| //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAGISel class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "ScheduleDAGSDNodes.h" |
| #include "SelectionDAGBuilder.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/CodeGen/FastISel.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/GCMetadata.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachinePassRegistry.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SchedulerRegistry.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/StackProtector.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetIntrinsicInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "isel" |
| |
| STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); |
| STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); |
| STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); |
| STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); |
| STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); |
| STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); |
| STATISTIC(NumFastIselFailLowerArguments, |
| "Number of entry blocks where fast isel failed to lower arguments"); |
| |
| static cl::opt<int> EnableFastISelAbort( |
| "fast-isel-abort", cl::Hidden, |
| cl::desc("Enable abort calls when \"fast\" instruction selection " |
| "fails to lower an instruction: 0 disable the abort, 1 will " |
| "abort but for args, calls and terminators, 2 will also " |
| "abort for argument lowering, and 3 will never fallback " |
| "to SelectionDAG.")); |
| |
| static cl::opt<bool> EnableFastISelFallbackReport( |
| "fast-isel-report-on-fallback", cl::Hidden, |
| cl::desc("Emit a diagnostic when \"fast\" instruction selection " |
| "falls back to SelectionDAG.")); |
| |
| static cl::opt<bool> |
| UseMBPI("use-mbpi", |
| cl::desc("use Machine Branch Probability Info"), |
| cl::init(true), cl::Hidden); |
| |
| #ifndef NDEBUG |
| static cl::opt<std::string> |
| FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, |
| cl::desc("Only display the basic block whose name " |
| "matches this for all view-*-dags options")); |
| static cl::opt<bool> |
| ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the first " |
| "dag combine pass")); |
| static cl::opt<bool> |
| ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before legalize types")); |
| static cl::opt<bool> |
| ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before legalize")); |
| static cl::opt<bool> |
| ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the second " |
| "dag combine pass")); |
| static cl::opt<bool> |
| ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, |
| cl::desc("Pop up a window to show dags before the post legalize types" |
| " dag combine pass")); |
| static cl::opt<bool> |
| ViewISelDAGs("view-isel-dags", cl::Hidden, |
| cl::desc("Pop up a window to show isel dags as they are selected")); |
| static cl::opt<bool> |
| ViewSchedDAGs("view-sched-dags", cl::Hidden, |
| cl::desc("Pop up a window to show sched dags as they are processed")); |
| static cl::opt<bool> |
| ViewSUnitDAGs("view-sunit-dags", cl::Hidden, |
| cl::desc("Pop up a window to show SUnit dags after they are processed")); |
| #else |
| static const bool ViewDAGCombine1 = false, |
| ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, |
| ViewDAGCombine2 = false, |
| ViewDAGCombineLT = false, |
| ViewISelDAGs = false, ViewSchedDAGs = false, |
| ViewSUnitDAGs = false; |
| #endif |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// RegisterScheduler class - Track the registration of instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| MachinePassRegistry RegisterScheduler::Registry; |
| |
| //===---------------------------------------------------------------------===// |
| /// |
| /// ISHeuristic command line option for instruction schedulers. |
| /// |
| //===---------------------------------------------------------------------===// |
| static cl::opt<RegisterScheduler::FunctionPassCtor, false, |
| RegisterPassParser<RegisterScheduler>> |
| ISHeuristic("pre-RA-sched", |
| cl::init(&createDefaultScheduler), cl::Hidden, |
| cl::desc("Instruction schedulers available (before register" |
| " allocation):")); |
| |
| static RegisterScheduler |
| defaultListDAGScheduler("default", "Best scheduler for the target", |
| createDefaultScheduler); |
| |
| namespace llvm { |
| |
| //===--------------------------------------------------------------------===// |
| /// This class is used by SelectionDAGISel to temporarily override |
| /// the optimization level on a per-function basis. |
| class OptLevelChanger { |
| SelectionDAGISel &IS; |
| CodeGenOpt::Level SavedOptLevel; |
| bool SavedFastISel; |
| |
| public: |
| OptLevelChanger(SelectionDAGISel &ISel, |
| CodeGenOpt::Level NewOptLevel) : IS(ISel) { |
| SavedOptLevel = IS.OptLevel; |
| if (NewOptLevel == SavedOptLevel) |
| return; |
| IS.OptLevel = NewOptLevel; |
| IS.TM.setOptLevel(NewOptLevel); |
| LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " |
| << IS.MF->getFunction().getName() << "\n"); |
| LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" |
| << NewOptLevel << "\n"); |
| SavedFastISel = IS.TM.Options.EnableFastISel; |
| if (NewOptLevel == CodeGenOpt::None) { |
| IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); |
| LLVM_DEBUG( |
| dbgs() << "\tFastISel is " |
| << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") |
| << "\n"); |
| } |
| } |
| |
| ~OptLevelChanger() { |
| if (IS.OptLevel == SavedOptLevel) |
| return; |
| LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " |
| << IS.MF->getFunction().getName() << "\n"); |
| LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" |
| << SavedOptLevel << "\n"); |
| IS.OptLevel = SavedOptLevel; |
| IS.TM.setOptLevel(SavedOptLevel); |
| IS.TM.setFastISel(SavedFastISel); |
| } |
| }; |
| |
| //===--------------------------------------------------------------------===// |
| /// createDefaultScheduler - This creates an instruction scheduler appropriate |
| /// for the target. |
| ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, |
| CodeGenOpt::Level OptLevel) { |
| const TargetLowering *TLI = IS->TLI; |
| const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); |
| |
| // Try first to see if the Target has its own way of selecting a scheduler |
| if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { |
| return SchedulerCtor(IS, OptLevel); |
| } |
| |
| if (OptLevel == CodeGenOpt::None || |
| (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || |
| TLI->getSchedulingPreference() == Sched::Source) |
| return createSourceListDAGScheduler(IS, OptLevel); |
| if (TLI->getSchedulingPreference() == Sched::RegPressure) |
| return createBURRListDAGScheduler(IS, OptLevel); |
| if (TLI->getSchedulingPreference() == Sched::Hybrid) |
| return createHybridListDAGScheduler(IS, OptLevel); |
| if (TLI->getSchedulingPreference() == Sched::VLIW) |
| return createVLIWDAGScheduler(IS, OptLevel); |
| assert(TLI->getSchedulingPreference() == Sched::ILP && |
| "Unknown sched type!"); |
| return createILPListDAGScheduler(IS, OptLevel); |
| } |
| |
| } // end namespace llvm |
| |
| // EmitInstrWithCustomInserter - This method should be implemented by targets |
| // that mark instructions with the 'usesCustomInserter' flag. These |
| // instructions are special in various ways, which require special support to |
| // insert. The specified MachineInstr is created but not inserted into any |
| // basic blocks, and this method is called to expand it into a sequence of |
| // instructions, potentially also creating new basic blocks and control flow. |
| // When new basic blocks are inserted and the edges from MBB to its successors |
| // are modified, the method should insert pairs of <OldSucc, NewSucc> into the |
| // DenseMap. |
| MachineBasicBlock * |
| TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| #ifndef NDEBUG |
| dbgs() << "If a target marks an instruction with " |
| "'usesCustomInserter', it must implement " |
| "TargetLowering::EmitInstrWithCustomInserter!"; |
| #endif |
| llvm_unreachable(nullptr); |
| } |
| |
| void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, |
| SDNode *Node) const { |
| assert(!MI.hasPostISelHook() && |
| "If a target marks an instruction with 'hasPostISelHook', " |
| "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAGISel code |
| //===----------------------------------------------------------------------===// |
| |
| SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, |
| CodeGenOpt::Level OL) : |
| MachineFunctionPass(ID), TM(tm), |
| FuncInfo(new FunctionLoweringInfo()), |
| CurDAG(new SelectionDAG(tm, OL)), |
| SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), |
| AA(), GFI(), |
| OptLevel(OL), |
| DAGSize(0) { |
| initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); |
| initializeBranchProbabilityInfoWrapperPassPass( |
| *PassRegistry::getPassRegistry()); |
| initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); |
| initializeTargetLibraryInfoWrapperPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| SelectionDAGISel::~SelectionDAGISel() { |
| delete SDB; |
| delete CurDAG; |
| delete FuncInfo; |
| } |
| |
| void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { |
| if (OptLevel != CodeGenOpt::None) |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<GCModuleInfo>(); |
| AU.addRequired<StackProtector>(); |
| AU.addPreserved<GCModuleInfo>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| if (UseMBPI && OptLevel != CodeGenOpt::None) |
| AU.addRequired<BranchProbabilityInfoWrapperPass>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that |
| /// may trap on it. In this case we have to split the edge so that the path |
| /// through the predecessor block that doesn't go to the phi block doesn't |
| /// execute the possibly trapping instruction. If available, we pass domtree |
| /// and loop info to be updated when we split critical edges. This is because |
| /// SelectionDAGISel preserves these analyses. |
| /// This is required for correctness, so it must be done at -O0. |
| /// |
| static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, |
| LoopInfo *LI) { |
| // Loop for blocks with phi nodes. |
| for (BasicBlock &BB : Fn) { |
| PHINode *PN = dyn_cast<PHINode>(BB.begin()); |
| if (!PN) continue; |
| |
| ReprocessBlock: |
| // For each block with a PHI node, check to see if any of the input values |
| // are potentially trapping constant expressions. Constant expressions are |
| // the only potentially trapping value that can occur as the argument to a |
| // PHI. |
| for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); |
| if (!CE || !CE->canTrap()) continue; |
| |
| // The only case we have to worry about is when the edge is critical. |
| // Since this block has a PHI Node, we assume it has multiple input |
| // edges: check to see if the pred has multiple successors. |
| BasicBlock *Pred = PN->getIncomingBlock(i); |
| if (Pred->getTerminator()->getNumSuccessors() == 1) |
| continue; |
| |
| // Okay, we have to split this edge. |
| SplitCriticalEdge( |
| Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), |
| CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); |
| goto ReprocessBlock; |
| } |
| } |
| } |
| |
| bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { |
| // If we already selected that function, we do not need to run SDISel. |
| if (mf.getProperties().hasProperty( |
| MachineFunctionProperties::Property::Selected)) |
| return false; |
| // Do some sanity-checking on the command-line options. |
| assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && |
| "-fast-isel-abort > 0 requires -fast-isel"); |
| |
| const Function &Fn = mf.getFunction(); |
| MF = &mf; |
| |
| // Reset the target options before resetting the optimization |
| // level below. |
| // FIXME: This is a horrible hack and should be processed via |
| // codegen looking at the optimization level explicitly when |
| // it wants to look at it. |
| TM.resetTargetOptions(Fn); |
| // Reset OptLevel to None for optnone functions. |
| CodeGenOpt::Level NewOptLevel = OptLevel; |
| if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) |
| NewOptLevel = CodeGenOpt::None; |
| OptLevelChanger OLC(*this, NewOptLevel); |
| |
| TII = MF->getSubtarget().getInstrInfo(); |
| TLI = MF->getSubtarget().getTargetLowering(); |
| RegInfo = &MF->getRegInfo(); |
| LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; |
| ORE = make_unique<OptimizationRemarkEmitter>(&Fn); |
| auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; |
| auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); |
| LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; |
| |
| LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); |
| |
| SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); |
| |
| CurDAG->init(*MF, *ORE, this, LibInfo, |
| getAnalysisIfAvailable<DivergenceAnalysis>()); |
| FuncInfo->set(Fn, *MF, CurDAG); |
| |
| // Now get the optional analyzes if we want to. |
| // This is based on the possibly changed OptLevel (after optnone is taken |
| // into account). That's unfortunate but OK because it just means we won't |
| // ask for passes that have been required anyway. |
| |
| if (UseMBPI && OptLevel != CodeGenOpt::None) |
| FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); |
| else |
| FuncInfo->BPI = nullptr; |
| |
| if (OptLevel != CodeGenOpt::None) |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| else |
| AA = nullptr; |
| |
| SDB->init(GFI, AA, LibInfo); |
| |
| MF->setHasInlineAsm(false); |
| |
| FuncInfo->SplitCSR = false; |
| |
| // We split CSR if the target supports it for the given function |
| // and the function has only return exits. |
| if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { |
| FuncInfo->SplitCSR = true; |
| |
| // Collect all the return blocks. |
| for (const BasicBlock &BB : Fn) { |
| if (!succ_empty(&BB)) |
| continue; |
| |
| const TerminatorInst *Term = BB.getTerminator(); |
| if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) |
| continue; |
| |
| // Bail out if the exit block is not Return nor Unreachable. |
| FuncInfo->SplitCSR = false; |
| break; |
| } |
| } |
| |
| MachineBasicBlock *EntryMBB = &MF->front(); |
| if (FuncInfo->SplitCSR) |
| // This performs initialization so lowering for SplitCSR will be correct. |
| TLI->initializeSplitCSR(EntryMBB); |
| |
| SelectAllBasicBlocks(Fn); |
| if (FastISelFailed && EnableFastISelFallbackReport) { |
| DiagnosticInfoISelFallback DiagFallback(Fn); |
| Fn.getContext().diagnose(DiagFallback); |
| } |
| |
| // If the first basic block in the function has live ins that need to be |
| // copied into vregs, emit the copies into the top of the block before |
| // emitting the code for the block. |
| const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); |
| RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); |
| |
| // Insert copies in the entry block and the return blocks. |
| if (FuncInfo->SplitCSR) { |
| SmallVector<MachineBasicBlock*, 4> Returns; |
| // Collect all the return blocks. |
| for (MachineBasicBlock &MBB : mf) { |
| if (!MBB.succ_empty()) |
| continue; |
| |
| MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); |
| if (Term != MBB.end() && Term->isReturn()) { |
| Returns.push_back(&MBB); |
| continue; |
| } |
| } |
| TLI->insertCopiesSplitCSR(EntryMBB, Returns); |
| } |
| |
| DenseMap<unsigned, unsigned> LiveInMap; |
| if (!FuncInfo->ArgDbgValues.empty()) |
| for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) |
| if (LI.second) |
| LiveInMap.insert(LI); |
| |
| // Insert DBG_VALUE instructions for function arguments to the entry block. |
| for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { |
| MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; |
| bool hasFI = MI->getOperand(0).isFI(); |
| unsigned Reg = |
| hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| EntryMBB->insert(EntryMBB->begin(), MI); |
| else { |
| MachineInstr *Def = RegInfo->getVRegDef(Reg); |
| if (Def) { |
| MachineBasicBlock::iterator InsertPos = Def; |
| // FIXME: VR def may not be in entry block. |
| Def->getParent()->insert(std::next(InsertPos), MI); |
| } else |
| LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" |
| << TargetRegisterInfo::virtReg2Index(Reg) << "\n"); |
| } |
| |
