//===- Miscompilation.cpp - Debug program miscompilations -----------------===// | |
// | |
// The LLVM Compiler Infrastructure | |
// | |
// This file is distributed under the University of Illinois Open Source | |
// License. See LICENSE.TXT for details. | |
// | |
//===----------------------------------------------------------------------===// | |
// | |
// This file implements optimizer and code generation miscompilation debugging | |
// support. | |
// | |
//===----------------------------------------------------------------------===// | |
#include "BugDriver.h" | |
#include "ListReducer.h" | |
#include "ToolRunner.h" | |
#include "llvm/Constants.h" | |
#include "llvm/DerivedTypes.h" | |
#include "llvm/Instructions.h" | |
#include "llvm/Linker.h" | |
#include "llvm/Module.h" | |
#include "llvm/Pass.h" | |
#include "llvm/Analysis/Verifier.h" | |
#include "llvm/Transforms/Utils/Cloning.h" | |
#include "llvm/Support/CommandLine.h" | |
#include "llvm/Support/FileUtilities.h" | |
#include "llvm/Config/config.h" // for HAVE_LINK_R | |
using namespace llvm; | |
namespace llvm { | |
extern cl::opt<std::string> OutputPrefix; | |
extern cl::list<std::string> InputArgv; | |
} | |
namespace { | |
static llvm::cl::opt<bool> | |
DisableLoopExtraction("disable-loop-extraction", | |
cl::desc("Don't extract loops when searching for miscompilations"), | |
cl::init(false)); | |
static llvm::cl::opt<bool> | |
DisableBlockExtraction("disable-block-extraction", | |
cl::desc("Don't extract blocks when searching for miscompilations"), | |
cl::init(false)); | |
class ReduceMiscompilingPasses : public ListReducer<std::string> { | |
BugDriver &BD; | |
public: | |
ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {} | |
virtual TestResult doTest(std::vector<std::string> &Prefix, | |
std::vector<std::string> &Suffix, | |
std::string &Error); | |
}; | |
} | |
/// TestResult - After passes have been split into a test group and a control | |
/// group, see if they still break the program. | |
/// | |
ReduceMiscompilingPasses::TestResult | |
ReduceMiscompilingPasses::doTest(std::vector<std::string> &Prefix, | |
std::vector<std::string> &Suffix, | |
std::string &Error) { | |
// First, run the program with just the Suffix passes. If it is still broken | |
// with JUST the kept passes, discard the prefix passes. | |
outs() << "Checking to see if '" << getPassesString(Suffix) | |
<< "' compiles correctly: "; | |
std::string BitcodeResult; | |
if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false/*delete*/, | |
true/*quiet*/)) { | |
errs() << " Error running this sequence of passes" | |
<< " on the input program!\n"; | |
BD.setPassesToRun(Suffix); | |
BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false); | |
exit(BD.debugOptimizerCrash()); | |
} | |
// Check to see if the finished program matches the reference output... | |
bool Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", | |
true /*delete bitcode*/, &Error); | |
if (!Error.empty()) | |
return InternalError; | |
if (Diff) { | |
outs() << " nope.\n"; | |
if (Suffix.empty()) { | |
errs() << BD.getToolName() << ": I'm confused: the test fails when " | |
<< "no passes are run, nondeterministic program?\n"; | |
exit(1); | |
} | |
return KeepSuffix; // Miscompilation detected! | |
} | |
outs() << " yup.\n"; // No miscompilation! | |
if (Prefix.empty()) return NoFailure; | |
// Next, see if the program is broken if we run the "prefix" passes first, | |
// then separately run the "kept" passes. | |
outs() << "Checking to see if '" << getPassesString(Prefix) | |
<< "' compiles correctly: "; | |
// If it is not broken with the kept passes, it's possible that the prefix | |
// passes must be run before the kept passes to break it. If the program | |
// WORKS after the prefix passes, but then fails if running the prefix AND | |
// kept passes, we can update our bitcode file to include the result of the | |
// prefix passes, then discard the prefix passes. | |
// | |
if (BD.runPasses(BD.getProgram(), Prefix, BitcodeResult, false/*delete*/, | |
true/*quiet*/)) { | |
errs() << " Error running this sequence of passes" | |
<< " on the input program!\n"; | |
BD.setPassesToRun(Prefix); | |
BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false); | |
exit(BD.debugOptimizerCrash()); | |
} | |
// If the prefix maintains the predicate by itself, only keep the prefix! | |
Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", false, &Error); | |
if (!Error.empty()) | |
return InternalError; | |
if (Diff) { | |
outs() << " nope.\n"; | |
sys::Path(BitcodeResult).eraseFromDisk(); | |
return KeepPrefix; | |
} | |
outs() << " yup.\n"; // No miscompilation! | |
// Ok, so now we know that the prefix passes work, try running the suffix | |
// passes on the result of the prefix passes. | |
// | |
