| //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This file contains the declarations of the Vectorization Plan base classes: |
| /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual |
| /// VPBlockBase, together implementing a Hierarchical CFG; |
| /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be |
| /// treated as proper graphs for generic algorithms; |
| /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained |
| /// within VPBasicBlocks; |
| /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned |
| /// instruction; |
| /// 5. The VPlan class holding a candidate for vectorization; |
| /// 6. The VPlanPrinter class providing a way to print a plan in dot format; |
| /// These are documented in docs/VectorizationPlan.rst. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |
| |
| #include "VPlanLoopInfo.h" |
| #include "VPlanValue.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/ADT/ilist.h" |
| #include "llvm/ADT/ilist_node.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <map> |
| #include <string> |
| |
| namespace llvm { |
| |
| class LoopVectorizationLegality; |
| class LoopVectorizationCostModel; |
| class BasicBlock; |
| class DominatorTree; |
| class InnerLoopVectorizer; |
| class InterleaveGroup; |
| class raw_ostream; |
| class Value; |
| class VPBasicBlock; |
| class VPRegionBlock; |
| class VPlan; |
| |
| /// A range of powers-of-2 vectorization factors with fixed start and |
| /// adjustable end. The range includes start and excludes end, e.g.,: |
| /// [1, 9) = {1, 2, 4, 8} |
| struct VFRange { |
| // A power of 2. |
| const unsigned Start; |
| |
| // Need not be a power of 2. If End <= Start range is empty. |
| unsigned End; |
| }; |
| |
| using VPlanPtr = std::unique_ptr<VPlan>; |
| |
| /// In what follows, the term "input IR" refers to code that is fed into the |
| /// vectorizer whereas the term "output IR" refers to code that is generated by |
| /// the vectorizer. |
| |
| /// VPIteration represents a single point in the iteration space of the output |
| /// (vectorized and/or unrolled) IR loop. |
| struct VPIteration { |
| /// in [0..UF) |
| unsigned Part; |
| |
| /// in [0..VF) |
| unsigned Lane; |
| }; |
| |
| /// This is a helper struct for maintaining vectorization state. It's used for |
| /// mapping values from the original loop to their corresponding values in |
| /// the new loop. Two mappings are maintained: one for vectorized values and |
| /// one for scalarized values. Vectorized values are represented with UF |
| /// vector values in the new loop, and scalarized values are represented with |
| /// UF x VF scalar values in the new loop. UF and VF are the unroll and |
| /// vectorization factors, respectively. |
| /// |
| /// Entries can be added to either map with setVectorValue and setScalarValue, |
| /// which assert that an entry was not already added before. If an entry is to |
| /// replace an existing one, call resetVectorValue and resetScalarValue. This is |
| /// currently needed to modify the mapped values during "fix-up" operations that |
| /// occur once the first phase of widening is complete. These operations include |
| /// type truncation and the second phase of recurrence widening. |
| /// |
| /// Entries from either map can be retrieved using the getVectorValue and |
| /// getScalarValue functions, which assert that the desired value exists. |
| struct VectorizerValueMap { |
| friend struct VPTransformState; |
| |
| private: |
| /// The unroll factor. Each entry in the vector map contains UF vector values. |
| unsigned UF; |
| |
| /// The vectorization factor. Each entry in the scalar map contains UF x VF |
| /// scalar values. |
| unsigned VF; |
| |
| /// The vector and scalar map storage. We use std::map and not DenseMap |
| /// because insertions to DenseMap invalidate its iterators. |
| using VectorParts = SmallVector<Value *, 2>; |
| using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; |
| std::map<Value *, VectorParts> VectorMapStorage; |
| std::map<Value *, ScalarParts> ScalarMapStorage; |
| |
| public: |
| /// Construct an empty map with the given unroll and vectorization factors. |
| VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} |
| |
| /// \return True if the map has any vector entry for \p Key. |
| bool hasAnyVectorValue(Value *Key) const { |
| return VectorMapStorage.count(Key); |
| } |
| |
| /// \return True if the map has a vector entry for \p Key and \p Part. |
| bool hasVectorValue(Value *Key, unsigned Part) const { |
| assert(Part < UF && "Queried Vector Part is too large."); |
| if (!hasAnyVectorValue(Key)) |
| return false; |
| const VectorParts &Entry = VectorMapStorage.find(Key)->second; |
| assert(Entry.size() == UF && "VectorParts has wrong dimensions."); |
| return Entry[Part] != nullptr; |
| } |
| |
| /// \return True if the map has any scalar entry for \p Key. |
| bool hasAnyScalarValue(Value *Key) const { |
| return ScalarMapStorage.count(Key); |
| } |
| |
| /// \return True if the map has a scalar entry for \p Key and \p Instance. |
| bool hasScalarValue(Value *Key, const VPIteration &Instance) const { |
| assert(Instance.Part < UF && "Queried Scalar Part is too large."); |
| assert(Instance.Lane < VF && "Queried Scalar Lane is too large."); |
| if (!hasAnyScalarValue(Key)) |
| return false; |
| const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; |
| assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); |
| assert(Entry[Instance.Part].size() == VF && |
| "ScalarParts has wrong dimensions."); |