| // If Reg is live-in then update debug info to track its copy in a vreg. |
| DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); |
| if (LDI != LiveInMap.end()) { |
| assert(!hasFI && "There's no handling of frame pointer updating here yet " |
| "- add if needed"); |
| MachineInstr *Def = RegInfo->getVRegDef(LDI->second); |
| MachineBasicBlock::iterator InsertPos = Def; |
| const MDNode *Variable = MI->getDebugVariable(); |
| const MDNode *Expr = MI->getDebugExpression(); |
| DebugLoc DL = MI->getDebugLoc(); |
| bool IsIndirect = MI->isIndirectDebugValue(); |
| if (IsIndirect) |
| assert(MI->getOperand(1).getImm() == 0 && |
| "DBG_VALUE with nonzero offset"); |
| assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && |
| "Expected inlined-at fields to agree"); |
| // Def is never a terminator here, so it is ok to increment InsertPos. |
| BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), |
| IsIndirect, LDI->second, Variable, Expr); |
| |
| // If this vreg is directly copied into an exported register then |
| // that COPY instructions also need DBG_VALUE, if it is the only |
| // user of LDI->second. |
| MachineInstr *CopyUseMI = nullptr; |
| for (MachineRegisterInfo::use_instr_iterator |
| UI = RegInfo->use_instr_begin(LDI->second), |
| E = RegInfo->use_instr_end(); UI != E; ) { |
| MachineInstr *UseMI = &*(UI++); |
| if (UseMI->isDebugValue()) continue; |
| if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { |
| CopyUseMI = UseMI; continue; |
| } |
| // Otherwise this is another use or second copy use. |
| CopyUseMI = nullptr; break; |
| } |
| if (CopyUseMI) { |
| // Use MI's debug location, which describes where Variable was |
| // declared, rather than whatever is attached to CopyUseMI. |
| MachineInstr *NewMI = |
| BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, |
| CopyUseMI->getOperand(0).getReg(), Variable, Expr); |
| MachineBasicBlock::iterator Pos = CopyUseMI; |
| EntryMBB->insertAfter(Pos, NewMI); |
| } |
| } |
| } |
| |
| // Determine if there are any calls in this machine function. |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| for (const auto &MBB : *MF) { |
| if (MFI.hasCalls() && MF->hasInlineAsm()) |
| break; |
| |
| for (const auto &MI : MBB) { |
| const MCInstrDesc &MCID = TII->get(MI.getOpcode()); |
| if ((MCID.isCall() && !MCID.isReturn()) || |
| MI.isStackAligningInlineAsm()) { |
| MFI.setHasCalls(true); |
| } |
| if (MI.isInlineAsm()) { |
| MF->setHasInlineAsm(true); |
| } |
| } |
| } |
| |
| // Determine if there is a call to setjmp in the machine function. |
| MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); |
| |
| // Replace forward-declared registers with the registers containing |
| // the desired value. |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| for (DenseMap<unsigned, unsigned>::iterator |
| I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); |
| I != E; ++I) { |
| unsigned From = I->first; |
| unsigned To = I->second; |
| // If To is also scheduled to be replaced, find what its ultimate |
| // replacement is. |
| while (true) { |
| DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); |
| if (J == E) break; |
| To = J->second; |
| } |
| // Make sure the new register has a sufficiently constrained register class. |
| if (TargetRegisterInfo::isVirtualRegister(From) && |
| TargetRegisterInfo::isVirtualRegister(To)) |
| MRI.constrainRegClass(To, MRI.getRegClass(From)); |
| // Replace it. |
| |
| |
| // Replacing one register with another won't touch the kill flags. |
| // We need to conservatively clear the kill flags as a kill on the old |
| // register might dominate existing uses of the new register. |
| if (!MRI.use_empty(To)) |
| MRI.clearKillFlags(From); |
| MRI.replaceRegWith(From, To); |
| } |
| |
| TLI->finalizeLowering(*MF); |
| |
| // Release function-specific state. SDB and CurDAG are already cleared |
| // at this point. |
| FuncInfo->clear(); |
| |
| LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); |
| LLVM_DEBUG(MF->print(dbgs())); |
| |
| return true; |
| } |
| |
| static void reportFastISelFailure(MachineFunction &MF, |
| OptimizationRemarkEmitter &ORE, |
| OptimizationRemarkMissed &R, |
| bool ShouldAbort) { |
| // Print the function name explicitly if we don't have a debug location (which |
| // makes the diagnostic less useful) or if we're going to emit a raw error. |
| if (!R.getLocation().isValid() || ShouldAbort) |
| R << (" (in function: " + MF.getName() + ")").str(); |
| |
| if (ShouldAbort) |
| report_fatal_error(R.getMsg()); |
| |
| ORE.emit(R); |
| } |
| |
| void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, |
| BasicBlock::const_iterator End, |
| bool &HadTailCall) { |
| // Allow creating illegal types during DAG building for the basic block. |
| CurDAG->NewNodesMustHaveLegalTypes = false; |
| |
| // Lower the instructions. If a call is emitted as a tail call, cease emitting |
| // nodes for this block. |
| for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { |
| if (!ElidedArgCopyInstrs.count(&*I)) |
| SDB->visit(*I); |
| } |
| |
| // Make sure the root of the DAG is up-to-date. |
| CurDAG->setRoot(SDB->getControlRoot()); |
| HadTailCall = SDB->HasTailCall; |
| SDB->clear(); |
| |
| // Final step, emit the lowered DAG as machine code. |
| CodeGenAndEmitDAG(); |
| } |
| |
| void SelectionDAGISel::ComputeLiveOutVRegInfo() { |
| SmallPtrSet<SDNode*, 16> VisitedNodes; |
| SmallVector<SDNode*, 128> Worklist; |
| |
| Worklist.push_back(CurDAG->getRoot().getNode()); |
| |
| KnownBits Known; |
| |
| do { |
| SDNode *N = Worklist.pop_back_val(); |
| |
| // If we've already seen this node, ignore it. |
| if (!VisitedNodes.insert(N).second) |
| continue; |
| |
| // Otherwise, add all chain operands to the worklist. |
| for (const SDValue &Op : N->op_values()) |
| if (Op.getValueType() == MVT::Other) |
| Worklist.push_back(Op.getNode()); |
| |
| // If this is a CopyToReg with a vreg dest, process it. |
| if (N->getOpcode() != ISD::CopyToReg) |
| continue; |
| |
| unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); |
| if (!TargetRegisterInfo::isVirtualRegister(DestReg)) |
| continue; |
| |
| // Ignore non-scalar or non-integer values. |
| SDValue Src = N->getOperand(2); |
| EVT SrcVT = Src.getValueType(); |
| if (!SrcVT.isInteger() || SrcVT.isVector()) |
| continue; |
| |
| unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); |
| CurDAG->computeKnownBits(Src, Known); |
| FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); |
| } while (!Worklist.empty()); |
| } |
| |
| void SelectionDAGISel::CodeGenAndEmitDAG() { |
| StringRef GroupName = "sdag"; |
| StringRef GroupDescription = "Instruction Selection and Scheduling"; |
| std::string BlockName; |
| int BlockNumber = -1; |
| (void)BlockNumber; |
| bool MatchFilterBB = false; (void)MatchFilterBB; |
| TargetTransformInfo &TTI = |
| getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); |
| |
| // Pre-type legalization allow creation of any node types. |
| CurDAG->NewNodesMustHaveLegalTypes = false; |
| |
| #ifndef NDEBUG |
| MatchFilterBB = (FilterDAGBasicBlockName.empty() || |
| FilterDAGBasicBlockName == |
| FuncInfo->MBB->getBasicBlock()->getName()); |
| #endif |
| #ifdef NDEBUG |
| if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || |
| ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || |
| ViewSUnitDAGs) |
| #endif |
| { |
| BlockNumber = FuncInfo->MBB->getNumber(); |
| BlockName = |
| (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); |
| } |
| LLVM_DEBUG(dbgs() << "Initial selection DAG: " |
| << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| << "'\n"; |
| CurDAG->dump()); |
| |
| if (ViewDAGCombine1 && MatchFilterBB) |
| CurDAG->viewGraph("dag-combine1 input for " + BlockName); |
| |
| // Run the DAG combiner in pre-legalize mode. |
| { |
| NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, |
| GroupDescription, TimePassesIsEnabled); |
| CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); |
| } |
| |
| if (TTI.hasBranchDivergence()) |
| CurDAG->VerifyDAGDiverence(); |
| |
| LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " |
| << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| << "'\n"; |
| CurDAG->dump()); |
| |
| // Second step, hack on the DAG until it only uses operations and types that |
| // the target supports. |
| if (ViewLegalizeTypesDAGs && MatchFilterBB) |
| CurDAG->viewGraph("legalize-types input for " + BlockName); |
| |
| bool Changed; |
| { |
| NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, |
| GroupDescription, TimePassesIsEnabled); |
| Changed = CurDAG->LegalizeTypes(); |
| } |
| |
| if (TTI.hasBranchDivergence()) |
| CurDAG->VerifyDAGDiverence(); |
| |
| LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " |
| << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| << "'\n"; |
| CurDAG->dump()); |
| |
| // Only allow creation of legal node types. |
| CurDAG->NewNodesMustHaveLegalTypes = true; |
| |
| if (Changed) { |
| if (ViewDAGCombineLT && MatchFilterBB) |
| CurDAG->viewGraph("dag-combine-lt input for " + BlockName); |
| |
| // Run the DAG combiner in post-type-legalize mode. |
| { |
| NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", |
| GroupName, GroupDescription, TimePassesIsEnabled); |
| CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); |
| } |
| |
| if (TTI.hasBranchDivergence()) |
| CurDAG->VerifyDAGDiverence(); |
| |
| LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " |
| << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| << "'\n"; |
| CurDAG->dump()); |
| } |
| |
| { |
| NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, |
| GroupDescription, TimePassesIsEnabled); |
| Changed = CurDAG->LegalizeVectors(); |
| } |
| |
| if (Changed) { |
| LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " |
| << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| << "'\n"; |
| CurDAG->dump()); |
| |
| { |
| NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, |
| GroupDescription, TimePassesIsEnabled); |
| CurDAG->LegalizeTypes(); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " |
| << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| << "'\n"; |
| CurDAG->dump()); |
| |
| if (ViewDAGCombineLT && MatchFilterBB) |
| CurDAG->viewGraph("dag-combine-lv input for " + BlockName); |
| |
| // Run the DAG combiner in post-type-legalize mode. |
| { |
| NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", |
| GroupName, GroupDescription, TimePassesIsEnabled); |
| CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " |
| << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| << "'\n"; |
| CurDAG->dump()); |
| |
| if (TTI.hasBranchDivergence()) |
| CurDAG->VerifyDAGDiverence(); |
| } |
| |
| if (ViewLegalizeDAGs && MatchFilterBB) |
| CurDAG->viewGraph("legalize input for " + BlockName); |
| |
| { |
| NamedRegionTimer T("legalize", "DAG Legalization", GroupName, |
| GroupDescription, TimePassesIsEnabled); |
| CurDAG->Legalize(); |
| } |
| |
| if (TTI.hasBranchDivergence()) |
| CurDAG->VerifyDAGDiverence(); |
| |
| LLVM_DEBUG(dbgs() << "Legalized selection DAG: " |
| << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| << "'\n"; |
| CurDAG->dump()); |
| |
| if (ViewDAGCombine2 && MatchFilterBB) |
| CurDAG->viewGraph("dag-combine2 input for " + BlockName); |
| |
| // Run the DAG combiner in post-legalize mode. |
| { |
| NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, |
| GroupDescription, TimePassesIsEnabled); |
| CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); |
| } |
| |
| if (TTI.hasBranchDivergence()) |
| CurDAG->VerifyDAGDiverence(); |
| |
| LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " |
| << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| << "'\n"; |
| CurDAG->dump()); |
| |
| if (OptLevel != CodeGenOpt::None) |
| ComputeLiveOutVRegInfo(); |
| |
| if (ViewISelDAGs && MatchFilterBB) |
| CurDAG->viewGraph("isel input for " + BlockName); |
| |
| // Third, instruction select all of the operations to machine code, adding the |
| // code to the MachineBasicBlock. |
| { |
| NamedRegionTimer T("isel", "Instruction Selection", GroupName, |
| GroupDescription, TimePassesIsEnabled); |
| DoInstructionSelection(); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Selected selection DAG: " |
| << printMBBReference(*FuncInfo->MBB) << " '" << BlockName |
| << "'\n"; |
| CurDAG->dump()); |
| |
| if (ViewSchedDAGs && MatchFilterBB) |
| CurDAG->viewGraph("scheduler input for " + BlockName); |
| |
| // Schedule machine code. |
| ScheduleDAGSDNodes *Scheduler = CreateScheduler(); |
| { |
| NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, |
| GroupDescription, TimePassesIsEnabled); |
| Scheduler->Run(CurDAG, FuncInfo->MBB); |
| } |
| |
| if (ViewSUnitDAGs && MatchFilterBB) |
| Scheduler->viewGraph(); |
| |
| // Emit machine code to BB. This can change 'BB' to the last block being |
| // inserted into. |
| MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; |
| { |
| NamedRegionTimer T("emit", "Instruction Creation", GroupName, |
| GroupDescription, TimePassesIsEnabled); |
| |
| // FuncInfo->InsertPt is passed by reference and set to the end of the |
| // scheduled instructions. |
| LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); |
| } |
| |
| // If the block was split, make sure we update any references that are used to |
| // update PHI nodes later on. |
| if (FirstMBB != LastMBB) |
| SDB->UpdateSplitBlock(FirstMBB, LastMBB); |
| |
| // Free the scheduler state. |
| { |
| NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, |
| GroupDescription, TimePassesIsEnabled); |
| delete Scheduler; |
| } |
| |
| // Free the SelectionDAG state, now that we're finished with it. |
| CurDAG->clear(); |
| } |
| |
| namespace { |
| |
| /// ISelUpdater - helper class to handle updates of the instruction selection |
| /// graph. |
| class ISelUpdater : public SelectionDAG::DAGUpdateListener { |
| SelectionDAG::allnodes_iterator &ISelPosition; |
| |
| public: |
| ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) |
| : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} |
| |
| /// NodeDeleted - Handle nodes deleted from the graph. If the node being |
| /// deleted is the current ISelPosition node, update ISelPosition. |
| /// |
| void NodeDeleted(SDNode *N, SDNode *E) override { |
| if (ISelPosition == SelectionDAG::allnodes_iterator(N)) |
| ++ISelPosition; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| // This function is used to enforce the topological node id property |
| // property leveraged during Instruction selection. Before selection all |
| // nodes are given a non-negative id such that all nodes have a larger id than |
| // their operands. As this holds transitively we can prune checks that a node N |
| // is a predecessor of M another by not recursively checking through M's |
| // operands if N's ID is larger than M's ID. This is significantly improves |
| // performance of for various legality checks (e.g. IsLegalToFold / |
| // UpdateChains). |
| |
| // However, when we fuse multiple nodes into a single node |
| // during selection we may induce a predecessor relationship between inputs and |
| // outputs of distinct nodes being merged violating the topological property. |
| // Should a fused node have a successor which has yet to be selected, our |
| // legality checks would be incorrect. To avoid this we mark all unselected |
| // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x => |
| // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. |
| // We use bit-negation to more clearly enforce that node id -1 can only be |
| // achieved by selected nodes). As the conversion is reversable the original Id, |
| // topological pruning can still be leveraged when looking for unselected nodes. |
| // This method is call internally in all ISel replacement calls. |
| void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { |
| SmallVector<SDNode *, 4> Nodes; |
| Nodes.push_back(Node); |
| |
| while (!Nodes.empty()) { |
| SDNode *N = Nodes.pop_back_val(); |
| for (auto *U : N->uses()) { |
| auto UId = U->getNodeId(); |
| if (UId > 0) { |
| InvalidateNodeId(U); |
| Nodes.push_back(U); |
| } |
| } |
| } |
| } |
| |
| // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a |
| // NodeId with the equivalent node id which is invalid for topological |
| // pruning. |