OwningPtr<Module> PrefixOutput(ParseInputFile(BitcodeResult, | |
BD.getContext())); | |
if (PrefixOutput == 0) { | |
errs() << BD.getToolName() << ": Error reading bitcode file '" | |
<< BitcodeResult << "'!\n"; | |
exit(1); | |
} | |
sys::Path(BitcodeResult).eraseFromDisk(); // No longer need the file on disk | |
// Don't check if there are no passes in the suffix. | |
if (Suffix.empty()) | |
return NoFailure; | |
outs() << "Checking to see if '" << getPassesString(Suffix) | |
<< "' passes compile correctly after the '" | |
<< getPassesString(Prefix) << "' passes: "; | |
OwningPtr<Module> OriginalInput(BD.swapProgramIn(PrefixOutput.take())); | |
if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false/*delete*/, | |
true/*quiet*/)) { | |
errs() << " Error running this sequence of passes" | |
<< " on the input program!\n"; | |
BD.setPassesToRun(Suffix); | |
BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false); | |
exit(BD.debugOptimizerCrash()); | |
} | |
// Run the result... | |
Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", | |
true /*delete bitcode*/, &Error); | |
if (!Error.empty()) | |
return InternalError; | |
if (Diff) { | |
outs() << " nope.\n"; | |
return KeepSuffix; | |
} | |
// Otherwise, we must not be running the bad pass anymore. | |
outs() << " yup.\n"; // No miscompilation! | |
// Restore orig program & free test. | |
delete BD.swapProgramIn(OriginalInput.take()); | |
return NoFailure; | |
} | |
namespace { | |
class ReduceMiscompilingFunctions : public ListReducer<Function*> { | |
BugDriver &BD; | |
bool (*TestFn)(BugDriver &, Module *, Module *, std::string &); | |
public: | |
ReduceMiscompilingFunctions(BugDriver &bd, | |
bool (*F)(BugDriver &, Module *, Module *, | |
std::string &)) | |
: BD(bd), TestFn(F) {} | |
virtual TestResult doTest(std::vector<Function*> &Prefix, | |
std::vector<Function*> &Suffix, | |
std::string &Error) { | |
if (!Suffix.empty()) { | |
bool Ret = TestFuncs(Suffix, Error); | |
if (!Error.empty()) | |
return InternalError; | |
if (Ret) | |
return KeepSuffix; | |
} | |
if (!Prefix.empty()) { | |
bool Ret = TestFuncs(Prefix, Error); | |
if (!Error.empty()) | |
return InternalError; | |
if (Ret) | |
return KeepPrefix; | |
} | |
return NoFailure; | |
} | |
bool TestFuncs(const std::vector<Function*> &Prefix, std::string &Error); | |
}; | |
} | |
/// TestMergedProgram - Given two modules, link them together and run the | |
/// program, checking to see if the program matches the diff. If there is | |
/// an error, return NULL. If not, return the merged module. The Broken argument | |
/// will be set to true if the output is different. If the DeleteInputs | |
/// argument is set to true then this function deletes both input | |
/// modules before it returns. | |
/// | |
static Module *TestMergedProgram(const BugDriver &BD, Module *M1, Module *M2, | |
bool DeleteInputs, std::string &Error, | |
bool &Broken) { | |
// Link the two portions of the program back to together. | |
std::string ErrorMsg; | |
if (!DeleteInputs) { | |
M1 = CloneModule(M1); | |
M2 = CloneModule(M2); | |
} | |
if (Linker::LinkModules(M1, M2, Linker::DestroySource, &ErrorMsg)) { | |
errs() << BD.getToolName() << ": Error linking modules together:" | |
<< ErrorMsg << '\n'; | |
exit(1); | |
} | |
delete M2; // We are done with this module. | |
// Execute the program. | |
Broken = BD.diffProgram(M1, "", "", false, &Error); | |
if (!Error.empty()) { | |
// Delete the linked module | |
delete M1; | |
return NULL; | |
} | |
return M1; | |
} | |
/// TestFuncs - split functions in a Module into two groups: those that are | |
/// under consideration for miscompilation vs. those that are not, and test | |
/// accordingly. Each group of functions becomes a separate Module. | |
/// | |
bool ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function*> &Funcs, | |
std::string &Error) { | |
// Test to see if the function is misoptimized if we ONLY run it on the | |
// functions listed in Funcs. | |
outs() << "Checking to see if the program is misoptimized when " | |
<< (Funcs.size()==1 ? "this function is" : "these functions are") | |
<< " run through the pass" | |
<< (BD.getPassesToRun().size() == 1 ? "" : "es") << ":"; | |
PrintFunctionList(Funcs); | |
outs() << '\n'; | |
// Create a clone for two reasons: | |
// * If the optimization passes delete any function, the deleted function | |
// will be in the clone and Funcs will still point to valid memory | |
// * If the optimization passes use interprocedural information to break | |
// a function, we want to continue with the original function. Otherwise | |
// we can conclude that a function triggers the bug when in fact one | |
// needs a larger set of original functions to do so. | |
ValueToValueMapTy VMap; | |
Module *Clone = CloneModule(BD.getProgram(), VMap); | |
Module *Orig = BD.swapProgramIn(Clone); | |