| return Entry[Instance.Part][Instance.Lane] != nullptr; |
| } |
| |
| /// Retrieve the existing vector value that corresponds to \p Key and |
| /// \p Part. |
| Value *getVectorValue(Value *Key, unsigned Part) { |
| assert(hasVectorValue(Key, Part) && "Getting non-existent value."); |
| return VectorMapStorage[Key][Part]; |
| } |
| |
| /// Retrieve the existing scalar value that corresponds to \p Key and |
| /// \p Instance. |
| Value *getScalarValue(Value *Key, const VPIteration &Instance) { |
| assert(hasScalarValue(Key, Instance) && "Getting non-existent value."); |
| return ScalarMapStorage[Key][Instance.Part][Instance.Lane]; |
| } |
| |
| /// Set a vector value associated with \p Key and \p Part. Assumes such a |
| /// value is not already set. If it is, use resetVectorValue() instead. |
| void setVectorValue(Value *Key, unsigned Part, Value *Vector) { |
| assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); |
| if (!VectorMapStorage.count(Key)) { |
| VectorParts Entry(UF); |
| VectorMapStorage[Key] = Entry; |
| } |
| VectorMapStorage[Key][Part] = Vector; |
| } |
| |
| /// Set a scalar value associated with \p Key and \p Instance. Assumes such a |
| /// value is not already set. |
| void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { |
| assert(!hasScalarValue(Key, Instance) && "Scalar value already set"); |
| if (!ScalarMapStorage.count(Key)) { |
| ScalarParts Entry(UF); |
| // TODO: Consider storing uniform values only per-part, as they occupy |
| // lane 0 only, keeping the other VF-1 redundant entries null. |
| for (unsigned Part = 0; Part < UF; ++Part) |
| Entry[Part].resize(VF, nullptr); |
| ScalarMapStorage[Key] = Entry; |
| } |
| ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; |
| } |
| |
| /// Reset the vector value associated with \p Key for the given \p Part. |
| /// This function can be used to update values that have already been |
| /// vectorized. This is the case for "fix-up" operations including type |
| /// truncation and the second phase of recurrence vectorization. |
| void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { |
| assert(hasVectorValue(Key, Part) && "Vector value not set for part"); |
| VectorMapStorage[Key][Part] = Vector; |
| } |
| |
| /// Reset the scalar value associated with \p Key for \p Part and \p Lane. |
| /// This function can be used to update values that have already been |
| /// scalarized. This is the case for "fix-up" operations including scalar phi |
| /// nodes for scalarized and predicated instructions. |
| void resetScalarValue(Value *Key, const VPIteration &Instance, |
| Value *Scalar) { |
| assert(hasScalarValue(Key, Instance) && |
| "Scalar value not set for part and lane"); |
| ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; |
| } |
| }; |
| |
| /// This class is used to enable the VPlan to invoke a method of ILV. This is |
| /// needed until the method is refactored out of ILV and becomes reusable. |
| struct VPCallback { |
| virtual ~VPCallback() {} |
| virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0; |
| }; |
| |
| /// VPTransformState holds information passed down when "executing" a VPlan, |
| /// needed for generating the output IR. |
| struct VPTransformState { |
| VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, |
| IRBuilder<> &Builder, VectorizerValueMap &ValueMap, |
| InnerLoopVectorizer *ILV, VPCallback &Callback) |
| : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), |
| ValueMap(ValueMap), ILV(ILV), Callback(Callback) {} |
| |
| /// The chosen Vectorization and Unroll Factors of the loop being vectorized. |
| unsigned VF; |
| unsigned UF; |
| |
| /// Hold the indices to generate specific scalar instructions. Null indicates |
| /// that all instances are to be generated, using either scalar or vector |
| /// instructions. |
| Optional<VPIteration> Instance; |
| |
| struct DataState { |
| /// A type for vectorized values in the new loop. Each value from the |
| /// original loop, when vectorized, is represented by UF vector values in |
| /// the new unrolled loop, where UF is the unroll factor. |
| typedef SmallVector<Value *, 2> PerPartValuesTy; |
| |
| DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; |
| } Data; |
| |
| /// Get the generated Value for a given VPValue and a given Part. Note that |
| /// as some Defs are still created by ILV and managed in its ValueMap, this |
| /// method will delegate the call to ILV in such cases in order to provide |
| /// callers a consistent API. |
| /// \see set. |
| Value *get(VPValue *Def, unsigned Part) { |
| // If Values have been set for this Def return the one relevant for \p Part. |
| if (Data.PerPartOutput.count(Def)) |
| return Data.PerPartOutput[Def][Part]; |
| // Def is managed by ILV: bring the Values from ValueMap. |
| return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); |
| } |
| |
| /// Set the generated Value for a given VPValue and a given Part. |
| void set(VPValue *Def, Value *V, unsigned Part) { |
| if (!Data.PerPartOutput.count(Def)) { |
| DataState::PerPartValuesTy Entry(UF); |
| Data.PerPartOutput[Def] = Entry; |
| } |
| Data.PerPartOutput[Def][Part] = V; |
| } |
| |
| /// Hold state information used when constructing the CFG of the output IR, |
| /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. |
| struct CFGState { |
| /// The previous VPBasicBlock visited. Initially set to null. |
| VPBasicBlock *PrevVPBB = nullptr; |
| |
| /// The previous IR BasicBlock created or used. Initially set to the new |