| void SelectionDAGISel::InvalidateNodeId(SDNode *N) { |
| int InvalidId = -(N->getNodeId() + 1); |
| N->setNodeId(InvalidId); |
| } |
| |
| // getUninvalidatedNodeId - get original uninvalidated node id. |
| int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { |
| int Id = N->getNodeId(); |
| if (Id < -1) |
| return -(Id + 1); |
| return Id; |
| } |
| |
| void SelectionDAGISel::DoInstructionSelection() { |
| LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " |
| << printMBBReference(*FuncInfo->MBB) << " '" |
| << FuncInfo->MBB->getName() << "'\n"); |
| |
| PreprocessISelDAG(); |
| |
| // Select target instructions for the DAG. |
| { |
| // Number all nodes with a topological order and set DAGSize. |
| DAGSize = CurDAG->AssignTopologicalOrder(); |
| |
| // Create a dummy node (which is not added to allnodes), that adds |
| // a reference to the root node, preventing it from being deleted, |
| // and tracking any changes of the root. |
| HandleSDNode Dummy(CurDAG->getRoot()); |
| SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); |
| ++ISelPosition; |
| |
| // Make sure that ISelPosition gets properly updated when nodes are deleted |
| // in calls made from this function. |
| ISelUpdater ISU(*CurDAG, ISelPosition); |
| |
| // The AllNodes list is now topological-sorted. Visit the |
| // nodes by starting at the end of the list (the root of the |
| // graph) and preceding back toward the beginning (the entry |
| // node). |
| while (ISelPosition != CurDAG->allnodes_begin()) { |
| SDNode *Node = &*--ISelPosition; |
| // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, |
| // but there are currently some corner cases that it misses. Also, this |
| // makes it theoretically possible to disable the DAGCombiner. |
| if (Node->use_empty()) |
| continue; |
| |
| #ifndef NDEBUG |
| SmallVector<SDNode *, 4> Nodes; |
| Nodes.push_back(Node); |
| |
| while (!Nodes.empty()) { |
| auto N = Nodes.pop_back_val(); |
| if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) |
| continue; |
| for (const SDValue &Op : N->op_values()) { |
| if (Op->getOpcode() == ISD::TokenFactor) |
| Nodes.push_back(Op.getNode()); |
| else { |
| // We rely on topological ordering of node ids for checking for |
| // cycles when fusing nodes during selection. All unselected nodes |
| // successors of an already selected node should have a negative id. |
| // This assertion will catch such cases. If this assertion triggers |
| // it is likely you using DAG-level Value/Node replacement functions |
| // (versus equivalent ISEL replacement) in backend-specific |
| // selections. See comment in EnforceNodeIdInvariant for more |
| // details. |
| assert(Op->getNodeId() != -1 && |
| "Node has already selected predecessor node"); |
| } |
| } |
| } |
| #endif |
| |
| // When we are using non-default rounding modes or FP exception behavior |
| // FP operations are represented by StrictFP pseudo-operations. They |
| // need to be simplified here so that the target-specific instruction |
| // selectors know how to handle them. |
| // |
| // If the current node is a strict FP pseudo-op, the isStrictFPOp() |
| // function will provide the corresponding normal FP opcode to which the |
| // node should be mutated. |
| // |
| // FIXME: The backends need a way to handle FP constraints. |
| if (Node->isStrictFPOpcode()) |
| Node = CurDAG->mutateStrictFPToFP(Node); |
| |
| LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; |
| Node->dump(CurDAG)); |
| |
| Select(Node); |
| } |
| |
| CurDAG->setRoot(Dummy.getValue()); |
| } |
| |
| LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); |
| |
| PostprocessISelDAG(); |
| } |
| |
| static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { |
| for (const User *U : CPI->users()) { |
| if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { |
| Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); |
| if (IID == Intrinsic::eh_exceptionpointer || |
| IID == Intrinsic::eh_exceptioncode) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and |
| /// do other setup for EH landing-pad blocks. |
| bool SelectionDAGISel::PrepareEHLandingPad() { |
| MachineBasicBlock *MBB = FuncInfo->MBB; |
| const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); |
| const BasicBlock *LLVMBB = MBB->getBasicBlock(); |
| const TargetRegisterClass *PtrRC = |
| TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); |
| |
| // Catchpads have one live-in register, which typically holds the exception |
| // pointer or code. |
| if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { |
| if (hasExceptionPointerOrCodeUser(CPI)) { |
| // Get or create the virtual register to hold the pointer or code. Mark |
| // the live in physreg and copy into the vreg. |
| MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); |
| assert(EHPhysReg && "target lacks exception pointer register"); |
| MBB->addLiveIn(EHPhysReg); |
| unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); |
| BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), |
| TII->get(TargetOpcode::COPY), VReg) |
| .addReg(EHPhysReg, RegState::Kill); |
| } |
| return true; |
| } |
| |
| if (!LLVMBB->isLandingPad()) |
| return true; |
| |
| // Add a label to mark the beginning of the landing pad. Deletion of the |
| // landing pad can thus be detected via the MachineModuleInfo. |
| MCSymbol *Label = MF->addLandingPad(MBB); |
| |
| // Assign the call site to the landing pad's begin label. |
| MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); |
| |
| const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); |
| BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) |
| .addSym(Label); |
| |
| // Mark exception register as live in. |
| if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) |
| FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); |
| |
| // Mark exception selector register as live in. |
| if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) |
| FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); |
| |
| return true; |
| } |
| |
| /// isFoldedOrDeadInstruction - Return true if the specified instruction is |
| /// side-effect free and is either dead or folded into a generated instruction. |
| /// Return false if it needs to be emitted. |
| static bool isFoldedOrDeadInstruction(const Instruction *I, |
| FunctionLoweringInfo *FuncInfo) { |
| return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. |
| !isa<TerminatorInst>(I) && // Terminators aren't folded. |
| !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. |
| !I->isEHPad() && // EH pad instructions aren't folded. |
| !FuncInfo->isExportedInst(I); // Exported instrs must be computed. |
| } |
| |
| /// Set up SwiftErrorVals by going through the function. If the function has |
| /// swifterror argument, it will be the first entry. |
| static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI, |
| FunctionLoweringInfo *FuncInfo) { |
| if (!TLI->supportSwiftError()) |
| return; |
| |
| FuncInfo->SwiftErrorVals.clear(); |
| FuncInfo->SwiftErrorVRegDefMap.clear(); |
| FuncInfo->SwiftErrorVRegUpwardsUse.clear(); |
| FuncInfo->SwiftErrorVRegDefUses.clear(); |
| FuncInfo->SwiftErrorArg = nullptr; |
| |
| // Check if function has a swifterror argument. |
| bool HaveSeenSwiftErrorArg = false; |
| for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end(); |
| AI != AE; ++AI) |
| if (AI->hasSwiftErrorAttr()) { |
| assert(!HaveSeenSwiftErrorArg && |
| "Must have only one swifterror parameter"); |
| (void)HaveSeenSwiftErrorArg; // silence warning. |
| HaveSeenSwiftErrorArg = true; |
| FuncInfo->SwiftErrorArg = &*AI; |
| FuncInfo->SwiftErrorVals.push_back(&*AI); |
| } |
| |
| for (const auto &LLVMBB : Fn) |
| for (const auto &Inst : LLVMBB) { |
| if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst)) |
| if (Alloca->isSwiftError()) |
| FuncInfo->SwiftErrorVals.push_back(Alloca); |
| } |
| } |
| |
| static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo, |
| FastISel *FastIS, |
| const TargetLowering *TLI, |
| const TargetInstrInfo *TII, |
| SelectionDAGBuilder *SDB) { |
| if (!TLI->supportSwiftError()) |
| return; |
| |
| // We only need to do this when we have swifterror parameter or swifterror |
| // alloc. |
| if (FuncInfo->SwiftErrorVals.empty()) |
| return; |
| |
| assert(FuncInfo->MBB == &*FuncInfo->MF->begin() && |
| "expected to insert into entry block"); |
| auto &DL = FuncInfo->MF->getDataLayout(); |
| auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); |
| for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) { |
| // We will always generate a copy from the argument. It is always used at |
| // least by the 'return' of the swifterror. |
| if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal) |
| continue; |
| unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC); |
| // Assign Undef to Vreg. We construct MI directly to make sure it works |
| // with FastISel. |
| BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(), |
| SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF), |
| VReg); |
| |
| // Keep FastIS informed about the value we just inserted. |
| if (FastIS) |
| FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); |
| |
| FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg); |
| } |
| } |
| |
| /// Collect llvm.dbg.declare information. This is done after argument lowering |
| /// in case the declarations refer to arguments. |
| static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) { |
| MachineFunction *MF = FuncInfo->MF; |
| const DataLayout &DL = MF->getDataLayout(); |
| for (const BasicBlock &BB : *FuncInfo->Fn) { |
| for (const Instruction &I : BB) { |
| const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); |
| if (!DI) |
| continue; |
| |
| assert(DI->getVariable() && "Missing variable"); |
| assert(DI->getDebugLoc() && "Missing location"); |
| const Value *Address = DI->getAddress(); |
| if (!Address) |
| continue; |
| |
| // Look through casts and constant offset GEPs. These mostly come from |
| // inalloca. |
| APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); |
| Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); |
| |
| // Check if the variable is a static alloca or a byval or inalloca |
| // argument passed in memory. If it is not, then we will ignore this |
| // intrinsic and handle this during isel like dbg.value. |
| int FI = std::numeric_limits<int>::max(); |
| if (const auto *AI = dyn_cast<AllocaInst>(Address)) { |
| auto SI = FuncInfo->StaticAllocaMap.find(AI); |
| if (SI != FuncInfo->StaticAllocaMap.end()) |
| FI = SI->second; |
| } else if (const auto *Arg = dyn_cast<Argument>(Address)) |
| FI = FuncInfo->getArgumentFrameIndex(Arg); |
| |
| if (FI == std::numeric_limits<int>::max()) |
| continue; |
| |
| DIExpression *Expr = DI->getExpression(); |
| if (Offset.getBoolValue()) |
| Expr = DIExpression::prepend(Expr, DIExpression::NoDeref, |
| Offset.getZExtValue()); |
| MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); |
| } |
| } |
| } |
| |
| /// Propagate swifterror values through the machine function CFG. |
| static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) { |
| auto *TLI = FuncInfo->TLI; |
| if (!TLI->supportSwiftError()) |
| return; |
| |
| // We only need to do this when we have swifterror parameter or swifterror |
| // alloc. |
| if (FuncInfo->SwiftErrorVals.empty()) |
| return; |
| |
| // For each machine basic block in reverse post order. |
| ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF); |
| for (MachineBasicBlock *MBB : RPOT) { |
| // For each swifterror value in the function. |
| for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) { |
| auto Key = std::make_pair(MBB, SwiftErrorVal); |
| auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key); |
| auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key); |
| bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end(); |
| unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0; |
| bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end(); |
| assert(!(UpwardsUse && !DownwardDef) && |
| "We can't have an upwards use but no downwards def"); |
| |
| // If there is no upwards exposed use and an entry for the swifterror in |
| // the def map for this value we don't need to do anything: We already |
| // have a downward def for this basic block. |
| if (!UpwardsUse && DownwardDef) |
| continue; |
| |
| // Otherwise we either have an upwards exposed use vreg that we need to |
| // materialize or need to forward the downward def from predecessors. |
| |
| // Check whether we have a single vreg def from all predecessors. |
| // Otherwise we need a phi. |
| SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs; |
| SmallSet<const MachineBasicBlock*, 8> Visited; |
| for (auto *Pred : MBB->predecessors()) { |
| if (!Visited.insert(Pred).second) |
| continue; |
| VRegs.push_back(std::make_pair( |
| Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal))); |
| if (Pred != MBB) |
| continue; |
| // We have a self-edge. |
| // If there was no upwards use in this basic block there is now one: the |
| // phi needs to use it self. |
| if (!UpwardsUse) { |
| UpwardsUse = true; |
| UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key); |
| assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end()); |
| UUseVReg = UUseIt->second; |
| } |
| } |
| |
| // We need a phi node if we have more than one predecessor with different |
| // downward defs. |
| bool needPHI = |
| VRegs.size() >= 1 && |
| std::find_if( |
| VRegs.begin(), VRegs.end(), |
| [&](const std::pair<const MachineBasicBlock *, unsigned> &V) |
| -> bool { return V.second != VRegs[0].second; }) != |
| VRegs.end(); |
| |
| // If there is no upwards exposed used and we don't need a phi just |
| // forward the swifterror vreg from the predecessor(s). |
| if (!UpwardsUse && !needPHI) { |
| assert(!VRegs.empty() && |
| "No predecessors? The entry block should bail out earlier"); |
| // Just forward the swifterror vreg from the predecessor(s). |
| FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second); |
| continue; |
| } |
| |
| auto DLoc = isa<Instruction>(SwiftErrorVal) |
| ? cast<Instruction>(SwiftErrorVal)->getDebugLoc() |
| : DebugLoc(); |
| const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo(); |
| |
| // If we don't need a phi create a copy to the upward exposed vreg. |
| if (!needPHI) { |
| assert(UpwardsUse); |
| assert(!VRegs.empty() && |
| "No predecessors? Is the Calling Convention correct?"); |
| unsigned DestReg = UUseVReg; |
| BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY), |
| DestReg) |
| .addReg(VRegs[0].second); |
| continue; |
| } |
| |
| // We need a phi: if there is an upwards exposed use we already have a |
| // destination virtual register number otherwise we generate a new one. |
| auto &DL = FuncInfo->MF->getDataLayout(); |
| auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL)); |
| unsigned PHIVReg = |
| UpwardsUse ? UUseVReg |
| : FuncInfo->MF->getRegInfo().createVirtualRegister(RC); |
| MachineInstrBuilder SwiftErrorPHI = |
| BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, |
| TII->get(TargetOpcode::PHI), PHIVReg); |
| for (auto BBRegPair : VRegs) { |
| SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first); |
| } |
| |
| // We did not have a definition in this block before: store the phi's vreg |
| // as this block downward exposed def. |
| if (!UpwardsUse) |
| FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg); |
| } |
| } |
| } |
| |
| static void preassignSwiftErrorRegs(const TargetLowering *TLI, |
| FunctionLoweringInfo *FuncInfo, |
| BasicBlock::const_iterator Begin, |
| BasicBlock::const_iterator End) { |
| if (!TLI->supportSwiftError() || FuncInfo->SwiftErrorVals.empty()) |
| return; |
| |
| // Iterator over instructions and assign vregs to swifterror defs and uses. |
| for (auto It = Begin; It != End; ++It) { |
| ImmutableCallSite CS(&*It); |
| if (CS) { |
| // A call-site with a swifterror argument is both use and def. |
| const Value *SwiftErrorAddr = nullptr; |
| for (auto &Arg : CS.args()) { |
| if (!Arg->isSwiftError()) |
| continue; |
| // Use of swifterror. |
| assert(!SwiftErrorAddr && "Cannot have multiple swifterror arguments"); |
| SwiftErrorAddr = &*Arg; |
| assert(SwiftErrorAddr->isSwiftError() && |
| "Must have a swifterror value argument"); |
