| //===-- StringRef.cpp - Lightweight String References ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include <bitset> |
| |
| using namespace llvm; |
| |
| // MSVC emits references to this into the translation units which reference it. |
| #ifndef _MSC_VER |
| const size_t StringRef::npos; |
| #endif |
| |
| static char ascii_tolower(char x) { |
| if (x >= 'A' && x <= 'Z') |
| return x - 'A' + 'a'; |
| return x; |
| } |
| |
| static bool ascii_isdigit(char x) { |
| return x >= '0' && x <= '9'; |
| } |
| |
| /// compare_lower - Compare strings, ignoring case. |
| int StringRef::compare_lower(StringRef RHS) const { |
| for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) { |
| unsigned char LHC = ascii_tolower(Data[I]); |
| unsigned char RHC = ascii_tolower(RHS.Data[I]); |
| if (LHC != RHC) |
| return LHC < RHC ? -1 : 1; |
| } |
| |
| if (Length == RHS.Length) |
| return 0; |
| return Length < RHS.Length ? -1 : 1; |
| } |
| |
| /// compare_numeric - Compare strings, handle embedded numbers. |
| int StringRef::compare_numeric(StringRef RHS) const { |
| for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) { |
| // Check for sequences of digits. |
| if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) { |
| // The longer sequence of numbers is considered larger. |
| // This doesn't really handle prefixed zeros well. |
| size_t J; |
| for (J = I + 1; J != E + 1; ++J) { |
| bool ld = J < Length && ascii_isdigit(Data[J]); |
| bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]); |
| if (ld != rd) |
| return rd ? -1 : 1; |
| if (!rd) |
| break; |
| } |
| // The two number sequences have the same length (J-I), just memcmp them. |
| if (int Res = compareMemory(Data + I, RHS.Data + I, J - I)) |
| return Res < 0 ? -1 : 1; |
| // Identical number sequences, continue search after the numbers. |
| I = J - 1; |
| continue; |
| } |
| if (Data[I] != RHS.Data[I]) |
| return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1; |
| } |
| if (Length == RHS.Length) |
| return 0; |
| return Length < RHS.Length ? -1 : 1; |
| } |
| |
| // Compute the edit distance between the two given strings. |
| unsigned StringRef::edit_distance(llvm::StringRef Other, |
| bool AllowReplacements, |
| unsigned MaxEditDistance) { |
| // The algorithm implemented below is the "classic" |
| // dynamic-programming algorithm for computing the Levenshtein |
| // distance, which is described here: |
| // |
| // http://en.wikipedia.org/wiki/Levenshtein_distance |
| // |
| // Although the algorithm is typically described using an m x n |
| // array, only two rows are used at a time, so this implemenation |
| // just keeps two separate vectors for those two rows. |
| size_type m = size(); |
| size_type n = Other.size(); |
| |
| const unsigned SmallBufferSize = 64; |
| unsigned SmallBuffer[SmallBufferSize]; |
| llvm::OwningArrayPtr<unsigned> Allocated; |
| unsigned *previous = SmallBuffer; |
| if (2*(n + 1) > SmallBufferSize) { |
| previous = new unsigned [2*(n+1)]; |
| Allocated.reset(previous); |
| } |
| unsigned *current = previous + (n + 1); |
| |
| for (unsigned i = 0; i <= n; ++i) |
| previous[i] = i; |
| |
| for (size_type y = 1; y <= m; ++y) { |
| current[0] = y; |
| unsigned BestThisRow = current[0]; |
| |
| for (size_type x = 1; x <= n; ++x) { |
| if (AllowReplacements) { |
| current[x] = min(previous[x-1] + ((*this)[y-1] == Other[x-1]? 0u:1u), |
| min(current[x-1], previous[x])+1); |
| } |
| else { |
| if ((*this)[y-1] == Other[x-1]) current[x] = previous[x-1]; |
| else current[x] = min(current[x-1], previous[x]) + 1; |
| } |
| BestThisRow = min(BestThisRow, current[x]); |
| } |
| |
| if (MaxEditDistance && BestThisRow > MaxEditDistance) |
| return MaxEditDistance + 1; |
| |
| unsigned *tmp = current; |
| current = previous; |
| previous = tmp; |
| } |
| |
| unsigned Result = previous[n]; |
| return Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // String Searching |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// find - Search for the first string \arg Str in the string. |
| /// |