| /// header BasicBlock. |
| BasicBlock *PrevBB = nullptr; |
| |
| /// The last IR BasicBlock in the output IR. Set to the new latch |
| /// BasicBlock, used for placing the newly created BasicBlocks. |
| BasicBlock *LastBB = nullptr; |
| |
| /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case |
| /// of replication, maps the BasicBlock of the last replica created. |
| SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; |
| |
| CFGState() = default; |
| } CFG; |
| |
| /// Hold a pointer to LoopInfo to register new basic blocks in the loop. |
| LoopInfo *LI; |
| |
| /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. |
| DominatorTree *DT; |
| |
| /// Hold a reference to the IRBuilder used to generate output IR code. |
| IRBuilder<> &Builder; |
| |
| /// Hold a reference to the Value state information used when generating the |
| /// Values of the output IR. |
| VectorizerValueMap &ValueMap; |
| |
| /// Hold a reference to a mapping between VPValues in VPlan and original |
| /// Values they correspond to. |
| VPValue2ValueTy VPValue2Value; |
| |
| /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. |
| InnerLoopVectorizer *ILV; |
| |
| VPCallback &Callback; |
| }; |
| |
| /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. |
| /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. |
| class VPBlockBase { |
| friend class VPBlockUtils; |
| |
| private: |
| const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). |
| |
| /// An optional name for the block. |
| std::string Name; |
| |
| /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if |
| /// it is a topmost VPBlockBase. |
| VPRegionBlock *Parent = nullptr; |
| |
| /// List of predecessor blocks. |
| SmallVector<VPBlockBase *, 1> Predecessors; |
| |
| /// List of successor blocks. |
| SmallVector<VPBlockBase *, 1> Successors; |
| |
| /// Successor selector, null for zero or single successor blocks. |
| VPValue *CondBit = nullptr; |
| |
| /// Add \p Successor as the last successor to this block. |
| void appendSuccessor(VPBlockBase *Successor) { |
| assert(Successor && "Cannot add nullptr successor!"); |
| Successors.push_back(Successor); |
| } |
| |
| /// Add \p Predecessor as the last predecessor to this block. |
| void appendPredecessor(VPBlockBase *Predecessor) { |
| assert(Predecessor && "Cannot add nullptr predecessor!"); |
| Predecessors.push_back(Predecessor); |
| } |
| |
| /// Remove \p Predecessor from the predecessors of this block. |
| void removePredecessor(VPBlockBase *Predecessor) { |
| auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor); |
| assert(Pos && "Predecessor does not exist"); |
| Predecessors.erase(Pos); |
| } |
| |
| /// Remove \p Successor from the successors of this block. |
| void removeSuccessor(VPBlockBase *Successor) { |
| auto Pos = std::find(Successors.begin(), Successors.end(), Successor); |
| assert(Pos && "Successor does not exist"); |
| Successors.erase(Pos); |
| } |
| |
| protected: |
| VPBlockBase(const unsigned char SC, const std::string &N) |
| : SubclassID(SC), Name(N) {} |
| |
| public: |
| /// An enumeration for keeping track of the concrete subclass of VPBlockBase |
| /// that are actually instantiated. Values of this enumeration are kept in the |
| /// SubclassID field of the VPBlockBase objects. They are used for concrete |
| /// type identification. |
| using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; |
| |
| using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; |
| |
| virtual ~VPBlockBase() = default; |
| |
| const std::string &getName() const { return Name; } |
| |
| void setName(const Twine &newName) { Name = newName.str(); } |
| |
| /// \return an ID for the concrete type of this object. |
| /// This is used to implement the classof checks. This should not be used |
| /// for any other purpose, as the values may change as LLVM evolves. |
| unsigned getVPBlockID() const { return SubclassID; } |
| |
| VPRegionBlock *getParent() { return Parent; } |
| const VPRegionBlock *getParent() const { return Parent; } |
| |
| void setParent(VPRegionBlock *P) { Parent = P; } |
| |
| /// \return the VPBasicBlock that is the entry of this VPBlockBase, |
| /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| /// VPBlockBase is a VPBasicBlock, it is returned. |
| const VPBasicBlock *getEntryBasicBlock() const; |
| VPBasicBlock *getEntryBasicBlock(); |
| |
| /// \return the VPBasicBlock that is the exit of this VPBlockBase, |
| /// recursively, if the latter is a VPRegionBlock. Otherwise, if this |
| /// VPBlockBase is a VPBasicBlock, it is returned. |
| const VPBasicBlock *getExitBasicBlock() const; |
| VPBasicBlock *getExitBasicBlock(); |
| |
| const VPBlocksTy &getSuccessors() const { return Successors; } |
| VPBlocksTy &getSuccessors() { return Successors; } |
| |
| const VPBlocksTy &getPredecessors() const { return Predecessors; } |
| VPBlocksTy &getPredecessors() { return Predecessors; } |
| |
| /// \return the successor of this VPBlockBase if it has a single successor. |
| /// Otherwise return a null pointer. |
| VPBlockBase *getSingleSuccessor() const { |
| return (Successors.size() == 1 ? *Successors.begin() : nullptr); |
| } |
| |
| /// \return the predecessor of this VPBlockBase if it has a single |
| /// predecessor. Otherwise return a null pointer. |
| VPBlockBase *getSinglePredecessor() const { |
| return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); |
| } |
| |
| size_t getNumSuccessors() const { return Successors.size(); } |