| unsigned VReg; bool CreatedReg; |
| std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt( |
| &*It, FuncInfo->MBB, SwiftErrorAddr); |
| assert(CreatedReg); |
| } |
| if (!SwiftErrorAddr) |
| continue; |
| |
| // Def of swifterror. |
| unsigned VReg; bool CreatedReg; |
| std::tie(VReg, CreatedReg) = |
| FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It); |
| assert(CreatedReg); |
| FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg); |
| |
| // A load is a use. |
| } else if (const LoadInst *LI = dyn_cast<const LoadInst>(&*It)) { |
| const Value *V = LI->getOperand(0); |
| if (!V->isSwiftError()) |
| continue; |
| |
| unsigned VReg; bool CreatedReg; |
| std::tie(VReg, CreatedReg) = |
| FuncInfo->getOrCreateSwiftErrorVRegUseAt(LI, FuncInfo->MBB, V); |
| assert(CreatedReg); |
| |
| // A store is a def. |
| } else if (const StoreInst *SI = dyn_cast<const StoreInst>(&*It)) { |
| const Value *SwiftErrorAddr = SI->getOperand(1); |
| if (!SwiftErrorAddr->isSwiftError()) |
| continue; |
| |
| // Def of swifterror. |
| unsigned VReg; bool CreatedReg; |
| std::tie(VReg, CreatedReg) = |
| FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It); |
| assert(CreatedReg); |
| FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg); |
| |
| // A return in a swiferror returning function is a use. |
| } else if (const ReturnInst *R = dyn_cast<const ReturnInst>(&*It)) { |
| const Function *F = R->getParent()->getParent(); |
| if(!F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) |
| continue; |
| |
| unsigned VReg; bool CreatedReg; |
| std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt( |
| R, FuncInfo->MBB, FuncInfo->SwiftErrorArg); |
| assert(CreatedReg); |
| } |
| } |
| } |
| |
| void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { |
| FastISelFailed = false; |
| // Initialize the Fast-ISel state, if needed. |
| FastISel *FastIS = nullptr; |
| if (TM.Options.EnableFastISel) { |
| LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); |
| FastIS = TLI->createFastISel(*FuncInfo, LibInfo); |
| } |
| |
| setupSwiftErrorVals(Fn, TLI, FuncInfo); |
| |
| ReversePostOrderTraversal<const Function*> RPOT(&Fn); |
| |
| // Lower arguments up front. An RPO iteration always visits the entry block |
| // first. |
| assert(*RPOT.begin() == &Fn.getEntryBlock()); |
| ++NumEntryBlocks; |
| |
| // Set up FuncInfo for ISel. Entry blocks never have PHIs. |
| FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; |
| FuncInfo->InsertPt = FuncInfo->MBB->begin(); |
| |
| CurDAG->setFunctionLoweringInfo(FuncInfo); |
| |
| if (!FastIS) { |
| LowerArguments(Fn); |
| } else { |
| // See if fast isel can lower the arguments. |
| FastIS->startNewBlock(); |
| if (!FastIS->lowerArguments()) { |
| FastISelFailed = true; |
| // Fast isel failed to lower these arguments |
| ++NumFastIselFailLowerArguments; |
| |
| OptimizationRemarkMissed R("sdagisel", "FastISelFailure", |
| Fn.getSubprogram(), |
| &Fn.getEntryBlock()); |
| R << "FastISel didn't lower all arguments: " |
| << ore::NV("Prototype", Fn.getType()); |
| reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); |
| |
| // Use SelectionDAG argument lowering |
| LowerArguments(Fn); |
| CurDAG->setRoot(SDB->getControlRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| } |
| |
| // If we inserted any instructions at the beginning, make a note of |
| // where they are, so we can be sure to emit subsequent instructions |
| // after them. |
| if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) |
| FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); |
| else |
| FastIS->setLastLocalValue(nullptr); |
| } |
| createSwiftErrorEntriesInEntryBlock(FuncInfo, FastIS, TLI, TII, SDB); |
| |
| processDbgDeclares(FuncInfo); |
| |
| // Iterate over all basic blocks in the function. |
| StackProtector &SP = getAnalysis<StackProtector>(); |
| for (const BasicBlock *LLVMBB : RPOT) { |
| if (OptLevel != CodeGenOpt::None) { |
| bool AllPredsVisited = true; |
| for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); |
| PI != PE; ++PI) { |
| if (!FuncInfo->VisitedBBs.count(*PI)) { |
| AllPredsVisited = false; |
| break; |
| } |
| } |
| |
| if (AllPredsVisited) { |
| for (const PHINode &PN : LLVMBB->phis()) |
| FuncInfo->ComputePHILiveOutRegInfo(&PN); |
| } else { |
| for (const PHINode &PN : LLVMBB->phis()) |
| FuncInfo->InvalidatePHILiveOutRegInfo(&PN); |
| } |
| |
| FuncInfo->VisitedBBs.insert(LLVMBB); |
| } |
| |
| BasicBlock::const_iterator const Begin = |
| LLVMBB->getFirstNonPHI()->getIterator(); |
| BasicBlock::const_iterator const End = LLVMBB->end(); |
| BasicBlock::const_iterator BI = End; |
| |
| FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; |
| if (!FuncInfo->MBB) |
| continue; // Some blocks like catchpads have no code or MBB. |
| |
| // Insert new instructions after any phi or argument setup code. |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| |
| // Setup an EH landing-pad block. |
| FuncInfo->ExceptionPointerVirtReg = 0; |
| FuncInfo->ExceptionSelectorVirtReg = 0; |
| if (LLVMBB->isEHPad()) |
| if (!PrepareEHLandingPad()) |
| continue; |
| |
| // Before doing SelectionDAG ISel, see if FastISel has been requested. |
| if (FastIS) { |
| if (LLVMBB != &Fn.getEntryBlock()) |
| FastIS->startNewBlock(); |
| |
| unsigned NumFastIselRemaining = std::distance(Begin, End); |
| |
| // Pre-assign swifterror vregs. |
| preassignSwiftErrorRegs(TLI, FuncInfo, Begin, End); |
| |
| // Do FastISel on as many instructions as possible. |
| for (; BI != Begin; --BI) { |
| const Instruction *Inst = &*std::prev(BI); |
| |
| // If we no longer require this instruction, skip it. |
| if (isFoldedOrDeadInstruction(Inst, FuncInfo) || |
| ElidedArgCopyInstrs.count(Inst)) { |
| --NumFastIselRemaining; |
| continue; |
| } |
| |
| // Bottom-up: reset the insert pos at the top, after any local-value |
| // instructions. |
| FastIS->recomputeInsertPt(); |
| |
| // Try to select the instruction with FastISel. |
| if (FastIS->selectInstruction(Inst)) { |
| --NumFastIselRemaining; |
| ++NumFastIselSuccess; |
| // If fast isel succeeded, skip over all the folded instructions, and |
| // then see if there is a load right before the selected instructions. |
| // Try to fold the load if so. |
| const Instruction *BeforeInst = Inst; |
| while (BeforeInst != &*Begin) { |
| BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); |
| if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) |
| break; |
| } |
| if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && |
| BeforeInst->hasOneUse() && |
| FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { |
| // If we succeeded, don't re-select the load. |
| BI = std::next(BasicBlock::const_iterator(BeforeInst)); |
| --NumFastIselRemaining; |
| ++NumFastIselSuccess; |
| } |
| continue; |
| } |
| |
| FastISelFailed = true; |
| |
| // Then handle certain instructions as single-LLVM-Instruction blocks. |
| // We cannot separate out GCrelocates to their own blocks since we need |
| // to keep track of gc-relocates for a particular gc-statepoint. This is |
| // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before |
| // visitGCRelocate. |
| if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst)) { |
| OptimizationRemarkMissed R("sdagisel", "FastISelFailure", |
| Inst->getDebugLoc(), LLVMBB); |
| |
| R << "FastISel missed call"; |
| |
| if (R.isEnabled() || EnableFastISelAbort) { |
| std::string InstStrStorage; |
| raw_string_ostream InstStr(InstStrStorage); |
| InstStr << *Inst; |
| |
| R << ": " << InstStr.str(); |
| } |
| |
| reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); |
| |
| if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && |
| !Inst->use_empty()) { |
| unsigned &R = FuncInfo->ValueMap[Inst]; |
| if (!R) |
| R = FuncInfo->CreateRegs(Inst->getType()); |
| } |
| |
| bool HadTailCall = false; |
| MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; |
| SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); |
| |
| // If the call was emitted as a tail call, we're done with the block. |
| // We also need to delete any previously emitted instructions. |
| if (HadTailCall) { |
| FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); |
| --BI; |
| break; |
| } |
| |
| // Recompute NumFastIselRemaining as Selection DAG instruction |
| // selection may have handled the call, input args, etc. |
| unsigned RemainingNow = std::distance(Begin, BI); |
| NumFastIselFailures += NumFastIselRemaining - RemainingNow; |
| NumFastIselRemaining = RemainingNow; |
| continue; |
| } |
| |
| OptimizationRemarkMissed R("sdagisel", "FastISelFailure", |
| Inst->getDebugLoc(), LLVMBB); |
| |
| bool ShouldAbort = EnableFastISelAbort; |
| if (isa<TerminatorInst>(Inst)) { |
| // Use a different message for terminator misses. |
| R << "FastISel missed terminator"; |
| // Don't abort for terminator unless the level is really high |
| ShouldAbort = (EnableFastISelAbort > 2); |
| } else { |
| R << "FastISel missed"; |
| } |
| |
| if (R.isEnabled() || EnableFastISelAbort) { |
| std::string InstStrStorage; |
| raw_string_ostream InstStr(InstStrStorage); |
| InstStr << *Inst; |
| R << ": " << InstStr.str(); |
| } |
| |
| reportFastISelFailure(*MF, *ORE, R, ShouldAbort); |
| |
| NumFastIselFailures += NumFastIselRemaining; |
| break; |
| } |
| |
| FastIS->recomputeInsertPt(); |
| } |
| |
| if (SP.shouldEmitSDCheck(*LLVMBB)) { |
| bool FunctionBasedInstrumentation = |
| TLI->getSSPStackGuardCheck(*Fn.getParent()); |
| SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], |
| FunctionBasedInstrumentation); |
| } |
| |
| if (Begin != BI) |
| ++NumDAGBlocks; |
| else |
| ++NumFastIselBlocks; |
| |
| if (Begin != BI) { |
| // Run SelectionDAG instruction selection on the remainder of the block |
| // not handled by FastISel. If FastISel is not run, this is the entire |
| // block. |
| bool HadTailCall; |
| SelectBasicBlock(Begin, BI, HadTailCall); |
| |
| // But if FastISel was run, we already selected some of the block. |
| // If we emitted a tail-call, we need to delete any previously emitted |
| // instruction that follows it. |
| if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) |
| FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); |
| } |
| |
| if (FastIS) |
| FastIS->finishBasicBlock(); |
| FinishBasicBlock(); |
| FuncInfo->PHINodesToUpdate.clear(); |
| ElidedArgCopyInstrs.clear(); |
| } |
| |
| SP.copyToMachineFrameInfo(MF->getFrameInfo()); |
| |
| propagateSwiftErrorVRegs(FuncInfo); |
| |
| delete FastIS; |
| SDB->clearDanglingDebugInfo(); |
| SDB->SPDescriptor.resetPerFunctionState(); |
| } |
| |
| /// Given that the input MI is before a partial terminator sequence TSeq, return |
| /// true if M + TSeq also a partial terminator sequence. |
| /// |
| /// A Terminator sequence is a sequence of MachineInstrs which at this point in |
| /// lowering copy vregs into physical registers, which are then passed into |
| /// terminator instructors so we can satisfy ABI constraints. A partial |
| /// terminator sequence is an improper subset of a terminator sequence (i.e. it |
| /// may be the whole terminator sequence). |
| static bool MIIsInTerminatorSequence(const MachineInstr &MI) { |
| // If we do not have a copy or an implicit def, we return true if and only if |
| // MI is a debug value. |
| if (!MI.isCopy() && !MI.isImplicitDef()) |
| // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the |
| // physical registers if there is debug info associated with the terminator |
| // of our mbb. We want to include said debug info in our terminator |
| // sequence, so we return true in that case. |
| return MI.isDebugValue(); |
| |
| // We have left the terminator sequence if we are not doing one of the |
| // following: |
| // |
| // 1. Copying a vreg into a physical register. |
| // 2. Copying a vreg into a vreg. |
| // 3. Defining a register via an implicit def. |
| |
| // OPI should always be a register definition... |
| MachineInstr::const_mop_iterator OPI = MI.operands_begin(); |
| if (!OPI->isReg() || !OPI->isDef()) |
| return false; |
| |
| // Defining any register via an implicit def is always ok. |
| if (MI.isImplicitDef()) |
| return true; |
| |
| // Grab the copy source... |
| MachineInstr::const_mop_iterator OPI2 = OPI; |
| ++OPI2; |
| assert(OPI2 != MI.operands_end() |
| && "Should have a copy implying we should have 2 arguments."); |
| |
| // Make sure that the copy dest is not a vreg when the copy source is a |
| // physical register. |
| if (!OPI2->isReg() || |
| (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) && |
| TargetRegisterInfo::isPhysicalRegister(OPI2->getReg()))) |
| return false; |
| |
| return true; |
| } |
| |
| /// Find the split point at which to splice the end of BB into its success stack |
| /// protector check machine basic block. |
| /// |
| /// On many platforms, due to ABI constraints, terminators, even before register |
| /// allocation, use physical registers. This creates an issue for us since |
| /// physical registers at this point can not travel across basic |
| /// blocks. Luckily, selectiondag always moves physical registers into vregs |
| /// when they enter functions and moves them through a sequence of copies back |
| /// into the physical registers right before the terminator creating a |
| /// ``Terminator Sequence''. This function is searching for the beginning of the |
| /// terminator sequence so that we can ensure that we splice off not just the |
| /// terminator, but additionally the copies that move the vregs into the |
| /// physical registers. |
| static MachineBasicBlock::iterator |
| FindSplitPointForStackProtector(MachineBasicBlock *BB) { |
| MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); |
| // |
| if (SplitPoint == BB->begin()) |
| return SplitPoint; |
| |
| MachineBasicBlock::iterator Start = BB->begin(); |
| MachineBasicBlock::iterator Previous = SplitPoint; |
| --Previous; |
| |
| while (MIIsInTerminatorSequence(*Previous)) { |
| SplitPoint = Previous; |
| if (Previous == Start) |
| break; |
| --Previous; |
| } |
| |
| return SplitPoint; |
| } |
| |
| void |
| SelectionDAGISel::FinishBasicBlock() { |
| LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " |
| << FuncInfo->PHINodesToUpdate.size() << "\n"; |
| for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; |
| ++i) dbgs() |
| << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first |
| << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); |
| |
| // Next, now that we know what the last MBB the LLVM BB expanded is, update |
| // PHI nodes in successors. |
| for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { |
| MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) |
| continue; |
| PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); |
| } |
| |
| // Handle stack protector. |
| if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { |
| // The target provides a guard check function. There is no need to |
| // generate error handling code or to split current basic block. |
| MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); |
| |
| // Add load and check to the basicblock. |
| FuncInfo->MBB = ParentMBB; |
| FuncInfo->InsertPt = |
| FindSplitPointForStackProtector(ParentMBB); |
| SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| |
| // Clear the Per-BB State. |
| SDB->SPDescriptor.resetPerBBState(); |
| } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { |
| MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); |
| MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); |
| |
| // Find the split point to split the parent mbb. At the same time copy all |
| // physical registers used in the tail of parent mbb into virtual registers |
| // before the split point and back into physical registers after the split |
| // point. This prevents us needing to deal with Live-ins and many other |
| // register allocation issues caused by us splitting the parent mbb. The |
| // register allocator will clean up said virtual copies later on. |
| MachineBasicBlock::iterator SplitPoint = |
| FindSplitPointForStackProtector(ParentMBB); |
| |
| // Splice the terminator of ParentMBB into SuccessMBB. |
| SuccessMBB->splice(SuccessMBB->end(), ParentMBB, |
| SplitPoint, |
| ParentMBB->end()); |
| |
| // Add compare/jump on neq/jump to the parent BB. |
