getEntryNode(G));} |
| static inline _Self end (const GraphT &) { return _Self(); } |
| |
| // Direct loop termination test: I.isAtEnd() is more efficient than I == end() |
| inline bool isAtEnd() const { |
| assert(!CurrentSCC.empty() || VisitStack.empty()); |
| return CurrentSCC.empty(); |
| } |
| |
| inline bool operator==(const _Self& x) const { |
| return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC; |
| } |
| inline bool operator!=(const _Self& x) const { return !operator==(x); } |
| |
| // Iterator traversal: forward iteration only |
| inline _Self& operator++() { // Preincrement |
| GetNextSCC(); |
| return *this; |
| } |
| inline _Self operator++(int) { // Postincrement |
| _Self tmp = *this; ++*this; return tmp; |
| } |
| |
| // Retrieve a reference to the current SCC |
| inline const SccTy &operator*() const { |
| assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); |
| return CurrentSCC; |
| } |
| inline SccTy &operator*() { |
| assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); |
| return CurrentSCC; |
| } |
| |
| // hasLoop() -- Test if the current SCC has a loop. If it has more than one |
| // node, this is trivially true. If not, it may still contain a loop if the |
| // node has an edge back to itself. |
| bool hasLoop() const { |
| assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); |
| if (CurrentSCC.size() > 1) return true; |
| NodeType *N = CurrentSCC.front(); |
| for (ChildItTy CI = GT::child_begin(N), CE=GT::child_end(N); CI != CE; ++CI) |
| if (*CI == N) |
| return true; |
| return false; |
| } |
| |
| /// ReplaceNode - This informs the scc_iterator that the specified Old node |
| /// has been deleted, and New is to be used in its place. |
| void ReplaceNode(NodeType *Old, NodeType *New) { |
| assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?"); |
| nodeVisitNumbers[New] = nodeVisitNumbers[Old]; |
| nodeVisitNumbers.erase(Old); |
| } |
| }; |
| |
| |
| // Global constructor for the SCC iterator. |
| template <class T> |
| scc_iterator<T> scc_begin(const T &G) { |
| return scc_iterator<T>::begin(G); |
| } |
| |
| template <class T> |
| scc_iterator<T> scc_end(const T &G) { |
| return scc_iterator<T>::end(G); |
| } |
| |
| template <class T> |
| scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) { |
| return scc_iterator<Inverse<T> >::begin(G); |
| } |
| |
| template <class T> |
| scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) { |
| return scc_iterator<Inverse<T> >::end(G); |
| } |
| |
| } // End llvm namespace |
| |
| #endif |