| size_t getNumPredecessors() const { return Predecessors.size(); } |
| |
| /// An Enclosing Block of a block B is any block containing B, including B |
| /// itself. \return the closest enclosing block starting from "this", which |
| /// has successors. \return the root enclosing block if all enclosing blocks |
| /// have no successors. |
| VPBlockBase *getEnclosingBlockWithSuccessors(); |
| |
| /// \return the closest enclosing block starting from "this", which has |
| /// predecessors. \return the root enclosing block if all enclosing blocks |
| /// have no predecessors. |
| VPBlockBase *getEnclosingBlockWithPredecessors(); |
| |
| /// \return the successors either attached directly to this VPBlockBase or, if |
| /// this VPBlockBase is the exit block of a VPRegionBlock and has no |
| /// successors of its own, search recursively for the first enclosing |
| /// VPRegionBlock that has successors and return them. If no such |
| /// VPRegionBlock exists, return the (empty) successors of the topmost |
| /// VPBlockBase reached. |
| const VPBlocksTy &getHierarchicalSuccessors() { |
| return getEnclosingBlockWithSuccessors()->getSuccessors(); |
| } |
| |
| /// \return the hierarchical successor of this VPBlockBase if it has a single |
| /// hierarchical successor. Otherwise return a null pointer. |
| VPBlockBase *getSingleHierarchicalSuccessor() { |
| return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); |
| } |
| |
| /// \return the predecessors either attached directly to this VPBlockBase or, |
| /// if this VPBlockBase is the entry block of a VPRegionBlock and has no |
| /// predecessors of its own, search recursively for the first enclosing |
| /// VPRegionBlock that has predecessors and return them. If no such |
| /// VPRegionBlock exists, return the (empty) predecessors of the topmost |
| /// VPBlockBase reached. |
| const VPBlocksTy &getHierarchicalPredecessors() { |
| return getEnclosingBlockWithPredecessors()->getPredecessors(); |
| } |
| |
| /// \return the hierarchical predecessor of this VPBlockBase if it has a |
| /// single hierarchical predecessor. Otherwise return a null pointer. |
| VPBlockBase *getSingleHierarchicalPredecessor() { |
| return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); |
| } |
| |
| /// \return the condition bit selecting the successor. |
| VPValue *getCondBit() { return CondBit; } |
| |
| const VPValue *getCondBit() const { return CondBit; } |
| |
| void setCondBit(VPValue *CV) { CondBit = CV; } |
| |
| /// Set a given VPBlockBase \p Successor as the single successor of this |
| /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. |
| /// This VPBlockBase must have no successors. |
| void setOneSuccessor(VPBlockBase *Successor) { |
| assert(Successors.empty() && "Setting one successor when others exist."); |
| appendSuccessor(Successor); |
| } |
| |
| /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two |
| /// successors of this VPBlockBase. \p Condition is set as the successor |
| /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p |
| /// IfFalse. This VPBlockBase must have no successors. |
| void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, |
| VPValue *Condition) { |
| assert(Successors.empty() && "Setting two successors when others exist."); |
| assert(Condition && "Setting two successors without condition!"); |
| CondBit = Condition; |
| appendSuccessor(IfTrue); |
| appendSuccessor(IfFalse); |
| } |
| |
| /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. |
| /// This VPBlockBase must have no predecessors. This VPBlockBase is not added |
| /// as successor of any VPBasicBlock in \p NewPreds. |
| void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { |
| assert(Predecessors.empty() && "Block predecessors already set."); |
| for (auto *Pred : NewPreds) |
| appendPredecessor(Pred); |
| } |
| |
| /// The method which generates the output IR that correspond to this |
| /// VPBlockBase, thereby "executing" the VPlan. |
| virtual void execute(struct VPTransformState *State) = 0; |
| |
| /// Delete all blocks reachable from a given VPBlockBase, inclusive. |
| static void deleteCFG(VPBlockBase *Entry); |
| |
| void printAsOperand(raw_ostream &OS, bool PrintType) const { |
| OS << getName(); |
| } |
| |
| void print(raw_ostream &OS) const { |
| // TODO: Only printing VPBB name for now since we only have dot printing |
| // support for VPInstructions/Recipes. |
| printAsOperand(OS, false); |
| } |
| |
| /// Return true if it is legal to hoist instructions into this block. |
| bool isLegalToHoistInto() { |
| // There are currently no constraints that prevent an instruction to be |
| // hoisted into a VPBlockBase. |
| return true; |
| } |
| }; |
| |
| /// VPRecipeBase is a base class modeling a sequence of one or more output IR |
| /// instructions. |
| class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> { |
| friend VPBasicBlock; |
| |
| private: |
| const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). |
| |
| /// Each VPRecipe belongs to a single VPBasicBlock. |
| VPBasicBlock *Parent = nullptr; |
| |
| public: |
| /// An enumeration for keeping track of the concrete subclass of VPRecipeBase |
| /// that is actually instantiated. Values of this enumeration are kept in the |
| /// SubclassID field of the VPRecipeBase objects. They are used for concrete |
| /// type identification. |
| using VPRecipeTy = enum { |
| VPBlendSC, |
| VPBranchOnMaskSC, |
| VPInstructionSC, |
| VPInterleaveSC, |
| VPPredInstPHISC, |
| VPReplicateSC, |
| VPWidenIntOrFpInductionSC, |