| FuncInfo->MBB = ParentMBB; |
| FuncInfo->InsertPt = ParentMBB->end(); |
| SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| |
| // CodeGen Failure MBB if we have not codegened it yet. |
| MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); |
| if (FailureMBB->empty()) { |
| FuncInfo->MBB = FailureMBB; |
| FuncInfo->InsertPt = FailureMBB->end(); |
| SDB->visitSPDescriptorFailure(SDB->SPDescriptor); |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| } |
| |
| // Clear the Per-BB State. |
| SDB->SPDescriptor.resetPerBBState(); |
| } |
| |
| // Lower each BitTestBlock. |
| for (auto &BTB : SDB->BitTestCases) { |
| // Lower header first, if it wasn't already lowered |
| if (!BTB.Emitted) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| FuncInfo->MBB = BTB.Parent; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| // Emit the code |
| SDB->visitBitTestHeader(BTB, FuncInfo->MBB); |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| } |
| |
| BranchProbability UnhandledProb = BTB.Prob; |
| for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { |
| UnhandledProb -= BTB.Cases[j].ExtraProb; |
| // Set the current basic block to the mbb we wish to insert the code into |
| FuncInfo->MBB = BTB.Cases[j].ThisBB; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| // Emit the code |
| |
| // If all cases cover a contiguous range, it is not necessary to jump to |
| // the default block after the last bit test fails. This is because the |
| // range check during bit test header creation has guaranteed that every |
| // case here doesn't go outside the range. In this case, there is no need |
| // to perform the last bit test, as it will always be true. Instead, make |
| // the second-to-last bit-test fall through to the target of the last bit |
| // test, and delete the last bit test. |
| |
| MachineBasicBlock *NextMBB; |
| if (BTB.ContiguousRange && j + 2 == ej) { |
| // Second-to-last bit-test with contiguous range: fall through to the |
| // target of the final bit test. |
| NextMBB = BTB.Cases[j + 1].TargetBB; |
| } else if (j + 1 == ej) { |
| // For the last bit test, fall through to Default. |
| NextMBB = BTB.Default; |
| } else { |
| // Otherwise, fall through to the next bit test. |
| NextMBB = BTB.Cases[j + 1].ThisBB; |
| } |
| |
| SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], |
| FuncInfo->MBB); |
| |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| |
| if (BTB.ContiguousRange && j + 2 == ej) { |
| // Since we're not going to use the final bit test, remove it. |
| BTB.Cases.pop_back(); |
| break; |
| } |
| } |
| |
| // Update PHI Nodes |
| for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); |
| pi != pe; ++pi) { |
| MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); |
| MachineBasicBlock *PHIBB = PHI->getParent(); |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| // This is "default" BB. We have two jumps to it. From "header" BB and |
| // from last "case" BB, unless the latter was skipped. |
| if (PHIBB == BTB.Default) { |
| PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); |
| if (!BTB.ContiguousRange) { |
| PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) |
| .addMBB(BTB.Cases.back().ThisBB); |
| } |
| } |
| // One of "cases" BB. |
| for (unsigned j = 0, ej = BTB.Cases.size(); |
| j != ej; ++j) { |
| MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; |
| if (cBB->isSuccessor(PHIBB)) |
| PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); |
| } |
| } |
| } |
| SDB->BitTestCases.clear(); |
| |
| // If the JumpTable record is filled in, then we need to emit a jump table. |
| // Updating the PHI nodes is tricky in this case, since we need to determine |
| // whether the PHI is a successor of the range check MBB or the jump table MBB |
| for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { |
| // Lower header first, if it wasn't already lowered |
| if (!SDB->JTCases[i].first.Emitted) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| // Emit the code |
| SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, |
| FuncInfo->MBB); |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| } |
| |
| // Set the current basic block to the mbb we wish to insert the code into |
| FuncInfo->MBB = SDB->JTCases[i].second.MBB; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| // Emit the code |
| SDB->visitJumpTable(SDB->JTCases[i].second); |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| |
| // Update PHI Nodes |
| for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); |
| pi != pe; ++pi) { |
| MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); |
| MachineBasicBlock *PHIBB = PHI->getParent(); |
| assert(PHI->isPHI() && |
| "This is not a machine PHI node that we are updating!"); |
| // "default" BB. We can go there only from header BB. |
| if (PHIBB == SDB->JTCases[i].second.Default) |
| PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) |
| .addMBB(SDB->JTCases[i].first.HeaderBB); |
| // JT BB. Just iterate over successors here |
| if (FuncInfo->MBB->isSuccessor(PHIBB)) |
| PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); |
| } |
| } |
| SDB->JTCases.clear(); |
| |
| // If we generated any switch lowering information, build and codegen any |
| // additional DAGs necessary. |
| for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { |
| // Set the current basic block to the mbb we wish to insert the code into |
| FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| |
| // Determine the unique successors. |
| SmallVector<MachineBasicBlock *, 2> Succs; |
| Succs.push_back(SDB->SwitchCases[i].TrueBB); |
| if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) |
| Succs.push_back(SDB->SwitchCases[i].FalseBB); |
| |
| // Emit the code. Note that this could result in FuncInfo->MBB being split. |
| SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); |
| CurDAG->setRoot(SDB->getRoot()); |
| SDB->clear(); |
| CodeGenAndEmitDAG(); |
| |
| // Remember the last block, now that any splitting is done, for use in |
| // populating PHI nodes in successors. |
| MachineBasicBlock *ThisBB = FuncInfo->MBB; |
| |
| // Handle any PHI nodes in successors of this chunk, as if we were coming |
| // from the original BB before switch expansion. Note that PHI nodes can |
| // occur multiple times in PHINodesToUpdate. We have to be very careful to |
| // handle them the right number of times. |
| for (unsigned i = 0, e = Succs.size(); i != e; ++i) { |
| FuncInfo->MBB = Succs[i]; |
| FuncInfo->InsertPt = FuncInfo->MBB->end(); |
| // FuncInfo->MBB may have been removed from the CFG if a branch was |
| // constant folded. |
| if (ThisBB->isSuccessor(FuncInfo->MBB)) { |
| for (MachineBasicBlock::iterator |
| MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); |
| MBBI != MBBE && MBBI->isPHI(); ++MBBI) { |
| MachineInstrBuilder PHI(*MF, MBBI); |
| // This value for this PHI node is recorded in PHINodesToUpdate. |
| for (unsigned pn = 0; ; ++pn) { |
| assert(pn != FuncInfo->PHINodesToUpdate.size() && |
| "Didn't find PHI entry!"); |
| if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { |
| PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| SDB->SwitchCases.clear(); |
| } |
| |
| /// Create the scheduler. If a specific scheduler was specified |
| /// via the SchedulerRegistry, use it, otherwise select the |
| /// one preferred by the target. |
| /// |
| ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { |
| return ISHeuristic(this, OptLevel); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions used by the generated instruction selector. |
| //===----------------------------------------------------------------------===// |
| // Calls to these methods are generated by tblgen. |
| |
| /// CheckAndMask - The isel is trying to match something like (and X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) const { |
| const APInt &ActualMask = RHS->getAPIntValue(); |
| const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (!ActualMask.isSubsetOf(DesiredMask)) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| APInt NeededMask = DesiredMask & ~ActualMask; |
| if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| /// CheckOrMask - The isel is trying to match something like (or X, 255). If |
| /// the dag combiner simplified the 255, we still want to match. RHS is the |
| /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value |
| /// specified in the .td file (e.g. 255). |
| bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, |
| int64_t DesiredMaskS) const { |
| const APInt &ActualMask = RHS->getAPIntValue(); |
| const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); |
| |
| // If the actual mask exactly matches, success! |
| if (ActualMask == DesiredMask) |
| return true; |
| |
| // If the actual AND mask is allowing unallowed bits, this doesn't match. |
| if (!ActualMask.isSubsetOf(DesiredMask)) |
| return false; |
| |
| // Otherwise, the DAG Combiner may have proven that the value coming in is |
| // either already zero or is not demanded. Check for known zero input bits. |
| APInt NeededMask = DesiredMask & ~ActualMask; |
| |
| KnownBits Known; |
| CurDAG->computeKnownBits(LHS, Known); |
| |
| // If all the missing bits in the or are already known to be set, match! |
| if (NeededMask.isSubsetOf(Known.One)) |
| return true; |
| |
| // TODO: check to see if missing bits are just not demanded. |
| |
| // Otherwise, this pattern doesn't match. |
| return false; |
| } |
| |
| /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated |
| /// by tblgen. Others should not call it. |
| void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, |
| const SDLoc &DL) { |
| std::vector<SDValue> InOps; |
| std::swap(InOps, Ops); |
| |
| Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 |
| Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 |
| Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc |
| Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) |
| |
| unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); |
| if (InOps[e-1].getValueType() == MVT::Glue) |
| --e; // Don't process a glue operand if it is here. |
| |
| while (i != e) { |
| unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); |
| if (!InlineAsm::isMemKind(Flags)) { |
| // Just skip over this operand, copying the operands verbatim. |
| Ops.insert(Ops.end(), InOps.begin()+i, |
| InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); |
| i += InlineAsm::getNumOperandRegisters(Flags) + 1; |
| } else { |
| assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && |
| "Memory operand with multiple values?"); |
| |
| unsigned TiedToOperand; |
| if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { |
| // We need the constraint ID from the operand this is tied to. |
| unsigned CurOp = InlineAsm::Op_FirstOperand; |
| Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); |
| for (; TiedToOperand; --TiedToOperand) { |
| CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; |
| Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); |
| } |
| } |
| |
| // Otherwise, this is a memory operand. Ask the target to select it. |
| std::vector<SDValue> SelOps; |
| unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); |
| if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) |
| report_fatal_error("Could not match memory address. Inline asm" |
| " failure!"); |
| |
| // Add this to the output node. |
| unsigned NewFlags = |
| InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); |
| NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); |
| Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); |
| Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); |
| i += 2; |
| } |
| } |
| |
| // Add the glue input back if present. |
| if (e != InOps.size()) |
| Ops.push_back(InOps.back()); |
| } |
| |
| /// findGlueUse - Return use of MVT::Glue value produced by the specified |
| /// SDNode. |
| /// |
| static SDNode *findGlueUse(SDNode *N) { |
| unsigned FlagResNo = N->getNumValues()-1; |
| for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { |
| SDUse &Use = I.getUse(); |
| if (Use.getResNo() == FlagResNo) |
| return Use.getUser(); |
| } |
| return nullptr; |
| } |
| |
| /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path |
| /// beyond "ImmedUse". We may ignore chains as they are checked separately. |
| static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, |
| bool IgnoreChains) { |
| SmallPtrSet<const SDNode *, 16> Visited; |
| SmallVector<const SDNode *, 16> WorkList; |
| // Only check if we have non-immediate uses of Def. |
| if (ImmedUse->isOnlyUserOf(Def)) |
| return false; |
| |
| // We don't care about paths to Def that go through ImmedUse so mark it |
| // visited and mark non-def operands as used. |
| Visited.insert(ImmedUse); |
| for (const SDValue &Op : ImmedUse->op_values()) { |
| SDNode *N = Op.getNode(); |
| // Ignore chain deps (they are validated by |
| // HandleMergeInputChains) and immediate uses |
| if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) |
| continue; |
| if (!Visited.insert(N).second) |
| continue; |
| WorkList.push_back(N); |
| } |
| |
| // Initialize worklist to operands of Root. |
| if (Root != ImmedUse) { |
| for (const SDValue &Op : Root->op_values()) { |
| SDNode *N = Op.getNode(); |
| // Ignore chains (they are validated by HandleMergeInputChains) |
| if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) |
| continue; |
| if (!Visited.insert(N).second) |
| continue; |
| WorkList.push_back(N); |
| } |
| } |
| |
| return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); |
| } |
| |
| /// IsProfitableToFold - Returns true if it's profitable to fold the specific |
| /// operand node N of U during instruction selection that starts at Root. |
| bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, |
| SDNode *Root) const { |
| if (OptLevel == CodeGenOpt::None) return false; |
| return N.hasOneUse(); |
| } |
| |
| /// IsLegalToFold - Returns true if the specific operand node N of |
| /// U can be folded during instruction selection that starts at Root. |
| bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, |
| CodeGenOpt::Level OptLevel, |
| bool IgnoreChains) { |
| if (OptLevel == CodeGenOpt::None) return false; |
| |
| // If Root use can somehow reach N through a path that that doesn't contain |
| // U then folding N would create a cycle. e.g. In the following |
| // diagram, Root can reach N through X. If N is folded into Root, then |
| // X is both a predecessor and a successor of U. |
| // |
| // [N*] // |
| // ^ ^ // |
| // / \ // |
| // [U*] [X]? // |
| // ^ ^ // |
| // \ / // |
| // \ / // |
| // [Root*] // |
| // |
| // * indicates nodes to be folded together. |
| // |
| // If Root produces glue, then it gets (even more) interesting. Since it |
| // will be "glued" together with its glue use in the scheduler, we need to |
| // check if it might reach N. |
| // |
| // [N*] // |
| // ^ ^ // |
| // / \ // |
| // [U*] [X]? // |
| // ^ ^ // |
| // \ \ // |
| // \ | // |
| // [Root*] | // |
| // ^ | // |
| // f | // |
| // | / // |
| // [Y] / // |
| // ^ / // |
| // f / // |
| // | / // |
| // [GU] // |
| // |
| // If GU (glue use) indirectly reaches N (the load), and Root folds N |
| // (call it Fold), then X is a predecessor of GU and a successor of |
| // Fold. But since Fold and GU are glued together, this will create |
| // a cycle in the scheduling graph. |
| |
| // If the node has glue, walk down the graph to the "lowest" node in the |
| // glueged set. |
| EVT VT = Root->getValueType(Root->getNumValues()-1); |
| while (VT == MVT::Glue) { |
| SDNode *GU = findGlueUse(Root); |
| if (!GU) |
| break; |
| Root = GU; |
| VT = Root->getValueType(Root->getNumValues()-1); |
| |
| // If our query node has a glue result with a use, we've walked up it. If |
| // the user (which has already been selected) has a chain or indirectly uses |
| // the chain, HandleMergeInputChains will not consider it. Because of |
| // this, we cannot ignore chains in this predicate. |
| IgnoreChains = false; |
| } |
| |
| return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); |
| } |
| |
| void SelectionDAGISel::Select_INLINEASM(SDNode *N) { |
| SDLoc DL(N); |
| |
| std::vector<SDValue> Ops(N->op_begin(), N->op_end()); |
| SelectInlineAsmMemoryOperands(Ops, DL); |
| |