std::vector<Function*> FuncsOnClone; | |
for (unsigned i = 0, e = Funcs.size(); i != e; ++i) { | |
Function *F = cast<Function>(VMap[Funcs[i]]); | |
FuncsOnClone.push_back(F); | |
} | |
// Split the module into the two halves of the program we want. | |
VMap.clear(); | |
Module *ToNotOptimize = CloneModule(BD.getProgram(), VMap); | |
Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, FuncsOnClone, | |
VMap); | |
// Run the predicate, note that the predicate will delete both input modules. | |
bool Broken = TestFn(BD, ToOptimize, ToNotOptimize, Error); | |
delete BD.swapProgramIn(Orig); | |
return Broken; | |
} | |
/// DisambiguateGlobalSymbols - Give anonymous global values names. | |
/// | |
static void DisambiguateGlobalSymbols(Module *M) { | |
for (Module::global_iterator I = M->global_begin(), E = M->global_end(); | |
I != E; ++I) | |
if (!I->hasName()) | |
I->setName("anon_global"); | |
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) | |
if (!I->hasName()) | |
I->setName("anon_fn"); | |
} | |
/// ExtractLoops - Given a reduced list of functions that still exposed the bug, | |
/// check to see if we can extract the loops in the region without obscuring the | |
/// bug. If so, it reduces the amount of code identified. | |
/// | |
static bool ExtractLoops(BugDriver &BD, | |
bool (*TestFn)(BugDriver &, Module *, Module *, | |
std::string &), | |
std::vector<Function*> &MiscompiledFunctions, | |
std::string &Error) { | |
bool MadeChange = false; | |
while (1) { | |
if (BugpointIsInterrupted) return MadeChange; | |
ValueToValueMapTy VMap; | |
Module *ToNotOptimize = CloneModule(BD.getProgram(), VMap); | |
Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, | |
MiscompiledFunctions, | |
VMap); | |
Module *ToOptimizeLoopExtracted = BD.ExtractLoop(ToOptimize); | |
if (!ToOptimizeLoopExtracted) { | |
// If the loop extractor crashed or if there were no extractible loops, | |
// then this chapter of our odyssey is over with. | |
delete ToNotOptimize; | |
delete ToOptimize; | |
return MadeChange; | |
} | |
errs() << "Extracted a loop from the breaking portion of the program.\n"; | |
// Bugpoint is intentionally not very trusting of LLVM transformations. In | |
// particular, we're not going to assume that the loop extractor works, so | |
// we're going to test the newly loop extracted program to make sure nothing | |
// has broken. If something broke, then we'll inform the user and stop | |
// extraction. | |
AbstractInterpreter *AI = BD.switchToSafeInterpreter(); | |
bool Failure; | |
Module *New = TestMergedProgram(BD, ToOptimizeLoopExtracted, ToNotOptimize, | |
false, Error, Failure); | |
if (!New) | |
return false; | |
// Delete the original and set the new program. | |
delete BD.swapProgramIn(New); | |
if (Failure) { | |
BD.switchToInterpreter(AI); | |
// Merged program doesn't work anymore! | |
errs() << " *** ERROR: Loop extraction broke the program. :(" | |
<< " Please report a bug!\n"; | |
errs() << " Continuing on with un-loop-extracted version.\n"; | |
BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-tno.bc", | |
ToNotOptimize); | |
BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to.bc", | |
ToOptimize); | |
BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to-le.bc", | |
ToOptimizeLoopExtracted); | |
errs() << "Please submit the " | |
<< OutputPrefix << "-loop-extract-fail-*.bc files.\n"; | |
delete ToOptimize; | |
delete ToNotOptimize; | |
delete ToOptimizeLoopExtracted; | |
return MadeChange; | |
} | |
delete ToOptimize; | |
BD.switchToInterpreter(AI); | |
outs() << " Testing after loop extraction:\n"; | |
// Clone modules, the tester function will free them. | |
Module *TOLEBackup = CloneModule(ToOptimizeLoopExtracted); | |
Module *TNOBackup = CloneModule(ToNotOptimize); | |
Failure = TestFn(BD, ToOptimizeLoopExtracted, ToNotOptimize, Error); | |
if (!Error.empty()) | |
return false; | |
if (!Failure) { | |
outs() << "*** Loop extraction masked the problem. Undoing.\n"; | |
// If the program is not still broken, then loop extraction did something | |
// that masked the error. Stop loop extraction now. | |
delete TOLEBackup; | |
delete TNOBackup; | |
return MadeChange; | |
} | |
ToOptimizeLoopExtracted = TOLEBackup; | |
ToNotOptimize = TNOBackup; | |
outs() << "*** Loop extraction successful!\n"; | |
std::vector<std::pair<std::string, FunctionType*> > MisCompFunctions; | |
for (Module::iterator I = ToOptimizeLoopExtracted->begin(), | |
E = ToOptimizeLoopExtracted->end(); I != E; ++I) | |
if (!I->isDeclaration()) | |
MisCompFunctions.push_back(std::make_pair(I->getName(), | |
I->getFunctionType())); | |
// Okay, great! Now we know that we extracted a loop and that loop | |
// extraction both didn't break the program, and didn't mask the problem. | |
// Replace the current program with the loop extracted version, and try to | |