| VPWidenMemoryInstructionSC, |
| VPWidenPHISC, |
| VPWidenSC, |
| }; |
| |
| VPRecipeBase(const unsigned char SC) : SubclassID(SC) {} |
| virtual ~VPRecipeBase() = default; |
| |
| /// \return an ID for the concrete type of this object. |
| /// This is used to implement the classof checks. This should not be used |
| /// for any other purpose, as the values may change as LLVM evolves. |
| unsigned getVPRecipeID() const { return SubclassID; } |
| |
| /// \return the VPBasicBlock which this VPRecipe belongs to. |
| VPBasicBlock *getParent() { return Parent; } |
| const VPBasicBlock *getParent() const { return Parent; } |
| |
| /// The method which generates the output IR instructions that correspond to |
| /// this VPRecipe, thereby "executing" the VPlan. |
| virtual void execute(struct VPTransformState &State) = 0; |
| |
| /// Each recipe prints itself. |
| virtual void print(raw_ostream &O, const Twine &Indent) const = 0; |
| |
| /// Insert an unlinked recipe into a basic block immediately before |
| /// the specified recipe. |
| void insertBefore(VPRecipeBase *InsertPos); |
| |
| /// This method unlinks 'this' from the containing basic block and deletes it. |
| /// |
| /// \returns an iterator pointing to the element after the erased one |
| iplist<VPRecipeBase>::iterator eraseFromParent(); |
| }; |
| |
| /// This is a concrete Recipe that models a single VPlan-level instruction. |
| /// While as any Recipe it may generate a sequence of IR instructions when |
| /// executed, these instructions would always form a single-def expression as |
| /// the VPInstruction is also a single def-use vertex. |
| class VPInstruction : public VPUser, public VPRecipeBase { |
| friend class VPlanHCFGTransforms; |
| |
| public: |
| /// VPlan opcodes, extending LLVM IR with idiomatics instructions. |
| enum { Not = Instruction::OtherOpsEnd + 1 }; |
| |
| private: |
| typedef unsigned char OpcodeTy; |
| OpcodeTy Opcode; |
| |
| /// Utility method serving execute(): generates a single instance of the |
| /// modeled instruction. |
| void generateInstruction(VPTransformState &State, unsigned Part); |
| |
| public: |
| VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands) |
| : VPUser(VPValue::VPInstructionSC, Operands), |
| VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {} |
| |
| VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands) |
| : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {} |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPValue *V) { |
| return V->getVPValueID() == VPValue::VPInstructionSC; |
| } |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *R) { |
| return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC; |
| } |
| |
| unsigned getOpcode() const { return Opcode; } |
| |
| /// Generate the instruction. |
| /// TODO: We currently execute only per-part unless a specific instance is |
| /// provided. |
| void execute(VPTransformState &State) override; |
| |
| /// Print the Recipe. |
| void print(raw_ostream &O, const Twine &Indent) const override; |
| |
| /// Print the VPInstruction. |
| void print(raw_ostream &O) const; |
| }; |
| |
| /// VPWidenRecipe is a recipe for producing a copy of vector type for each |
| /// Instruction in its ingredients independently, in order. This recipe covers |
| /// most of the traditional vectorization cases where each ingredient transforms |
| /// into a vectorized version of itself. |
| class VPWidenRecipe : public VPRecipeBase { |
| private: |
| /// Hold the ingredients by pointing to their original BasicBlock location. |
| BasicBlock::iterator Begin; |
| BasicBlock::iterator End; |
| |
| public: |
| VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { |
| End = I->getIterator(); |
| Begin = End++; |
| } |
| |
| ~VPWidenRecipe() override = default; |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *V) { |
| return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; |
| } |
| |
| /// Produce widened copies of all Ingredients. |
| void execute(VPTransformState &State) override; |
| |
| /// Augment the recipe to include Instr, if it lies at its End. |
| bool appendInstruction(Instruction *Instr) { |
| if (End != Instr->getIterator()) |
| return false; |
| End++; |
| return true; |
| } |
| |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent) const override; |
| }; |
| |
| /// A recipe for handling phi nodes of integer and floating-point inductions, |
| /// producing their vector and scalar values. |
| class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { |
| private: |
| PHINode *IV; |
| TruncInst *Trunc; |
| |
| public: |
| VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) |
| : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} |
| ~VPWidenIntOrFpInductionRecipe() override = default; |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *V) { |
| return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; |
| } |
| |
| /// Generate the vectorized and scalarized versions of the phi node as |
| /// needed by their users. |
| void execute(VPTransformState &State) override; |
| |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent) const override; |
| }; |
| |
| /// A recipe for handling all phi nodes except for integer and FP inductions. |
| class VPWidenPHIRecipe : public VPRecipeBase { |
| private: |
| PHINode *Phi; |
| |
| public: |
| VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} |
| ~VPWidenPHIRecipe() override = default; |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *V) { |