| /// \return - The index of the first occurrence of \arg Str, or npos if not |
| /// found. |
| size_t StringRef::find(StringRef Str, size_t From) const { |
| size_t N = Str.size(); |
| if (N > Length) |
| return npos; |
| for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i) |
| if (substr(i, N).equals(Str)) |
| return i; |
| return npos; |
| } |
| |
| /// rfind - Search for the last string \arg Str in the string. |
| /// |
| /// \return - The index of the last occurrence of \arg Str, or npos if not |
| /// found. |
| size_t StringRef::rfind(StringRef Str) const { |
| size_t N = Str.size(); |
| if (N > Length) |
| return npos; |
| for (size_t i = Length - N + 1, e = 0; i != e;) { |
| --i; |
| if (substr(i, N).equals(Str)) |
| return i; |
| } |
| return npos; |
| } |
| |
| /// find_first_of - Find the first character in the string that is in \arg |
| /// Chars, or npos if not found. |
| /// |
| /// Note: O(size() + Chars.size()) |
| StringRef::size_type StringRef::find_first_of(StringRef Chars, |
| size_t From) const { |
| std::bitset<1 << CHAR_BIT> CharBits; |
| for (size_type i = 0; i != Chars.size(); ++i) |
| CharBits.set((unsigned char)Chars[i]); |
| |
| for (size_type i = min(From, Length), e = Length; i != e; ++i) |
| if (CharBits.test((unsigned char)Data[i])) |
| return i; |
| return npos; |
| } |
| |
| /// find_first_not_of - Find the first character in the string that is not |
| /// \arg C or npos if not found. |
| StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const { |
| for (size_type i = min(From, Length), e = Length; i != e; ++i) |
| if (Data[i] != C) |
| return i; |
| return npos; |
| } |
| |
| /// find_first_not_of - Find the first character in the string that is not |
| /// in the string \arg Chars, or npos if not found. |
| /// |
| /// Note: O(size() + Chars.size()) |
| StringRef::size_type StringRef::find_first_not_of(StringRef Chars, |
| size_t From) const { |
| std::bitset<1 << CHAR_BIT> CharBits; |
| for (size_type i = 0; i != Chars.size(); ++i) |
| CharBits.set((unsigned char)Chars[i]); |
| |
| for (size_type i = min(From, Length), e = Length; i != e; ++i) |
| if (!CharBits.test((unsigned char)Data[i])) |
| return i; |
| return npos; |
| } |
| |
| /// find_last_of - Find the last character in the string that is in \arg C, |
| /// or npos if not found. |
| /// |
| /// Note: O(size() + Chars.size()) |
| StringRef::size_type StringRef::find_last_of(StringRef Chars, |
| size_t From) const { |
| std::bitset<1 << CHAR_BIT> CharBits; |
| for (size_type i = 0; i != Chars.size(); ++i) |
| CharBits.set((unsigned char)Chars[i]); |
| |
| for (size_type i = min(From, Length) - 1, e = -1; i != e; --i) |
| if (CharBits.test((unsigned char)Data[i])) |
| return i; |
| return npos; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helpful Algorithms |
| //===----------------------------------------------------------------------===// |
| |
| /// count - Return the number of non-overlapped occurrences of \arg Str in |
| /// the string. |
| size_t StringRef::count(StringRef Str) const { |
| size_t Count = 0; |
| size_t N = Str.size(); |
| if (N > Length) |
| return 0; |
| for (size_t i = 0, e = Length - N + 1; i != e; ++i) |
| if (substr(i, N).equals(Str)) |
| ++Count; |
| return Count; |
| } |
| |
| static unsigned GetAutoSenseRadix(StringRef &Str) { |
| if (Str.startswith("0x")) { |
| Str = Str.substr(2); |
| return 16; |
| } else if (Str.startswith("0b")) { |
| Str = Str.substr(2); |
| return 2; |
| } else if (Str.startswith("0")) { |
| return 8; |
| } else { |
| return 10; |
| } |
| } |
| |
| |
| /// GetAsUnsignedInteger - Workhorse method that converts a integer character |
| /// sequence of radix up to 36 to an unsigned long long value. |
| static bool GetAsUnsignedInteger(StringRef Str, unsigned Radix, |
| unsigned long long &Result) { |
| // Autosense radix if not specified. |
| if (Radix == 0) |
| Radix = GetAutoSenseRadix(Str); |
| |
| // Empty strings (after the radix autosense) are invalid. |
| if (Str.empty()) return true; |
| |
| // Parse all the bytes of the string given this radix. Watch for overflow. |