// extract another loop. | |
std::string ErrorMsg; | |
if (Linker::LinkModules(ToNotOptimize, ToOptimizeLoopExtracted, | |
Linker::DestroySource, &ErrorMsg)){ | |
errs() << BD.getToolName() << ": Error linking modules together:" | |
<< ErrorMsg << '\n'; | |
exit(1); | |
} | |
delete ToOptimizeLoopExtracted; | |
// All of the Function*'s in the MiscompiledFunctions list are in the old | |
// module. Update this list to include all of the functions in the | |
// optimized and loop extracted module. | |
MiscompiledFunctions.clear(); | |
for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) { | |
Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first); | |
assert(NewF && "Function not found??"); | |
MiscompiledFunctions.push_back(NewF); | |
} | |
BD.setNewProgram(ToNotOptimize); | |
MadeChange = true; | |
} | |
} | |
namespace { | |
class ReduceMiscompiledBlocks : public ListReducer<BasicBlock*> { | |
BugDriver &BD; | |
bool (*TestFn)(BugDriver &, Module *, Module *, std::string &); | |
std::vector<Function*> FunctionsBeingTested; | |
public: | |
ReduceMiscompiledBlocks(BugDriver &bd, | |
bool (*F)(BugDriver &, Module *, Module *, | |
std::string &), | |
const std::vector<Function*> &Fns) | |
: BD(bd), TestFn(F), FunctionsBeingTested(Fns) {} | |
virtual TestResult doTest(std::vector<BasicBlock*> &Prefix, | |
std::vector<BasicBlock*> &Suffix, | |
std::string &Error) { | |
if (!Suffix.empty()) { | |
bool Ret = TestFuncs(Suffix, Error); | |
if (!Error.empty()) | |
return InternalError; | |
if (Ret) | |
return KeepSuffix; | |
} | |
if (!Prefix.empty()) { | |
bool Ret = TestFuncs(Prefix, Error); | |
if (!Error.empty()) | |
return InternalError; | |
if (Ret) | |
return KeepPrefix; | |
} | |
return NoFailure; | |
} | |
bool TestFuncs(const std::vector<BasicBlock*> &BBs, std::string &Error); | |
}; | |
} | |
/// TestFuncs - Extract all blocks for the miscompiled functions except for the | |
/// specified blocks. If the problem still exists, return true. | |
/// | |
bool ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock*> &BBs, | |
std::string &Error) { | |
// Test to see if the function is misoptimized if we ONLY run it on the | |
// functions listed in Funcs. | |
outs() << "Checking to see if the program is misoptimized when all "; | |
if (!BBs.empty()) { | |
outs() << "but these " << BBs.size() << " blocks are extracted: "; | |
for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i) | |
outs() << BBs[i]->getName() << " "; | |
if (BBs.size() > 10) outs() << "..."; | |
} else { | |
outs() << "blocks are extracted."; | |
} | |
outs() << '\n'; | |
// Split the module into the two halves of the program we want. | |
ValueToValueMapTy VMap; | |
Module *Clone = CloneModule(BD.getProgram(), VMap); | |
Module *Orig = BD.swapProgramIn(Clone); | |
std::vector<Function*> FuncsOnClone; | |
std::vector<BasicBlock*> BBsOnClone; | |
for (unsigned i = 0, e = FunctionsBeingTested.size(); i != e; ++i) { | |
Function *F = cast<Function>(VMap[FunctionsBeingTested[i]]); | |
FuncsOnClone.push_back(F); | |
} | |
for (unsigned i = 0, e = BBs.size(); i != e; ++i) { | |
BasicBlock *BB = cast<BasicBlock>(VMap[BBs[i]]); | |
BBsOnClone.push_back(BB); | |
} | |
VMap.clear(); | |
Module *ToNotOptimize = CloneModule(BD.getProgram(), VMap); | |
Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, | |
FuncsOnClone, | |
VMap); | |
// Try the extraction. If it doesn't work, then the block extractor crashed | |
// or something, in which case bugpoint can't chase down this possibility. | |
if (Module *New = BD.ExtractMappedBlocksFromModule(BBsOnClone, ToOptimize)) { | |
delete ToOptimize; | |
// Run the predicate, | |
// note that the predicate will delete both input modules. | |
bool Ret = TestFn(BD, New, ToNotOptimize, Error); | |
delete BD.swapProgramIn(Orig); | |
return Ret; | |
} | |
delete BD.swapProgramIn(Orig); | |
delete ToOptimize; | |
delete ToNotOptimize; | |
return false; | |
} | |
/// ExtractBlocks - Given a reduced list of functions that still expose the bug, | |
/// extract as many basic blocks from the region as possible without obscuring | |
/// the bug. | |
/// | |
static bool ExtractBlocks(BugDriver &BD, | |
bool (*TestFn)(BugDriver &, Module *, Module *, | |
std::string &), | |
std::vector<Function*> &MiscompiledFunctions, | |
std::string &Error) { | |
if (BugpointIsInterrupted) return false; | |
std::vector<BasicBlock*> Blocks; | |
for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i) | |
for (Function::iterator I = MiscompiledFunctions[i]->begin(), | |
E = MiscompiledFunctions[i]->end(); I != E; ++I) | |
Blocks.push_back(I); | |
// Use the list reducer to identify blocks that can be extracted without | |
// obscuring the bug. The Blocks list will end up containing blocks that must | |
// be retained from the original program. | |