| const EVT VTs[] = {MVT::Other, MVT::Glue}; |
| SDValue New = CurDAG->getNode(ISD::INLINEASM, DL, VTs, Ops); |
| New->setNodeId(-1); |
| ReplaceUses(N, New.getNode()); |
| CurDAG->RemoveDeadNode(N); |
| } |
| |
| void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { |
| SDLoc dl(Op); |
| MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); |
| const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); |
| unsigned Reg = |
| TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0), |
| *CurDAG); |
| SDValue New = CurDAG->getCopyFromReg( |
| Op->getOperand(0), dl, Reg, Op->getValueType(0)); |
| New->setNodeId(-1); |
| ReplaceUses(Op, New.getNode()); |
| CurDAG->RemoveDeadNode(Op); |
| } |
| |
| void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { |
| SDLoc dl(Op); |
| MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); |
| const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); |
| unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(), |
| Op->getOperand(2).getValueType(), |
| *CurDAG); |
| SDValue New = CurDAG->getCopyToReg( |
| Op->getOperand(0), dl, Reg, Op->getOperand(2)); |
| New->setNodeId(-1); |
| ReplaceUses(Op, New.getNode()); |
| CurDAG->RemoveDeadNode(Op); |
| } |
| |
| void SelectionDAGISel::Select_UNDEF(SDNode *N) { |
| CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); |
| } |
| |
| /// GetVBR - decode a vbr encoding whose top bit is set. |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t |
| GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { |
| assert(Val >= 128 && "Not a VBR"); |
| Val &= 127; // Remove first vbr bit. |
| |
| unsigned Shift = 7; |
| uint64_t NextBits; |
| do { |
| NextBits = MatcherTable[Idx++]; |
| Val |= (NextBits&127) << Shift; |
| Shift += 7; |
| } while (NextBits & 128); |
| |
| return Val; |
| } |
| |
| /// When a match is complete, this method updates uses of interior chain results |
| /// to use the new results. |
| void SelectionDAGISel::UpdateChains( |
| SDNode *NodeToMatch, SDValue InputChain, |
| SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { |
| SmallVector<SDNode*, 4> NowDeadNodes; |
| |
| // Now that all the normal results are replaced, we replace the chain and |
| // glue results if present. |
| if (!ChainNodesMatched.empty()) { |
| assert(InputChain.getNode() && |
| "Matched input chains but didn't produce a chain"); |
| // Loop over all of the nodes we matched that produced a chain result. |
| // Replace all the chain results with the final chain we ended up with. |
| for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { |
| SDNode *ChainNode = ChainNodesMatched[i]; |
| // If ChainNode is null, it's because we replaced it on a previous |
| // iteration and we cleared it out of the map. Just skip it. |
| if (!ChainNode) |
| continue; |
| |
| assert(ChainNode->getOpcode() != ISD::DELETED_NODE && |
| "Deleted node left in chain"); |
| |
| // Don't replace the results of the root node if we're doing a |
| // MorphNodeTo. |
| if (ChainNode == NodeToMatch && isMorphNodeTo) |
| continue; |
| |
| SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); |
| if (ChainVal.getValueType() == MVT::Glue) |
| ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); |
| assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); |
| SelectionDAG::DAGNodeDeletedListener NDL( |
| *CurDAG, [&](SDNode *N, SDNode *E) { |
| std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, |
| static_cast<SDNode *>(nullptr)); |
| }); |
| if (ChainNode->getOpcode() != ISD::TokenFactor) |
| ReplaceUses(ChainVal, InputChain); |
| |
| // If the node became dead and we haven't already seen it, delete it. |
| if (ChainNode != NodeToMatch && ChainNode->use_empty() && |
| !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) |
| NowDeadNodes.push_back(ChainNode); |
| } |
| } |
| |
| if (!NowDeadNodes.empty()) |
| CurDAG->RemoveDeadNodes(NowDeadNodes); |
| |
| LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); |
| } |
| |
| /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains |
| /// operation for when the pattern matched at least one node with a chains. The |
| /// input vector contains a list of all of the chained nodes that we match. We |
| /// must determine if this is a valid thing to cover (i.e. matching it won't |
| /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will |
| /// be used as the input node chain for the generated nodes. |
| static SDValue |
| HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, |
| SelectionDAG *CurDAG) { |
| |
| SmallPtrSet<const SDNode *, 16> Visited; |
| SmallVector<const SDNode *, 8> Worklist; |
| SmallVector<SDValue, 3> InputChains; |
| unsigned int Max = 8192; |
| |
| // Quick exit on trivial merge. |
| if (ChainNodesMatched.size() == 1) |
| return ChainNodesMatched[0]->getOperand(0); |
| |
| // Add chains that aren't already added (internal). Peek through |
| // token factors. |
| std::function<void(const SDValue)> AddChains = [&](const SDValue V) { |
| if (V.getValueType() != MVT::Other) |
| return; |
| if (V->getOpcode() == ISD::EntryToken) |
| return; |
| if (!Visited.insert(V.getNode()).second) |
| return; |
| if (V->getOpcode() == ISD::TokenFactor) { |
| for (const SDValue &Op : V->op_values()) |
| AddChains(Op); |
| } else |
| InputChains.push_back(V); |
| }; |
| |
| for (auto *N : ChainNodesMatched) { |
| Worklist.push_back(N); |
| Visited.insert(N); |
| } |
| |
| while (!Worklist.empty()) |
| AddChains(Worklist.pop_back_val()->getOperand(0)); |
| |
| // Skip the search if there are no chain dependencies. |
| if (InputChains.size() == 0) |
| return CurDAG->getEntryNode(); |
| |
| // If one of these chains is a successor of input, we must have a |
| // node that is both the predecessor and successor of the |
| // to-be-merged nodes. Fail. |
| Visited.clear(); |
| for (SDValue V : InputChains) |
| Worklist.push_back(V.getNode()); |
| |
| for (auto *N : ChainNodesMatched) |
| if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) |
| return SDValue(); |
| |
| // Return merged chain. |
| if (InputChains.size() == 1) |
| return InputChains[0]; |
| return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), |
| MVT::Other, InputChains); |
| } |
| |
| /// MorphNode - Handle morphing a node in place for the selector. |
| SDNode *SelectionDAGISel:: |
| MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, |
| ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { |
| // It is possible we're using MorphNodeTo to replace a node with no |
| // normal results with one that has a normal result (or we could be |
| // adding a chain) and the input could have glue and chains as well. |
| // In this case we need to shift the operands down. |
| // FIXME: This is a horrible hack and broken in obscure cases, no worse |
| // than the old isel though. |
| int OldGlueResultNo = -1, OldChainResultNo = -1; |
| |
| unsigned NTMNumResults = Node->getNumValues(); |
| if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { |
| OldGlueResultNo = NTMNumResults-1; |
| if (NTMNumResults != 1 && |
| Node->getValueType(NTMNumResults-2) == MVT::Other) |
| OldChainResultNo = NTMNumResults-2; |
| } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) |
| OldChainResultNo = NTMNumResults-1; |
| |
| // Call the underlying SelectionDAG routine to do the transmogrification. Note |
| // that this deletes operands of the old node that become dead. |
| SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); |
| |
| // MorphNodeTo can operate in two ways: if an existing node with the |
| // specified operands exists, it can just return it. Otherwise, it |
| // updates the node in place to have the requested operands. |
| if (Res == Node) { |
| // If we updated the node in place, reset the node ID. To the isel, |
| // this should be just like a newly allocated machine node. |
| Res->setNodeId(-1); |
| } |
| |
| unsigned ResNumResults = Res->getNumValues(); |
| // Move the glue if needed. |
| if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && |
| (unsigned)OldGlueResultNo != ResNumResults-1) |
| ReplaceUses(SDValue(Node, OldGlueResultNo), |
| SDValue(Res, ResNumResults - 1)); |
| |
| if ((EmitNodeInfo & OPFL_GlueOutput) != 0) |
| --ResNumResults; |
| |
| // Move the chain reference if needed. |
| if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && |
| (unsigned)OldChainResultNo != ResNumResults-1) |
| ReplaceUses(SDValue(Node, OldChainResultNo), |
| SDValue(Res, ResNumResults - 1)); |
| |
| // Otherwise, no replacement happened because the node already exists. Replace |
| // Uses of the old node with the new one. |
| if (Res != Node) { |
| ReplaceNode(Node, Res); |
| } else { |
| EnforceNodeIdInvariant(Res); |
| } |
| |
| return Res; |
| } |
| |
| /// CheckSame - Implements OP_CheckSame. |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, |
| const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { |
| // Accept if it is exactly the same as a previously recorded node. |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); |
| return N == RecordedNodes[RecNo].first; |
| } |
| |
| /// CheckChildSame - Implements OP_CheckChildXSame. |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, |
| const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes, |
| unsigned ChildNo) { |
| if (ChildNo >= N.getNumOperands()) |
| return false; // Match fails if out of range child #. |
| return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), |
| RecordedNodes); |
| } |
| |
| /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| const SelectionDAGISel &SDISel) { |
| return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); |
| } |
| |
| /// CheckNodePredicate - Implements OP_CheckNodePredicate. |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| const SelectionDAGISel &SDISel, SDNode *N) { |
| return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDNode *N) { |
| uint16_t Opc = MatcherTable[MatcherIndex++]; |
| Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; |
| return N->getOpcode() == Opc; |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, |
| const TargetLowering *TLI, const DataLayout &DL) { |
| MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (N.getValueType() == VT) return true; |
| |
| // Handle the case when VT is iPTR. |
| return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, const TargetLowering *TLI, const DataLayout &DL, |
| unsigned ChildNo) { |
| if (ChildNo >= N.getNumOperands()) |
| return false; // Match fails if out of range child #. |
| return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, |
| DL); |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N) { |
| return cast<CondCodeSDNode>(N)->get() == |
| (ISD::CondCode)MatcherTable[MatcherIndex++]; |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, const TargetLowering *TLI, const DataLayout &DL) { |
| MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (cast<VTSDNode>(N)->getVT() == VT) |
| return true; |
| |
| // Handle the case when VT is iPTR. |
| return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N) { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); |
| return C && C->getSExtValue() == Val; |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, unsigned ChildNo) { |
| if (ChildNo >= N.getNumOperands()) |
| return false; // Match fails if out of range child #. |
| return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, const SelectionDAGISel &SDISel) { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| if (N->getOpcode() != ISD::AND) return false; |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); |
| } |
| |
| LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool |
| CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, |
| SDValue N, const SelectionDAGISel &SDISel) { |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| |
| if (N->getOpcode() != ISD::OR) return false; |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); |
| } |
| |
| /// IsPredicateKnownToFail - If we know how and can do so without pushing a |
| /// scope, evaluate the current node. If the current predicate is known to |
| /// fail, set Result=true and return anything. If the current predicate is |
| /// known to pass, set Result=false and return the MatcherIndex to continue |
| /// with. If the current predicate is unknown, set Result=false and return the |
| /// MatcherIndex to continue with. |
| static unsigned IsPredicateKnownToFail(const unsigned char *Table, |
| unsigned Index, SDValue N, |
| bool &Result, |
| const SelectionDAGISel &SDISel, |
| SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { |
| switch (Table[Index++]) { |
| default: |
| Result = false; |
| return Index-1; // Could not evaluate this predicate. |
| case SelectionDAGISel::OPC_CheckSame: |
| Result = !::CheckSame(Table, Index, N, RecordedNodes); |
| return Index; |
| case SelectionDAGISel::OPC_CheckChild0Same: |
| case SelectionDAGISel::OPC_CheckChild1Same: |
| case SelectionDAGISel::OPC_CheckChild2Same: |
| case SelectionDAGISel::OPC_CheckChild3Same: |
| Result = !::CheckChildSame(Table, Index, N, RecordedNodes, |
| Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); |
| return Index; |
| case SelectionDAGISel::OPC_CheckPatternPredicate: |
| Result = !::CheckPatternPredicate(Table, Index, SDISel); |
| return Index; |
| case SelectionDAGISel::OPC_CheckPredicate: |
| Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); |
| return Index; |
| case SelectionDAGISel::OPC_CheckOpcode: |
| Result = !::CheckOpcode(Table, Index, N.getNode()); |
| return Index; |
| case SelectionDAGISel::OPC_CheckType: |
| Result = !::CheckType(Table, Index, N, SDISel.TLI, |
| SDISel.CurDAG->getDataLayout()); |
| return Index; |
| case SelectionDAGISel::OPC_CheckTypeRes: { |
| unsigned Res = Table[Index++]; |
| Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, |
| SDISel.CurDAG->getDataLayout()); |
| return Index; |
| } |
| case SelectionDAGISel::OPC_CheckChild0Type: |
| case SelectionDAGISel::OPC_CheckChild1Type: |
| case SelectionDAGISel::OPC_CheckChild2Type: |
| case SelectionDAGISel::OPC_CheckChild3Type: |
| case SelectionDAGISel::OPC_CheckChild4Type: |
| case SelectionDAGISel::OPC_CheckChild5Type: |
| case SelectionDAGISel::OPC_CheckChild6Type: |
| case SelectionDAGISel::OPC_CheckChild7Type: |
| Result = !::CheckChildType( |
| Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), |
| Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); |
| return Index; |
| case SelectionDAGISel::OPC_CheckCondCode: |
| Result = !::CheckCondCode(Table, Index, N); |
| return Index; |
| case SelectionDAGISel::OPC_CheckValueType: |
| Result = !::CheckValueType(Table, Index, N, SDISel.TLI, |
| SDISel.CurDAG->getDataLayout()); |
| return Index; |
| case SelectionDAGISel::OPC_CheckInteger: |
| Result = !::CheckInteger(Table, Index, N); |
| return Index; |
| case SelectionDAGISel::OPC_CheckChild0Integer: |
| case SelectionDAGISel::OPC_CheckChild1Integer: |
| case SelectionDAGISel::OPC_CheckChild2Integer: |
| case SelectionDAGISel::OPC_CheckChild3Integer: |
| case SelectionDAGISel::OPC_CheckChild4Integer: |
| Result = !::CheckChildInteger(Table, Index, N, |
| Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); |
| return Index; |
| case SelectionDAGISel::OPC_CheckAndImm: |
| Result = !::CheckAndImm(Table, Index, N, SDISel); |
| return Index; |
| case SelectionDAGISel::OPC_CheckOrImm: |
| Result = !::CheckOrImm(Table, Index, N, SDISel); |
| return Index; |
| } |
| } |
| |
| namespace { |
| |
| struct MatchScope { |
| /// FailIndex - If this match fails, this is the index to continue with. |
| unsigned FailIndex; |
| |
| /// NodeStack - The node stack when the scope was formed. |
| SmallVector<SDValue, 4> NodeStack; |
| |
| /// NumRecordedNodes - The number of recorded nodes when the scope was formed. |
| unsigned NumRecordedNodes; |
| |
| /// NumMatchedMemRefs - The number of matched memref entries. |
| unsigned NumMatchedMemRefs; |
| |
| /// InputChain/InputGlue - The current chain/glue |
| SDValue InputChain, InputGlue; |
| |
| /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. |
| bool HasChainNodesMatched; |
| }; |
| |
| /// \A DAG update listener to keep the matching state |
| /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to |
| /// change the DAG while matching. X86 addressing mode matcher is an example |
| /// for this. |