| return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; |
| } |
| |
| /// Generate the phi/select nodes. |
| void execute(VPTransformState &State) override; |
| |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent) const override; |
| }; |
| |
| /// A recipe for vectorizing a phi-node as a sequence of mask-based select |
| /// instructions. |
| class VPBlendRecipe : public VPRecipeBase { |
| private: |
| PHINode *Phi; |
| |
| /// The blend operation is a User of a mask, if not null. |
| std::unique_ptr<VPUser> User; |
| |
| public: |
| VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks) |
| : VPRecipeBase(VPBlendSC), Phi(Phi) { |
| assert((Phi->getNumIncomingValues() == 1 || |
| Phi->getNumIncomingValues() == Masks.size()) && |
| "Expected the same number of incoming values and masks"); |
| if (!Masks.empty()) |
| User.reset(new VPUser(Masks)); |
| } |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *V) { |
| return V->getVPRecipeID() == VPRecipeBase::VPBlendSC; |
| } |
| |
| /// Generate the phi/select nodes. |
| void execute(VPTransformState &State) override; |
| |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent) const override; |
| }; |
| |
| /// VPInterleaveRecipe is a recipe for transforming an interleave group of load |
| /// or stores into one wide load/store and shuffles. |
| class VPInterleaveRecipe : public VPRecipeBase { |
| private: |
| const InterleaveGroup *IG; |
| |
| public: |
| VPInterleaveRecipe(const InterleaveGroup *IG) |
| : VPRecipeBase(VPInterleaveSC), IG(IG) {} |
| ~VPInterleaveRecipe() override = default; |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *V) { |
| return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; |
| } |
| |
| /// Generate the wide load or store, and shuffles. |
| void execute(VPTransformState &State) override; |
| |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent) const override; |
| |
| const InterleaveGroup *getInterleaveGroup() { return IG; } |
| }; |
| |
| /// VPReplicateRecipe replicates a given instruction producing multiple scalar |
| /// copies of the original scalar type, one per lane, instead of producing a |
| /// single copy of widened type for all lanes. If the instruction is known to be |
| /// uniform only one copy, per lane zero, will be generated. |
| class VPReplicateRecipe : public VPRecipeBase { |
| private: |
| /// The instruction being replicated. |
| Instruction *Ingredient; |
| |
| /// Indicator if only a single replica per lane is needed. |
| bool IsUniform; |
| |
| /// Indicator if the replicas are also predicated. |
| bool IsPredicated; |
| |
| /// Indicator if the scalar values should also be packed into a vector. |
| bool AlsoPack; |
| |
| public: |
| VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) |
| : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), |
| IsPredicated(IsPredicated) { |
| // Retain the previous behavior of predicateInstructions(), where an |
| // insert-element of a predicated instruction got hoisted into the |
| // predicated basic block iff it was its only user. This is achieved by |
| // having predicated instructions also pack their values into a vector by |
| // default unless they have a replicated user which uses their scalar value. |
| AlsoPack = IsPredicated && !I->use_empty(); |
| } |
| |
| ~VPReplicateRecipe() override = default; |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *V) { |
| return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; |
| } |
| |
| /// Generate replicas of the desired Ingredient. Replicas will be generated |
| /// for all parts and lanes unless a specific part and lane are specified in |
| /// the \p State. |
| void execute(VPTransformState &State) override; |
| |
| void setAlsoPack(bool Pack) { AlsoPack = Pack; } |
| |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent) const override; |
| }; |
| |
| /// A recipe for generating conditional branches on the bits of a mask. |
| class VPBranchOnMaskRecipe : public VPRecipeBase { |
| private: |
| std::unique_ptr<VPUser> User; |
| |
| public: |
| VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) { |
| if (BlockInMask) // nullptr means all-one mask. |
| User.reset(new VPUser({BlockInMask})); |
| } |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *V) { |
| return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; |
| } |
| |
| /// Generate the extraction of the appropriate bit from the block mask and the |
| /// conditional branch. |
| void execute(VPTransformState &State) override; |
| |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent) const override { |
| O << " +\n" << Indent << "\"BRANCH-ON-MASK "; |
| if (User) |
| O << *User->getOperand(0); |
| else |
| O << " All-One"; |
| O << "\\l\""; |
| } |
| }; |
| |
| /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when |
| /// control converges back from a Branch-on-Mask. The phi nodes are needed in |
| /// order to merge values that are set under such a branch and feed their uses. |
| /// The phi nodes can be scalar or vector depending on the users of the value. |
| /// This recipe works in concert with VPBranchOnMaskRecipe. |
| class VPPredInstPHIRecipe : public VPRecipeBase { |
| private: |
| Instruction *PredInst; |
| |
| public: |
| /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi |
| /// nodes after merging back from a Branch-on-Mask. |
| VPPredInstPHIRecipe(Instruction *PredInst) |
| : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} |