unsigned OldSize = Blocks.size(); | |
// Check to see if all blocks are extractible first. | |
bool Ret = ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions) | |
.TestFuncs(std::vector<BasicBlock*>(), Error); | |
if (!Error.empty()) | |
return false; | |
if (Ret) { | |
Blocks.clear(); | |
} else { | |
ReduceMiscompiledBlocks(BD, TestFn, | |
MiscompiledFunctions).reduceList(Blocks, Error); | |
if (!Error.empty()) | |
return false; | |
if (Blocks.size() == OldSize) | |
return false; | |
} | |
ValueToValueMapTy VMap; | |
Module *ProgClone = CloneModule(BD.getProgram(), VMap); | |
Module *ToExtract = SplitFunctionsOutOfModule(ProgClone, | |
MiscompiledFunctions, | |
VMap); | |
Module *Extracted = BD.ExtractMappedBlocksFromModule(Blocks, ToExtract); | |
if (Extracted == 0) { | |
// Weird, extraction should have worked. | |
errs() << "Nondeterministic problem extracting blocks??\n"; | |
delete ProgClone; | |
delete ToExtract; | |
return false; | |
} | |
// Otherwise, block extraction succeeded. Link the two program fragments back | |
// together. | |
delete ToExtract; | |
std::vector<std::pair<std::string, FunctionType*> > MisCompFunctions; | |
for (Module::iterator I = Extracted->begin(), E = Extracted->end(); | |
I != E; ++I) | |
if (!I->isDeclaration()) | |
MisCompFunctions.push_back(std::make_pair(I->getName(), | |
I->getFunctionType())); | |
std::string ErrorMsg; | |
if (Linker::LinkModules(ProgClone, Extracted, Linker::DestroySource, | |
&ErrorMsg)) { | |
errs() << BD.getToolName() << ": Error linking modules together:" | |
<< ErrorMsg << '\n'; | |
exit(1); | |
} | |
delete Extracted; | |
// Set the new program and delete the old one. | |
BD.setNewProgram(ProgClone); | |
// Update the list of miscompiled functions. | |
MiscompiledFunctions.clear(); | |
for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) { | |
Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first); | |
assert(NewF && "Function not found??"); | |
MiscompiledFunctions.push_back(NewF); | |
} | |
return true; | |
} | |
/// DebugAMiscompilation - This is a generic driver to narrow down | |
/// miscompilations, either in an optimization or a code generator. | |
/// | |
static std::vector<Function*> | |
DebugAMiscompilation(BugDriver &BD, | |
bool (*TestFn)(BugDriver &, Module *, Module *, | |
std::string &), | |
std::string &Error) { | |
// Okay, now that we have reduced the list of passes which are causing the | |
// failure, see if we can pin down which functions are being | |
// miscompiled... first build a list of all of the non-external functions in | |
// the program. | |
std::vector<Function*> MiscompiledFunctions; | |
Module *Prog = BD.getProgram(); | |
for (Module::iterator I = Prog->begin(), E = Prog->end(); I != E; ++I) | |
if (!I->isDeclaration()) | |
MiscompiledFunctions.push_back(I); | |
// Do the reduction... | |
if (!BugpointIsInterrupted) | |
ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions, | |
Error); | |
if (!Error.empty()) { | |
errs() << "\n***Cannot reduce functions: "; | |
return MiscompiledFunctions; | |
} | |
outs() << "\n*** The following function" | |
<< (MiscompiledFunctions.size() == 1 ? " is" : "s are") | |
<< " being miscompiled: "; | |
PrintFunctionList(MiscompiledFunctions); | |
outs() << '\n'; | |
// See if we can rip any loops out of the miscompiled functions and still | |
// trigger the problem. | |
if (!BugpointIsInterrupted && !DisableLoopExtraction) { | |
bool Ret = ExtractLoops(BD, TestFn, MiscompiledFunctions, Error); | |
if (!Error.empty()) | |
return MiscompiledFunctions; | |
if (Ret) { | |
// Okay, we extracted some loops and the problem still appears. See if | |
// we can eliminate some of the created functions from being candidates. | |
DisambiguateGlobalSymbols(BD.getProgram()); | |
// Do the reduction... | |
if (!BugpointIsInterrupted) | |
ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions, | |
Error); | |
if (!Error.empty()) | |
return MiscompiledFunctions; | |
outs() << "\n*** The following function" | |
<< (MiscompiledFunctions.size() == 1 ? " is" : "s are") | |
<< " being miscompiled: "; | |
PrintFunctionList(MiscompiledFunctions); | |
outs() << '\n'; | |
} | |
} | |
if (!BugpointIsInterrupted && !DisableBlockExtraction) { | |
bool Ret = ExtractBlocks(BD, TestFn, MiscompiledFunctions, Error); | |
if (!Error.empty()) | |
return MiscompiledFunctions; | |
if (Ret) { | |
// Okay, we extracted some blocks and the problem still appears. See if | |
// we can eliminate some of the created functions from being candidates. | |
DisambiguateGlobalSymbols(BD.getProgram()); | |
// Do the reduction... | |
ReduceMiscompilingFunctions(BD, TestFn).reduceList(MiscompiledFunctions, | |
Error); | |
if (!Error.empty()) | |
return MiscompiledFunctions; | |
outs() << "\n*** The following function" | |