| class MatchStateUpdater : public SelectionDAG::DAGUpdateListener |
| { |
| SDNode **NodeToMatch; |
| SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; |
| SmallVectorImpl<MatchScope> &MatchScopes; |
| |
| public: |
| MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, |
| SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, |
| SmallVectorImpl<MatchScope> &MS) |
| : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), |
| RecordedNodes(RN), MatchScopes(MS) {} |
| |
| void NodeDeleted(SDNode *N, SDNode *E) override { |
| // Some early-returns here to avoid the search if we deleted the node or |
| // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we |
| // do, so it's unnecessary to update matching state at that point). |
| // Neither of these can occur currently because we only install this |
| // update listener during matching a complex patterns. |
| if (!E || E->isMachineOpcode()) |
| return; |
| // Check if NodeToMatch was updated. |
| if (N == *NodeToMatch) |
| *NodeToMatch = E; |
| // Performing linear search here does not matter because we almost never |
| // run this code. You'd have to have a CSE during complex pattern |
| // matching. |
| for (auto &I : RecordedNodes) |
| if (I.first.getNode() == N) |
| I.first.setNode(E); |
| |
| for (auto &I : MatchScopes) |
| for (auto &J : I.NodeStack) |
| if (J.getNode() == N) |
| J.setNode(E); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, |
| const unsigned char *MatcherTable, |
| unsigned TableSize) { |
| // FIXME: Should these even be selected? Handle these cases in the caller? |
| switch (NodeToMatch->getOpcode()) { |
| default: |
| break; |
| case ISD::EntryToken: // These nodes remain the same. |
| case ISD::BasicBlock: |
| case ISD::Register: |
| case ISD::RegisterMask: |
| case ISD::HANDLENODE: |
| case ISD::MDNODE_SDNODE: |
| case ISD::TargetConstant: |
| case ISD::TargetConstantFP: |
| case ISD::TargetConstantPool: |
| case ISD::TargetFrameIndex: |
| case ISD::TargetExternalSymbol: |
| case ISD::MCSymbol: |
| case ISD::TargetBlockAddress: |
| case ISD::TargetJumpTable: |
| case ISD::TargetGlobalTLSAddress: |
| case ISD::TargetGlobalAddress: |
| case ISD::TokenFactor: |
| case ISD::CopyFromReg: |
| case ISD::CopyToReg: |
| case ISD::EH_LABEL: |
| case ISD::ANNOTATION_LABEL: |
| case ISD::LIFETIME_START: |
| case ISD::LIFETIME_END: |
| NodeToMatch->setNodeId(-1); // Mark selected. |
| return; |
| case ISD::AssertSext: |
| case ISD::AssertZext: |
| ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); |
| CurDAG->RemoveDeadNode(NodeToMatch); |
| return; |
| case ISD::INLINEASM: |
| Select_INLINEASM(NodeToMatch); |
| return; |
| case ISD::READ_REGISTER: |
| Select_READ_REGISTER(NodeToMatch); |
| return; |
| case ISD::WRITE_REGISTER: |
| Select_WRITE_REGISTER(NodeToMatch); |
| return; |
| case ISD::UNDEF: |
| Select_UNDEF(NodeToMatch); |
| return; |
| } |
| |
| assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); |
| |
| // Set up the node stack with NodeToMatch as the only node on the stack. |
| SmallVector<SDValue, 8> NodeStack; |
| SDValue N = SDValue(NodeToMatch, 0); |
| NodeStack.push_back(N); |
| |
| // MatchScopes - Scopes used when matching, if a match failure happens, this |
| // indicates where to continue checking. |
| SmallVector<MatchScope, 8> MatchScopes; |
| |
| // RecordedNodes - This is the set of nodes that have been recorded by the |
| // state machine. The second value is the parent of the node, or null if the |
| // root is recorded. |
| SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; |
| |
| // MatchedMemRefs - This is the set of MemRef's we've seen in the input |
| // pattern. |
| SmallVector<MachineMemOperand*, 2> MatchedMemRefs; |
| |
| // These are the current input chain and glue for use when generating nodes. |
| // Various Emit operations change these. For example, emitting a copytoreg |
| // uses and updates these. |
| SDValue InputChain, InputGlue; |
| |
| // ChainNodesMatched - If a pattern matches nodes that have input/output |
| // chains, the OPC_EmitMergeInputChains operation is emitted which indicates |
| // which ones they are. The result is captured into this list so that we can |
| // update the chain results when the pattern is complete. |
| SmallVector<SDNode*, 3> ChainNodesMatched; |
| |
| LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); |
| |
| // Determine where to start the interpreter. Normally we start at opcode #0, |
| // but if the state machine starts with an OPC_SwitchOpcode, then we |
| // accelerate the first lookup (which is guaranteed to be hot) with the |
| // OpcodeOffset table. |
| unsigned MatcherIndex = 0; |
| |
| if (!OpcodeOffset.empty()) { |
| // Already computed the OpcodeOffset table, just index into it. |
| if (N.getOpcode() < OpcodeOffset.size()) |
| MatcherIndex = OpcodeOffset[N.getOpcode()]; |
| LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); |
| |
| } else if (MatcherTable[0] == OPC_SwitchOpcode) { |
| // Otherwise, the table isn't computed, but the state machine does start |
| // with an OPC_SwitchOpcode instruction. Populate the table now, since this |
| // is the first time we're selecting an instruction. |
| unsigned Idx = 1; |
| while (true) { |
| // Get the size of this case. |
| unsigned CaseSize = MatcherTable[Idx++]; |
| if (CaseSize & 128) |
| CaseSize = GetVBR(CaseSize, MatcherTable, Idx); |
| if (CaseSize == 0) break; |
| |
| // Get the opcode, add the index to the table. |
| uint16_t Opc = MatcherTable[Idx++]; |
| Opc |= (unsigned short)MatcherTable[Idx++] << 8; |
| if (Opc >= OpcodeOffset.size()) |
| OpcodeOffset.resize((Opc+1)*2); |
| OpcodeOffset[Opc] = Idx; |
| Idx += CaseSize; |
| } |
| |
| // Okay, do the lookup for the first opcode. |
| if (N.getOpcode() < OpcodeOffset.size()) |
| MatcherIndex = OpcodeOffset[N.getOpcode()]; |
| } |
| |
| while (true) { |
| assert(MatcherIndex < TableSize && "Invalid index"); |
| #ifndef NDEBUG |
| unsigned CurrentOpcodeIndex = MatcherIndex; |
| #endif |
| BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; |
| switch (Opcode) { |
| case OPC_Scope: { |
| // Okay, the semantics of this operation are that we should push a scope |
| // then evaluate the first child. However, pushing a scope only to have |
| // the first check fail (which then pops it) is inefficient. If we can |
| // determine immediately that the first check (or first several) will |
| // immediately fail, don't even bother pushing a scope for them. |
| unsigned FailIndex; |
| |
| while (true) { |
| unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| if (NumToSkip & 128) |
| NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); |
| // Found the end of the scope with no match. |
| if (NumToSkip == 0) { |
| FailIndex = 0; |
| break; |
| } |
| |
| FailIndex = MatcherIndex+NumToSkip; |
| |
| unsigned MatcherIndexOfPredicate = MatcherIndex; |
| (void)MatcherIndexOfPredicate; // silence warning. |
| |
| // If we can't evaluate this predicate without pushing a scope (e.g. if |
| // it is a 'MoveParent') or if the predicate succeeds on this node, we |
| // push the scope and evaluate the full predicate chain. |
| bool Result; |
| MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, |
| Result, *this, RecordedNodes); |
| if (!Result) |
| break; |
| |
| LLVM_DEBUG( |
| dbgs() << " Skipped scope entry (due to false predicate) at " |
| << "index " << MatcherIndexOfPredicate << ", continuing at " |
| << FailIndex << "\n"); |
| ++NumDAGIselRetries; |
| |
| // Otherwise, we know that this case of the Scope is guaranteed to fail, |
| // move to the next case. |
| MatcherIndex = FailIndex; |
| } |
| |
| // If the whole scope failed to match, bail. |
| if (FailIndex == 0) break; |
| |
| // Push a MatchScope which indicates where to go if the first child fails |
| // to match. |
| MatchScope NewEntry; |
| NewEntry.FailIndex = FailIndex; |
| NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); |
| NewEntry.NumRecordedNodes = RecordedNodes.size(); |
| NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); |
| NewEntry.InputChain = InputChain; |
| NewEntry.InputGlue = InputGlue; |
| NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); |
| MatchScopes.push_back(NewEntry); |
| continue; |
| } |
| case OPC_RecordNode: { |
| // Remember this node, it may end up being an operand in the pattern. |
| SDNode *Parent = nullptr; |
| if (NodeStack.size() > 1) |
| Parent = NodeStack[NodeStack.size()-2].getNode(); |
| RecordedNodes.push_back(std::make_pair(N, Parent)); |
| continue; |
| } |
| |
| case OPC_RecordChild0: case OPC_RecordChild1: |
| case OPC_RecordChild2: case OPC_RecordChild3: |
| case OPC_RecordChild4: case OPC_RecordChild5: |
| case OPC_RecordChild6: case OPC_RecordChild7: { |
| unsigned ChildNo = Opcode-OPC_RecordChild0; |
| if (ChildNo >= N.getNumOperands()) |
| break; // Match fails if out of range child #. |
| |
| RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), |
| N.getNode())); |
| continue; |
| } |
| case OPC_RecordMemRef: |
| if (auto *MN = dyn_cast<MemSDNode>(N)) |
| MatchedMemRefs.push_back(MN->getMemOperand()); |
| else { |
| LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); |
| dbgs() << '\n'); |
| } |
| |
| continue; |
| |
| case OPC_CaptureGlueInput: |
| // If the current node has an input glue, capture it in InputGlue. |
| if (N->getNumOperands() != 0 && |
| N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) |
| InputGlue = N->getOperand(N->getNumOperands()-1); |
| continue; |
| |
| case OPC_MoveChild: { |
| unsigned ChildNo = MatcherTable[MatcherIndex++]; |
| if (ChildNo >= N.getNumOperands()) |
| break; // Match fails if out of range child #. |
| N = N.getOperand(ChildNo); |
| NodeStack.push_back(N); |
| continue; |
| } |
| |
| case OPC_MoveChild0: case OPC_MoveChild1: |
| case OPC_MoveChild2: case OPC_MoveChild3: |
| case OPC_MoveChild4: case OPC_MoveChild5: |
| case OPC_MoveChild6: case OPC_MoveChild7: { |
| unsigned ChildNo = Opcode-OPC_MoveChild0; |
| if (ChildNo >= N.getNumOperands()) |
| break; // Match fails if out of range child #. |
| N = N.getOperand(ChildNo); |
| NodeStack.push_back(N); |
| continue; |
| } |
| |
| case OPC_MoveParent: |
| // Pop the current node off the NodeStack. |
| NodeStack.pop_back(); |
| assert(!NodeStack.empty() && "Node stack imbalance!"); |
| N = NodeStack.back(); |
| continue; |
| |
| case OPC_CheckSame: |
| if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; |
| continue; |
| |
| case OPC_CheckChild0Same: case OPC_CheckChild1Same: |
| case OPC_CheckChild2Same: case OPC_CheckChild3Same: |
| if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, |
| Opcode-OPC_CheckChild0Same)) |
| break; |
| continue; |
| |
| case OPC_CheckPatternPredicate: |
| if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; |
| continue; |
| case OPC_CheckPredicate: |
| if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, |
| N.getNode())) |
| break; |
| continue; |
| case OPC_CheckComplexPat: { |
| unsigned CPNum = MatcherTable[MatcherIndex++]; |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); |
| |
| // If target can modify DAG during matching, keep the matching state |
| // consistent. |
| std::unique_ptr<MatchStateUpdater> MSU; |
| if (ComplexPatternFuncMutatesDAG()) |
| MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, |
| MatchScopes)); |
| |
| if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, |
| RecordedNodes[RecNo].first, CPNum, |
| RecordedNodes)) |
| break; |
| continue; |
| } |
| case OPC_CheckOpcode: |
| if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; |
| continue; |
| |
| case OPC_CheckType: |
| if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, |
| CurDAG->getDataLayout())) |
| break; |
| continue; |
| |
| case OPC_CheckTypeRes: { |
| unsigned Res = MatcherTable[MatcherIndex++]; |
| if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, |
| CurDAG->getDataLayout())) |
| break; |
| continue; |
| } |
| |
| case OPC_SwitchOpcode: { |
| unsigned CurNodeOpcode = N.getOpcode(); |
| unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
| unsigned CaseSize; |
| while (true) { |
| // Get the size of this case. |
| CaseSize = MatcherTable[MatcherIndex++]; |
| if (CaseSize & 128) |
| CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); |
| if (CaseSize == 0) break; |
| |
| uint16_t Opc = MatcherTable[MatcherIndex++]; |
| Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; |
| |
| // If the opcode matches, then we will execute this case. |
| if (CurNodeOpcode == Opc) |
| break; |
| |
| // Otherwise, skip over this case. |
| MatcherIndex += CaseSize; |
| } |
| |
| // If no cases matched, bail out. |
| if (CaseSize == 0) break; |
| |
| // Otherwise, execute the case we found. |
| LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " |
| << MatcherIndex << "\n"); |
| continue; |
| } |
| |
| case OPC_SwitchType: { |
| MVT CurNodeVT = N.getSimpleValueType(); |
| unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; |
| unsigned CaseSize; |
| while (true) { |
| // Get the size of this case. |
| CaseSize = MatcherTable[MatcherIndex++]; |
| if (CaseSize & 128) |
| CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); |
| if (CaseSize == 0) break; |
| |
| MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (CaseVT == MVT::iPTR) |
| CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); |
| |
| // If the VT matches, then we will execute this case. |
| if (CurNodeVT == CaseVT) |
| break; |
| |
| // Otherwise, skip over this case. |
| MatcherIndex += CaseSize; |
| } |
| |
| // If no cases matched, bail out. |
| if (CaseSize == 0) break; |
| |
| // Otherwise, execute the case we found. |
| LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() |
| << "] from " << SwitchStart << " to " << MatcherIndex |
| << '\n'); |
| continue; |
| } |
| case OPC_CheckChild0Type: case OPC_CheckChild1Type: |
| case OPC_CheckChild2Type: case OPC_CheckChild3Type: |
| case OPC_CheckChild4Type: case OPC_CheckChild5Type: |
| case OPC_CheckChild6Type: case OPC_CheckChild7Type: |
| if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, |
| CurDAG->getDataLayout(), |
| Opcode - OPC_CheckChild0Type)) |
| break; |
| continue; |
| case OPC_CheckCondCode: |
| if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; |
| continue; |
| case OPC_CheckValueType: |
| if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, |
| CurDAG->getDataLayout())) |
| break; |
| continue; |
| case OPC_CheckInteger: |
| if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; |
| continue; |
| case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: |
| case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: |
| case OPC_CheckChild4Integer: |
| if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, |
| Opcode-OPC_CheckChild0Integer)) break; |
| continue; |
| case OPC_CheckAndImm: |
| if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; |
| continue; |
| case OPC_CheckOrImm: |
| if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; |
| continue; |
| |
| case OPC_CheckFoldableChainNode: { |
| assert(NodeStack.size() != 1 && "No parent node"); |
| // Verify that all intermediate nodes between the root and this one have |
| // a single use. |
| bool HasMultipleUses = false; |
| for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) |
| if (!NodeStack[i].getNode()->hasOneUse()) { |
| HasMultipleUses = true; |
| break; |
| } |
| if (HasMultipleUses) break; |
| |
| // Check to see that the target thinks this is profitable to fold and that |
| // we can fold it without inducing cycles in the graph. |
| if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), |
| NodeToMatch) || |
| !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), |
| NodeToMatch, OptLevel, |
| true/*We validate our own chains*/)) |
| break; |
| |
| continue; |
| } |
| case OPC_EmitInteger: { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| int64_t Val = MatcherTable[MatcherIndex++]; |
| if (Val & 128) |
| Val = GetVBR(Val, MatcherTable, MatcherIndex); |
| RecordedNodes.push_back(std::pair<SDValue, SDNode*>( |
| CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), |
| VT), nullptr)); |
| continue; |
| } |
| case OPC_EmitRegister: { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| unsigned RegNo = MatcherTable[MatcherIndex++]; |