| Result = 0; |
| while (!Str.empty()) { |
| unsigned CharVal; |
| if (Str[0] >= '0' && Str[0] <= '9') |
| CharVal = Str[0]-'0'; |
| else if (Str[0] >= 'a' && Str[0] <= 'z') |
| CharVal = Str[0]-'a'+10; |
| else if (Str[0] >= 'A' && Str[0] <= 'Z') |
| CharVal = Str[0]-'A'+10; |
| else |
| return true; |
| |
| // If the parsed value is larger than the integer radix, the string is |
| // invalid. |
| if (CharVal >= Radix) |
| return true; |
| |
| // Add in this character. |
| unsigned long long PrevResult = Result; |
| Result = Result*Radix+CharVal; |
| |
| // Check for overflow. |
| if (Result < PrevResult) |
| return true; |
| |
| Str = Str.substr(1); |
| } |
| |
| return false; |
| } |
| |
| bool StringRef::getAsInteger(unsigned Radix, unsigned long long &Result) const { |
| return GetAsUnsignedInteger(*this, Radix, Result); |
| } |
| |
| |
| bool StringRef::getAsInteger(unsigned Radix, long long &Result) const { |
| unsigned long long ULLVal; |
| |
| // Handle positive strings first. |
| if (empty() || front() != '-') { |
| if (GetAsUnsignedInteger(*this, Radix, ULLVal) || |
| // Check for value so large it overflows a signed value. |
| (long long)ULLVal < 0) |
| return true; |
| Result = ULLVal; |
| return false; |
| } |
| |
| // Get the positive part of the value. |
| if (GetAsUnsignedInteger(substr(1), Radix, ULLVal) || |
| // Reject values so large they'd overflow as negative signed, but allow |
| // "-0". This negates the unsigned so that the negative isn't undefined |
| // on signed overflow. |
| (long long)-ULLVal > 0) |
| return true; |
| |
| Result = -ULLVal; |
| return false; |
| } |
| |
| bool StringRef::getAsInteger(unsigned Radix, int &Result) const { |
| long long Val; |
| if (getAsInteger(Radix, Val) || |
| (int)Val != Val) |
| return true; |
| Result = Val; |
| return false; |
| } |
| |
| bool StringRef::getAsInteger(unsigned Radix, unsigned &Result) const { |
| unsigned long long Val; |
| if (getAsInteger(Radix, Val) || |
| (unsigned)Val != Val) |
| return true; |
| Result = Val; |
| return false; |
| } |
| |
| bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const { |
| StringRef Str = *this; |
| |
| // Autosense radix if not specified. |
| if (Radix == 0) |
| Radix = GetAutoSenseRadix(Str); |
| |
| assert(Radix > 1 && Radix <= 36); |
| |
| // Empty strings (after the radix autosense) are invalid. |
| if (Str.empty()) return true; |
| |
| // Skip leading zeroes. This can be a significant improvement if |
| // it means we don't need > 64 bits. |
| while (!Str.empty() && Str.front() == '0') |
| Str = Str.substr(1); |
| |
| // If it was nothing but zeroes.... |
| if (Str.empty()) { |
| Result = APInt(64, 0); |
| return false; |
| } |
| |
| // (Over-)estimate the required number of bits. |
| unsigned Log2Radix = 0; |
| while ((1U << Log2Radix) < Radix) Log2Radix++; |
| bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix); |
| |
| unsigned BitWidth = Log2Radix * Str.size(); |
| if (BitWidth < Result.getBitWidth()) |
| BitWidth = Result.getBitWidth(); // don't shrink the result |
| else |
| Result = Result.zext(BitWidth); |
| |
| APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix |
| if (!IsPowerOf2Radix) { |
| // These must have the same bit-width as Result. |
| RadixAP = APInt(BitWidth, Radix); |
| CharAP = APInt(BitWidth, 0); |
| } |
| |
| // Parse all the bytes of the string given this radix. |
| Result = 0; |
| while (!Str.empty()) { |
| unsigned CharVal; |
| if (Str[0] >= '0' && Str[0] <= '9') |
| CharVal = Str[0]-'0'; |
| else if (Str[0] >= 'a' && Str[0] <= 'z') |
| CharVal = Str[0]-'a'+10; |
| else if (Str[0] >= 'A' && Str[0] <= 'Z') |
| CharVal = Str[0]-'A'+10; |
| else |
| return true; |
| |
| // If the parsed value is larger than the integer radix, the string is |
| // invalid. |
| if (CharVal >= Radix) |
| return true; |
| |
| // Add in this character. |
| if (IsPowerOf2Radix) { |
| Result <<= Log2Radix; |
| Result |= CharVal; |
| } else { |
| Result *= RadixAP; |
| CharAP = CharVal; |
| Result += CharAP; |
| } |
| |
| Str = Str.substr(1); |
| } |
| |
| return false; |
| } |