<< (MiscompiledFunctions.size() == 1 ? " is" : "s are") | |
<< " being miscompiled: "; | |
PrintFunctionList(MiscompiledFunctions); | |
outs() << '\n'; | |
} | |
} | |
return MiscompiledFunctions; | |
} | |
/// TestOptimizer - This is the predicate function used to check to see if the | |
/// "Test" portion of the program is misoptimized. If so, return true. In any | |
/// case, both module arguments are deleted. | |
/// | |
static bool TestOptimizer(BugDriver &BD, Module *Test, Module *Safe, | |
std::string &Error) { | |
// Run the optimization passes on ToOptimize, producing a transformed version | |
// of the functions being tested. | |
outs() << " Optimizing functions being tested: "; | |
Module *Optimized = BD.runPassesOn(Test, BD.getPassesToRun(), | |
/*AutoDebugCrashes*/true); | |
outs() << "done.\n"; | |
delete Test; | |
outs() << " Checking to see if the merged program executes correctly: "; | |
bool Broken; | |
Module *New = TestMergedProgram(BD, Optimized, Safe, true, Error, Broken); | |
if (New) { | |
outs() << (Broken ? " nope.\n" : " yup.\n"); | |
// Delete the original and set the new program. | |
delete BD.swapProgramIn(New); | |
} | |
return Broken; | |
} | |
/// debugMiscompilation - This method is used when the passes selected are not | |
/// crashing, but the generated output is semantically different from the | |
/// input. | |
/// | |
void BugDriver::debugMiscompilation(std::string *Error) { | |
// Make sure something was miscompiled... | |
if (!BugpointIsInterrupted) | |
if (!ReduceMiscompilingPasses(*this).reduceList(PassesToRun, *Error)) { | |
if (Error->empty()) | |
errs() << "*** Optimized program matches reference output! No problem" | |
<< " detected...\nbugpoint can't help you with your problem!\n"; | |
return; | |
} | |
outs() << "\n*** Found miscompiling pass" | |
<< (getPassesToRun().size() == 1 ? "" : "es") << ": " | |
<< getPassesString(getPassesToRun()) << '\n'; | |
EmitProgressBitcode(Program, "passinput"); | |
std::vector<Function *> MiscompiledFunctions = | |
DebugAMiscompilation(*this, TestOptimizer, *Error); | |
if (!Error->empty()) | |
return; | |
// Output a bunch of bitcode files for the user... | |
outs() << "Outputting reduced bitcode files which expose the problem:\n"; | |
ValueToValueMapTy VMap; | |
Module *ToNotOptimize = CloneModule(getProgram(), VMap); | |
Module *ToOptimize = SplitFunctionsOutOfModule(ToNotOptimize, | |
MiscompiledFunctions, | |
VMap); | |
outs() << " Non-optimized portion: "; | |
EmitProgressBitcode(ToNotOptimize, "tonotoptimize", true); | |
delete ToNotOptimize; // Delete hacked module. | |
outs() << " Portion that is input to optimizer: "; | |
EmitProgressBitcode(ToOptimize, "tooptimize"); | |
delete ToOptimize; // Delete hacked module. | |
return; | |
} | |
/// CleanupAndPrepareModules - Get the specified modules ready for code | |
/// generator testing. | |
/// | |
static void CleanupAndPrepareModules(BugDriver &BD, Module *&Test, | |
Module *Safe) { | |
// Clean up the modules, removing extra cruft that we don't need anymore... | |
Test = BD.performFinalCleanups(Test); | |
// If we are executing the JIT, we have several nasty issues to take care of. | |
if (!BD.isExecutingJIT()) return; | |
// First, if the main function is in the Safe module, we must add a stub to | |
// the Test module to call into it. Thus, we create a new function `main' | |
// which just calls the old one. | |
if (Function *oldMain = Safe->getFunction("main")) | |
if (!oldMain->isDeclaration()) { | |
// Rename it | |
oldMain->setName("llvm_bugpoint_old_main"); | |
// Create a NEW `main' function with same type in the test module. | |
Function *newMain = Function::Create(oldMain->getFunctionType(), | |
GlobalValue::ExternalLinkage, | |
"main", Test); | |
// Create an `oldmain' prototype in the test module, which will | |
// corresponds to the real main function in the same module. | |
Function *oldMainProto = Function::Create(oldMain->getFunctionType(), | |
GlobalValue::ExternalLinkage, | |
oldMain->getName(), Test); | |
// Set up and remember the argument list for the main function. | |
std::vector<Value*> args; | |
for (Function::arg_iterator | |
I = newMain->arg_begin(), E = newMain->arg_end(), | |
OI = oldMain->arg_begin(); I != E; ++I, ++OI) { | |
I->setName(OI->getName()); // Copy argument names from oldMain | |
args.push_back(I); | |
} | |
// Call the old main function and return its result | |
BasicBlock *BB = BasicBlock::Create(Safe->getContext(), "entry", newMain); | |
CallInst *call = CallInst::Create(oldMainProto, args, "", BB); | |
// If the type of old function wasn't void, return value of call | |
ReturnInst::Create(Safe->getContext(), call, BB); | |
} | |
// The second nasty issue we must deal with in the JIT is that the Safe | |
// module cannot directly reference any functions defined in the test | |