| RecordedNodes.push_back(std::pair<SDValue, SDNode*>( |
| CurDAG->getRegister(RegNo, VT), nullptr)); |
| continue; |
| } |
| case OPC_EmitRegister2: { |
| // For targets w/ more than 256 register names, the register enum |
| // values are stored in two bytes in the matcher table (just like |
| // opcodes). |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| unsigned RegNo = MatcherTable[MatcherIndex++]; |
| RegNo |= MatcherTable[MatcherIndex++] << 8; |
| RecordedNodes.push_back(std::pair<SDValue, SDNode*>( |
| CurDAG->getRegister(RegNo, VT), nullptr)); |
| continue; |
| } |
| |
| case OPC_EmitConvertToTarget: { |
| // Convert from IMM/FPIMM to target version. |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); |
| SDValue Imm = RecordedNodes[RecNo].first; |
| |
| if (Imm->getOpcode() == ISD::Constant) { |
| const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); |
| Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), |
| Imm.getValueType()); |
| } else if (Imm->getOpcode() == ISD::ConstantFP) { |
| const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); |
| Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), |
| Imm.getValueType()); |
| } |
| |
| RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); |
| continue; |
| } |
| |
| case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 |
| case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 |
| case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 |
| // These are space-optimized forms of OPC_EmitMergeInputChains. |
| assert(!InputChain.getNode() && |
| "EmitMergeInputChains should be the first chain producing node"); |
| assert(ChainNodesMatched.empty() && |
| "Should only have one EmitMergeInputChains per match"); |
| |
| // Read all of the chained nodes. |
| unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; |
| assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); |
| ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); |
| |
| // FIXME: What if other value results of the node have uses not matched |
| // by this pattern? |
| if (ChainNodesMatched.back() != NodeToMatch && |
| !RecordedNodes[RecNo].first.hasOneUse()) { |
| ChainNodesMatched.clear(); |
| break; |
| } |
| |
| // Merge the input chains if they are not intra-pattern references. |
| InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); |
| |
| if (!InputChain.getNode()) |
| break; // Failed to merge. |
| continue; |
| } |
| |
| case OPC_EmitMergeInputChains: { |
| assert(!InputChain.getNode() && |
| "EmitMergeInputChains should be the first chain producing node"); |
| // This node gets a list of nodes we matched in the input that have |
| // chains. We want to token factor all of the input chains to these nodes |
| // together. However, if any of the input chains is actually one of the |
| // nodes matched in this pattern, then we have an intra-match reference. |
| // Ignore these because the newly token factored chain should not refer to |
| // the old nodes. |
| unsigned NumChains = MatcherTable[MatcherIndex++]; |
| assert(NumChains != 0 && "Can't TF zero chains"); |
| |
| assert(ChainNodesMatched.empty() && |
| "Should only have one EmitMergeInputChains per match"); |
| |
| // Read all of the chained nodes. |
| for (unsigned i = 0; i != NumChains; ++i) { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); |
| ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); |
| |
| // FIXME: What if other value results of the node have uses not matched |
| // by this pattern? |
| if (ChainNodesMatched.back() != NodeToMatch && |
| !RecordedNodes[RecNo].first.hasOneUse()) { |
| ChainNodesMatched.clear(); |
| break; |
| } |
| } |
| |
| // If the inner loop broke out, the match fails. |
| if (ChainNodesMatched.empty()) |
| break; |
| |
| // Merge the input chains if they are not intra-pattern references. |
| InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); |
| |
| if (!InputChain.getNode()) |
| break; // Failed to merge. |
| |
| continue; |
| } |
| |
| case OPC_EmitCopyToReg: { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); |
| unsigned DestPhysReg = MatcherTable[MatcherIndex++]; |
| |
| if (!InputChain.getNode()) |
| InputChain = CurDAG->getEntryNode(); |
| |
| InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), |
| DestPhysReg, RecordedNodes[RecNo].first, |
| InputGlue); |
| |
| InputGlue = InputChain.getValue(1); |
| continue; |
| } |
| |
| case OPC_EmitNodeXForm: { |
| unsigned XFormNo = MatcherTable[MatcherIndex++]; |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); |
| SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); |
| RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); |
| continue; |
| } |
| case OPC_Coverage: { |
| // This is emitted right before MorphNode/EmitNode. |
| // So it should be safe to assume that this node has been selected |
| unsigned index = MatcherTable[MatcherIndex++]; |
| index |= (MatcherTable[MatcherIndex++] << 8); |
| dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; |
| dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; |
| continue; |
| } |
| |
| case OPC_EmitNode: case OPC_MorphNodeTo: |
| case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: |
| case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { |
| uint16_t TargetOpc = MatcherTable[MatcherIndex++]; |
| TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; |
| unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; |
| // Get the result VT list. |
| unsigned NumVTs; |
| // If this is one of the compressed forms, get the number of VTs based |
| // on the Opcode. Otherwise read the next byte from the table. |
| if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) |
| NumVTs = Opcode - OPC_MorphNodeTo0; |
| else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) |
| NumVTs = Opcode - OPC_EmitNode0; |
| else |
| NumVTs = MatcherTable[MatcherIndex++]; |
| SmallVector<EVT, 4> VTs; |
| for (unsigned i = 0; i != NumVTs; ++i) { |
| MVT::SimpleValueType VT = |
| (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; |
| if (VT == MVT::iPTR) |
| VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; |
| VTs.push_back(VT); |
| } |
| |
| if (EmitNodeInfo & OPFL_Chain) |
| VTs.push_back(MVT::Other); |
| if (EmitNodeInfo & OPFL_GlueOutput) |
| VTs.push_back(MVT::Glue); |
| |
| // This is hot code, so optimize the two most common cases of 1 and 2 |
| // results. |
| SDVTList VTList; |
| if (VTs.size() == 1) |
| VTList = CurDAG->getVTList(VTs[0]); |
| else if (VTs.size() == 2) |
| VTList = CurDAG->getVTList(VTs[0], VTs[1]); |
| else |
| VTList = CurDAG->getVTList(VTs); |
| |
| // Get the operand list. |
| unsigned NumOps = MatcherTable[MatcherIndex++]; |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| unsigned RecNo = MatcherTable[MatcherIndex++]; |
| if (RecNo & 128) |
| RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); |
| |
| assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); |
| Ops.push_back(RecordedNodes[RecNo].first); |
| } |
| |
| // If there are variadic operands to add, handle them now. |
| if (EmitNodeInfo & OPFL_VariadicInfo) { |
| // Determine the start index to copy from. |
| unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); |
| FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; |
| assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && |
| "Invalid variadic node"); |
| // Copy all of the variadic operands, not including a potential glue |
| // input. |
| for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); |
| i != e; ++i) { |
| SDValue V = NodeToMatch->getOperand(i); |
| if (V.getValueType() == MVT::Glue) break; |
| Ops.push_back(V); |
| } |
| } |
| |
| // If this has chain/glue inputs, add them. |
| if (EmitNodeInfo & OPFL_Chain) |
| Ops.push_back(InputChain); |
| if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) |
| Ops.push_back(InputGlue); |
| |
| // Create the node. |
| MachineSDNode *Res = nullptr; |
| bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || |
| (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); |
| if (!IsMorphNodeTo) { |
| // If this is a normal EmitNode command, just create the new node and |
| // add the results to the RecordedNodes list. |
| Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), |
| VTList, Ops); |
| |
| // Add all the non-glue/non-chain results to the RecordedNodes list. |
| for (unsigned i = 0, e = VTs.size(); i != e; ++i) { |
| if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; |
| RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), |
| nullptr)); |
| } |
| } else { |
| assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && |
| "NodeToMatch was removed partway through selection"); |
| SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, |
| SDNode *E) { |
| CurDAG->salvageDebugInfo(*N); |
| auto &Chain = ChainNodesMatched; |
| assert((!E || !is_contained(Chain, N)) && |
| "Chain node replaced during MorphNode"); |
| Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end()); |
| }); |
| Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, |
| Ops, EmitNodeInfo)); |
| } |
| |
| // If the node had chain/glue results, update our notion of the current |
| // chain and glue. |
| if (EmitNodeInfo & OPFL_GlueOutput) { |
| InputGlue = SDValue(Res, VTs.size()-1); |
| if (EmitNodeInfo & OPFL_Chain) |
| InputChain = SDValue(Res, VTs.size()-2); |
| } else if (EmitNodeInfo & OPFL_Chain) |
| InputChain = SDValue(Res, VTs.size()-1); |
| |
| // If the OPFL_MemRefs glue is set on this node, slap all of the |
| // accumulated memrefs onto it. |
| // |
| // FIXME: This is vastly incorrect for patterns with multiple outputs |
| // instructions that access memory and for ComplexPatterns that match |
| // loads. |
| if (EmitNodeInfo & OPFL_MemRefs) { |
| // Only attach load or store memory operands if the generated |
| // instruction may load or store. |
| const MCInstrDesc &MCID = TII->get(TargetOpc); |
| bool mayLoad = MCID.mayLoad(); |
| bool mayStore = MCID.mayStore(); |
| |
| unsigned NumMemRefs = 0; |
| for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = |
| MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { |
| if ((*I)->isLoad()) { |
| if (mayLoad) |
| ++NumMemRefs; |
| } else if ((*I)->isStore()) { |
| if (mayStore) |
| ++NumMemRefs; |
| } else { |
| ++NumMemRefs; |
| } |
| } |
| |
| MachineSDNode::mmo_iterator MemRefs = |
| MF->allocateMemRefsArray(NumMemRefs); |
| |
| MachineSDNode::mmo_iterator MemRefsPos = MemRefs; |
| for (SmallVectorImpl<MachineMemOperand *>::const_iterator I = |
| MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { |
| if ((*I)->isLoad()) { |
| if (mayLoad) |
| *MemRefsPos++ = *I; |
| } else if ((*I)->isStore()) { |
| if (mayStore) |
| *MemRefsPos++ = *I; |
| } else { |
| *MemRefsPos++ = *I; |
| } |
| } |
| |
| Res->setMemRefs(MemRefs, MemRefs + NumMemRefs); |
| } |
| |
| LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() |
| << " Dropping mem operands\n"; |
| dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") |
| << " node: "; |
| Res->dump(CurDAG);); |
| |
| // If this was a MorphNodeTo then we're completely done! |
| if (IsMorphNodeTo) { |
| // Update chain uses. |
| UpdateChains(Res, InputChain, ChainNodesMatched, true); |
| return; |
| } |
| continue; |
| } |
| |
| case OPC_CompleteMatch: { |
| // The match has been completed, and any new nodes (if any) have been |
| // created. Patch up references to the matched dag to use the newly |
| // created nodes. |
| unsigned NumResults = MatcherTable[MatcherIndex++]; |
| |
| for (unsigned i = 0; i != NumResults; ++i) { |
| unsigned ResSlot = MatcherTable[MatcherIndex++]; |
| if (ResSlot & 128) |
| ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); |
| |
| assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); |
| SDValue Res = RecordedNodes[ResSlot].first; |
| |
| assert(i < NodeToMatch->getNumValues() && |
| NodeToMatch->getValueType(i) != MVT::Other && |
| NodeToMatch->getValueType(i) != MVT::Glue && |
| "Invalid number of results to complete!"); |
| assert((NodeToMatch->getValueType(i) == Res.getValueType() || |
| NodeToMatch->getValueType(i) == MVT::iPTR || |
| Res.getValueType() == MVT::iPTR || |
| NodeToMatch->getValueType(i).getSizeInBits() == |
| Res.getValueSizeInBits()) && |
| "invalid replacement"); |
| ReplaceUses(SDValue(NodeToMatch, i), Res); |
| } |
| |
| // Update chain uses. |
| UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); |
| |
| // If the root node defines glue, we need to update it to the glue result. |
| // TODO: This never happens in our tests and I think it can be removed / |
| // replaced with an assert, but if we do it this the way the change is |
| // NFC. |
| if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == |
| MVT::Glue && |
| InputGlue.getNode()) |
| ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), |
| InputGlue); |
| |
| assert(NodeToMatch->use_empty() && |
| "Didn't replace all uses of the node?"); |
| CurDAG->RemoveDeadNode(NodeToMatch); |
| |
| return; |
| } |
| } |
| |
| // If the code reached this point, then the match failed. See if there is |
| // another child to try in the current 'Scope', otherwise pop it until we |
| // find a case to check. |
| LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex |
| << "\n"); |
| ++NumDAGIselRetries; |
| while (true) { |
| if (MatchScopes.empty()) { |
| CannotYetSelect(NodeToMatch); |
| return; |
| } |
| |
| // Restore the interpreter state back to the point where the scope was |
| // formed. |
| MatchScope &LastScope = MatchScopes.back(); |
| RecordedNodes.resize(LastScope.NumRecordedNodes); |
| NodeStack.clear(); |
| NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); |
| N = NodeStack.back(); |
| |
| if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) |
| MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); |
| MatcherIndex = LastScope.FailIndex; |
| |
| LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); |
| |
| InputChain = LastScope.InputChain; |
| InputGlue = LastScope.InputGlue; |
| if (!LastScope.HasChainNodesMatched) |
| ChainNodesMatched.clear(); |
| |
| // Check to see what the offset is at the new MatcherIndex. If it is zero |
| // we have reached the end of this scope, otherwise we have another child |
| // in the current scope to try. |
| unsigned NumToSkip = MatcherTable[MatcherIndex++]; |
| if (NumToSkip & 128) |
| NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); |
| |
| // If we have another child in this scope to match, update FailIndex and |
| // try it. |
| if (NumToSkip != 0) { |
| LastScope.FailIndex = MatcherIndex+NumToSkip; |
| break; |
| } |
| |
| // End of this scope, pop it and try the next child in the containing |
| // scope. |
| MatchScopes.pop_back(); |
| } |
| } |
| } |
| |
| bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { |
| assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); |
| auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!C) |
| return false; |
| |
| // Detect when "or" is used to add an offset to a stack object. |
| if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| unsigned A = MFI.getObjectAlignment(FN->getIndex()); |
| assert(isPowerOf2_32(A) && "Unexpected alignment"); |
| int32_t Off = C->getSExtValue(); |
| // If the alleged offset fits in the zero bits guaranteed by |
| // the alignment, then this or is really an add. |
| return (Off >= 0) && (((A - 1) & Off) == unsigned(Off)); |
| } |
| return false; |
| } |
| |
| void SelectionDAGISel::CannotYetSelect(SDNode *N) { |
| std::string msg; |
| raw_string_ostream Msg(msg); |
| Msg << "Cannot select: "; |
| |
| if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && |
| N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && |
| N->getOpcode() != ISD::INTRINSIC_VOID) { |
| N->printrFull(Msg, CurDAG); |
| Msg << "\nIn function: " << MF->getName(); |
| } else { |
| bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; |
| unsigned iid = |
| cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); |
| if (iid < Intrinsic::num_intrinsics) |
| Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None); |
| else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) |
| Msg << "target intrinsic %" << TII->getName(iid); |
| else |
| Msg << "unknown intrinsic #" << iid; |
| } |
| report_fatal_error(Msg.str()); |
| } |
| |
| char SelectionDAGISel::ID = 0; |