// module. Instead, we use a JIT API call to dynamically resolve the | |
// symbol. | |
// Add the resolver to the Safe module. | |
// Prototype: void *getPointerToNamedFunction(const char* Name) | |
Constant *resolverFunc = | |
Safe->getOrInsertFunction("getPointerToNamedFunction", | |
Type::getInt8PtrTy(Safe->getContext()), | |
Type::getInt8PtrTy(Safe->getContext()), | |
(Type *)0); | |
// Use the function we just added to get addresses of functions we need. | |
for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) { | |
if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc && | |
!F->isIntrinsic() /* ignore intrinsics */) { | |
Function *TestFn = Test->getFunction(F->getName()); | |
// Don't forward functions which are external in the test module too. | |
if (TestFn && !TestFn->isDeclaration()) { | |
// 1. Add a string constant with its name to the global file | |
Constant *InitArray = ConstantArray::get(F->getContext(), F->getName()); | |
GlobalVariable *funcName = | |
new GlobalVariable(*Safe, InitArray->getType(), true /*isConstant*/, | |
GlobalValue::InternalLinkage, InitArray, | |
F->getName() + "_name"); | |
// 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an | |
// sbyte* so it matches the signature of the resolver function. | |
// GetElementPtr *funcName, ulong 0, ulong 0 | |
std::vector<Constant*> GEPargs(2, | |
Constant::getNullValue(Type::getInt32Ty(F->getContext()))); | |
Value *GEP = ConstantExpr::getGetElementPtr(funcName, GEPargs); | |
std::vector<Value*> ResolverArgs; | |
ResolverArgs.push_back(GEP); | |
// Rewrite uses of F in global initializers, etc. to uses of a wrapper | |
// function that dynamically resolves the calls to F via our JIT API | |
if (!F->use_empty()) { | |
// Create a new global to hold the cached function pointer. | |
Constant *NullPtr = ConstantPointerNull::get(F->getType()); | |
GlobalVariable *Cache = | |
new GlobalVariable(*F->getParent(), F->getType(), | |
false, GlobalValue::InternalLinkage, | |
NullPtr,F->getName()+".fpcache"); | |
// Construct a new stub function that will re-route calls to F | |
FunctionType *FuncTy = F->getFunctionType(); | |
Function *FuncWrapper = Function::Create(FuncTy, | |
GlobalValue::InternalLinkage, | |
F->getName() + "_wrapper", | |
F->getParent()); | |
BasicBlock *EntryBB = BasicBlock::Create(F->getContext(), | |
"entry", FuncWrapper); | |
BasicBlock *DoCallBB = BasicBlock::Create(F->getContext(), | |
"usecache", FuncWrapper); | |
BasicBlock *LookupBB = BasicBlock::Create(F->getContext(), | |
"lookupfp", FuncWrapper); | |
// Check to see if we already looked up the value. | |
Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB); | |
Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal, | |
NullPtr, "isNull"); | |
BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB); | |
// Resolve the call to function F via the JIT API: | |
// | |
// call resolver(GetElementPtr...) | |
CallInst *Resolver = | |
CallInst::Create(resolverFunc, ResolverArgs, "resolver", LookupBB); | |
// Cast the result from the resolver to correctly-typed function. | |
CastInst *CastedResolver = | |
new BitCastInst(Resolver, | |
PointerType::getUnqual(F->getFunctionType()), | |
"resolverCast", LookupBB); | |
// Save the value in our cache. | |
new StoreInst(CastedResolver, Cache, LookupBB); | |
BranchInst::Create(DoCallBB, LookupBB); | |
PHINode *FuncPtr = PHINode::Create(NullPtr->getType(), 2, | |
"fp", DoCallBB); | |
FuncPtr->addIncoming(CastedResolver, LookupBB); | |
FuncPtr->addIncoming(CachedVal, EntryBB); | |
// Save the argument list. | |
std::vector<Value*> Args; | |
for (Function::arg_iterator i = FuncWrapper->arg_begin(), | |
e = FuncWrapper->arg_end(); i != e; ++i) | |
Args.push_back(i); | |
// Pass on the arguments to the real function, return its result | |
if (F->getReturnType()->isVoidTy()) { | |
CallInst::Create(FuncPtr, Args, "", DoCallBB); | |
ReturnInst::Create(F->getContext(), DoCallBB); | |
} else { | |
CallInst *Call = CallInst::Create(FuncPtr, Args, | |
"retval", DoCallBB); | |
ReturnInst::Create(F->getContext(),Call, DoCallBB); | |
} | |
// Use the wrapper function instead of the old function | |
F->replaceAllUsesWith(FuncWrapper); | |
} | |
} | |
} | |
} | |
if (verifyModule(*Test) || verifyModule(*Safe)) { | |
errs() << "Bugpoint has a bug, which corrupted a module!!\n"; | |
abort(); | |
} | |
} | |
/// TestCodeGenerator - This is the predicate function used to check to see if | |
/// the "Test" portion of the program is miscompiled by the code generator under | |
/// test. If so, return true. In any case, both module arguments are deleted. | |
/// | |
static bool TestCodeGenerator(BugDriver &BD, Module *Test, Module *Safe, | |
std::string &Error) { | |
CleanupAndPrepareModules(BD, Test, Safe); | |
sys::Path TestModuleBC("bugpoint.test.bc"); | |
std::string ErrMsg; | |
if (TestModuleBC.makeUnique(true, &ErrMsg)) { | |
errs() << BD.getToolName() << "Error making unique filename: " | |
<< ErrMsg << "\n"; | |
exit(1); | |
} | |
if (BD.writeProgramToFile(TestModuleBC.str(), Test)) { | |
errs() << "Error writing bitcode to `" << TestModuleBC.str() | |
<< "'\nExiting."; | |
exit(1); | |
} | |
delete Test; | |
FileRemover TestModuleBCRemover(TestModuleBC.str(), !SaveTemps); | |
// Make the shared library | |
sys::Path SafeModuleBC("bugpoint.safe.bc"); | |
if (SafeModuleBC.makeUnique(true, &ErrMsg)) { | |
errs() << BD.getToolName() << "Error making unique filename: " | |
<< ErrMsg << "\n"; | |
exit(1); | |
} | |
if (BD.writeProgramToFile(SafeModuleBC.str(), Safe)) { | |
errs() << "Error writing bitcode to `" << SafeModuleBC.str() | |
<< "'\nExiting."; | |
exit(1); | |
} | |
FileRemover SafeModuleBCRemover(SafeModuleBC.str(), !SaveTemps); | |
std::string SharedObject = BD.compileSharedObject(SafeModuleBC.str(), Error); | |
if (!Error.empty()) | |
return false; | |
delete Safe; | |
FileRemover SharedObjectRemover(SharedObject, !SaveTemps); | |
// Run the code generator on the `Test' code, loading the shared library. | |
// The function returns whether or not the new output differs from reference. | |
bool Result = BD.diffProgram(BD.getProgram(), TestModuleBC.str(), | |
SharedObject, false, &Error); | |
if (!Error.empty()) | |
return false; | |
if (Result) | |
errs() << ": still failing!\n"; | |
else | |
errs() << ": didn't fail.\n"; | |
return Result; | |
} | |
/// debugCodeGenerator - debug errors in LLC, LLI, or CBE. | |
/// | |
bool BugDriver::debugCodeGenerator(std::string *Error) { | |
if ((void*)SafeInterpreter == (void*)Interpreter) { | |
std::string Result = executeProgramSafely(Program, "bugpoint.safe.out", | |
Error); | |
if (Error->empty()) { | |
outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match " | |
<< "the reference diff. This may be due to a\n front-end " | |
<< "bug or a bug in the original program, but this can also " | |
<< "happen if bugpoint isn't running the program with the " | |
<< "right flags or input.\n I left the result of executing " | |
<< "the program with the \"safe\" backend in this file for " | |
<< "you: '" | |
<< Result << "'.\n"; | |
} | |
return true; | |
} | |
DisambiguateGlobalSymbols(Program); | |
std::vector<Function*> Funcs = DebugAMiscompilation(*this, TestCodeGenerator, | |
*Error); | |
if (!Error->empty()) | |
return true; | |
// Split the module into the two halves of the program we want. | |
ValueToValueMapTy VMap; | |
Module *ToNotCodeGen = CloneModule(getProgram(), VMap); | |
Module *ToCodeGen = SplitFunctionsOutOfModule(ToNotCodeGen, Funcs, VMap); | |
// Condition the modules | |
CleanupAndPrepareModules(*this, ToCodeGen, ToNotCodeGen); | |
sys::Path TestModuleBC("bugpoint.test.bc"); | |
std::string ErrMsg; | |
if (TestModuleBC.makeUnique(true, &ErrMsg)) { | |
errs() << getToolName() << "Error making unique filename: " | |
<< ErrMsg << "\n"; | |
exit(1); | |
} | |
if (writeProgramToFile(TestModuleBC.str(), ToCodeGen)) { | |
errs() << "Error writing bitcode to `" << TestModuleBC.str() | |
<< "'\nExiting."; | |
exit(1); | |
} | |
delete ToCodeGen; | |
// Make the shared library | |
sys::Path SafeModuleBC("bugpoint.safe.bc"); | |
if (SafeModuleBC.makeUnique(true, &ErrMsg)) { | |
errs() << getToolName() << "Error making unique filename: " | |
<< ErrMsg << "\n"; | |
exit(1); | |
} | |
if (writeProgramToFile(SafeModuleBC.str(), ToNotCodeGen)) { | |
errs() << "Error writing bitcode to `" << SafeModuleBC.str() | |
<< "'\nExiting."; | |
exit(1); | |
} | |
std::string SharedObject = compileSharedObject(SafeModuleBC.str(), *Error); | |
if (!Error->empty()) | |
return true; | |
delete ToNotCodeGen; | |
outs() << "You can reproduce the problem with the command line: \n"; | |
if (isExecutingJIT()) { | |
outs() << " lli -load " << SharedObject << " " << TestModuleBC.str(); | |
} else { | |
outs() << " llc " << TestModuleBC.str() << " -o " << TestModuleBC.str() | |
<< ".s\n"; | |
outs() << " gcc " << SharedObject << " " << TestModuleBC.str() | |
<< ".s -o " << TestModuleBC.str() << ".exe"; | |
#if defined (HAVE_LINK_R) | |
outs() << " -Wl,-R."; | |
#endif | |
outs() << "\n"; | |
outs() << " " << TestModuleBC.str() << ".exe"; | |
} | |
for (unsigned i = 0, e = InputArgv.size(); i != e; ++i) | |
outs() << " " << InputArgv[i]; | |
outs() << '\n'; | |
outs() << "The shared object was created with:\n llc -march=c " | |
<< SafeModuleBC.str() << " -o temporary.c\n" | |
<< " gcc -xc temporary.c -O2 -o " << SharedObject; | |
if (TargetTriple.getArch() == Triple::sparc) | |
outs() << " -G"; // Compile a shared library, `-G' for Sparc | |
else | |
outs() << " -fPIC -shared"; // `-shared' for Linux/X86, maybe others | |
outs() << " -fno-strict-aliasing\n"; | |
return false; | |
} |