| ~VPPredInstPHIRecipe() override = default; |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *V) { |
| return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; |
| } |
| |
| /// Generates phi nodes for live-outs as needed to retain SSA form. |
| void execute(VPTransformState &State) override; |
| |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent) const override; |
| }; |
| |
| /// A Recipe for widening load/store operations. |
| /// TODO: We currently execute only per-part unless a specific instance is |
| /// provided. |
| class VPWidenMemoryInstructionRecipe : public VPRecipeBase { |
| private: |
| Instruction &Instr; |
| std::unique_ptr<VPUser> User; |
| |
| public: |
| VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask) |
| : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) { |
| if (Mask) // Create a VPInstruction to register as a user of the mask. |
| User.reset(new VPUser({Mask})); |
| } |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPRecipeBase *V) { |
| return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC; |
| } |
| |
| /// Generate the wide load/store. |
| void execute(VPTransformState &State) override; |
| |
| /// Print the recipe. |
| void print(raw_ostream &O, const Twine &Indent) const override; |
| }; |
| |
| /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It |
| /// holds a sequence of zero or more VPRecipe's each representing a sequence of |
| /// output IR instructions. |
| class VPBasicBlock : public VPBlockBase { |
| public: |
| using RecipeListTy = iplist<VPRecipeBase>; |
| |
| private: |
| /// The VPRecipes held in the order of output instructions to generate. |
| RecipeListTy Recipes; |
| |
| public: |
| VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) |
| : VPBlockBase(VPBasicBlockSC, Name.str()) { |
| if (Recipe) |
| appendRecipe(Recipe); |
| } |
| |
| ~VPBasicBlock() override { Recipes.clear(); } |
| |
| /// Instruction iterators... |
| using iterator = RecipeListTy::iterator; |
| using const_iterator = RecipeListTy::const_iterator; |
| using reverse_iterator = RecipeListTy::reverse_iterator; |
| using const_reverse_iterator = RecipeListTy::const_reverse_iterator; |
| |
| //===--------------------------------------------------------------------===// |
| /// Recipe iterator methods |
| /// |
| inline iterator begin() { return Recipes.begin(); } |
| inline const_iterator begin() const { return Recipes.begin(); } |
| inline iterator end() { return Recipes.end(); } |
| inline const_iterator end() const { return Recipes.end(); } |
| |
| inline reverse_iterator rbegin() { return Recipes.rbegin(); } |
| inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } |
| inline reverse_iterator rend() { return Recipes.rend(); } |
| inline const_reverse_iterator rend() const { return Recipes.rend(); } |
| |
| inline size_t size() const { return Recipes.size(); } |
| inline bool empty() const { return Recipes.empty(); } |
| inline const VPRecipeBase &front() const { return Recipes.front(); } |
| inline VPRecipeBase &front() { return Recipes.front(); } |
| inline const VPRecipeBase &back() const { return Recipes.back(); } |
| inline VPRecipeBase &back() { return Recipes.back(); } |
| |
| /// Returns a reference to the list of recipes. |
| RecipeListTy &getRecipeList() { return Recipes; } |
| |
| /// Returns a pointer to a member of the recipe list. |
| static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { |
| return &VPBasicBlock::Recipes; |
| } |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPBlockBase *V) { |
| return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; |
| } |
| |
| void insert(VPRecipeBase *Recipe, iterator InsertPt) { |
| assert(Recipe && "No recipe to append."); |
| assert(!Recipe->Parent && "Recipe already in VPlan"); |
| Recipe->Parent = this; |
| Recipes.insert(InsertPt, Recipe); |
| } |
| |
| /// Augment the existing recipes of a VPBasicBlock with an additional |
| /// \p Recipe as the last recipe. |
| void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } |
| |
| /// The method which generates the output IR instructions that correspond to |
| /// this VPBasicBlock, thereby "executing" the VPlan. |
| void execute(struct VPTransformState *State) override; |
| |
| private: |
| /// Create an IR BasicBlock to hold the output instructions generated by this |
| /// VPBasicBlock, and return it. Update the CFGState accordingly. |
| BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); |
| }; |
| |
| /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks |
| /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. |
| /// A VPRegionBlock may indicate that its contents are to be replicated several |
| /// times. This is designed to support predicated scalarization, in which a |
| /// scalar if-then code structure needs to be generated VF * UF times. Having |
| /// this replication indicator helps to keep a single model for multiple |
| /// candidate VF's. The actual replication takes place only once the desired VF |
| /// and UF have been determined. |
| class VPRegionBlock : public VPBlockBase { |
| private: |
| /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. |
| VPBlockBase *Entry; |
| |
| /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. |
| VPBlockBase *Exit; |
| |
| /// An indicator whether this region is to generate multiple replicated |
| /// instances of output IR corresponding to its VPBlockBases. |
| bool IsReplicator; |
| |
| public: |
| VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, |
| const std::string &Name = "", bool IsReplicator = false) |
| : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), |
| IsReplicator(IsReplicator) { |
| assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); |
| assert(Exit->getSuccessors().empty() && "Exit block has successors."); |
| Entry->setParent(this); |
| Exit->setParent(this); |
| } |
| VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) |
| : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), |
| IsReplicator(IsReplicator) {} |
| |
| ~VPRegionBlock() override { |
| if (Entry) |
| deleteCFG(Entry); |
| } |
| |
| /// Method to support type inquiry through isa, cast, and dyn_cast. |
| static inline bool classof(const VPBlockBase *V) { |
| return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; |
| } |
| |
| const VPBlockBase *getEntry() const { return Entry; } |
| VPBlockBase *getEntry() { return Entry; } |
| |
| /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p |
| /// EntryBlock must have no predecessors. |
| void setEntry(VPBlockBase *EntryBlock) { |
| assert(EntryBlock->getPredecessors().empty() && |
| "Entry block cannot have predecessors."); |
| Entry = EntryBlock; |
| EntryBlock->setParent(this); |
| } |
| |
| // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a |
| // specific interface of llvm::Function, instead of using |
| // GraphTraints::getEntryNode. We should add a new template parameter to |
| // DominatorTreeBase representing the Graph type. |
| VPBlockBase &front() const { return *Entry; } |
| |
| const VPBlockBase *getExit() const { return Exit; } |
| VPBlockBase *getExit() { return Exit; } |
| |
| /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p |
| /// ExitBlock must have no successors. |
| void setExit(VPBlockBase *ExitBlock) { |
| assert(ExitBlock->getSuccessors().empty() && |
| "Exit block cannot have successors."); |
| Exit = ExitBlock; |
| ExitBlock->setParent(this); |
| } |
| |
| /// An indicator whether this region is to generate multiple replicated |
| /// instances of output IR corresponding to its VPBlockBases. |
| bool isReplicator() const { return IsReplicator; } |
| |
| /// The method which generates the output IR instructions that correspond to |
| /// this VPRegionBlock, thereby "executing" the VPlan. |
| void execute(struct VPTransformState *State) override; |
| }; |
| |
| /// VPlan models a candidate for vectorization, encoding various decisions take |
| /// to produce efficient output IR, including which branches, basic-blocks and |
| /// output IR instructions to generate, and their cost. VPlan holds a |
| /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry |
| /// VPBlock. |
| class VPlan { |
| friend class VPlanPrinter; |
| |
| private: |
| /// Hold the single entry to the Hierarchical CFG of the VPlan. |
| VPBlockBase *Entry; |
| |
| /// Holds the VFs applicable to this VPlan. |
| SmallSet<unsigned, 2> VFs; |
| |
| /// Holds the name of the VPlan, for printing. |
| std::string Name; |
| |
| /// Holds all the external definitions created for this VPlan. |
| // TODO: Introduce a specific representation for external definitions in |
| // VPlan. External definitions must be immutable and hold a pointer to its |
| // underlying IR that will be used to implement its structural comparison |
| // (operators '==' and '<'). |
| SmallPtrSet<VPValue *, 16> VPExternalDefs; |
| |
| /// Holds a mapping between Values and their corresponding VPValue inside |
| /// VPlan. |
| Value2VPValueTy Value2VPValue; |
| |
| /// Holds the VPLoopInfo analysis for this VPlan. |
| VPLoopInfo VPLInfo; |
| |
| public: |
| VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {} |
| |
| ~VPlan() { |
| if (Entry) |
| VPBlockBase::deleteCFG(Entry); |
| for (auto &MapEntry : Value2VPValue) |
| delete MapEntry.second; |
| for (VPValue *Def : VPExternalDefs) |
| delete Def; |
| } |
| |
| /// Generate the IR code for this VPlan. |
| void execute(struct VPTransformState *State); |
| |
| VPBlockBase *getEntry() { return Entry; } |
| const VPBlockBase *getEntry() const { return Entry; } |
| |
| VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; } |
| |
| void addVF(unsigned VF) { VFs.insert(VF); } |
| |
| bool hasVF(unsigned VF) { return VFs.count(VF); } |
| |
| const std::string &getName() const { return Name; } |
| |
| void setName(const Twine &newName) { Name = newName.str(); } |
| |
| /// Add \p VPVal to the pool of external definitions if it's not already |
| /// in the pool. |
| void addExternalDef(VPValue *VPVal) { |
| VPExternalDefs.insert(VPVal); |
| } |
| |
| void addVPValue(Value *V) { |
| assert(V && "Trying to add a null Value to VPlan"); |
| assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); |
| Value2VPValue[V] = new VPValue(); |
| } |
| |
| VPValue *getVPValue(Value *V) { |
| assert(V && "Trying to get the VPValue of a null Value"); |
| assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); |
| return Value2VPValue[V]; |
| } |
| |
| /// Return the VPLoopInfo analysis for this VPlan. |
| VPLoopInfo &getVPLoopInfo() { return VPLInfo; } |
| const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } |
| |
| private: |
| /// Add to the given dominator tree the header block and every new basic block |
| /// that was created between it and the latch block, inclusive. |
| static void updateDominatorTree(DominatorTree *DT, |
| BasicBlock *LoopPreHeaderBB, |
| BasicBlock *LoopLatchBB); |
| }; |
| |
| /// VPlanPrinter prints a given VPlan to a given output stream. The printing is |
| /// indented and follows the dot format. |
| class VPlanPrinter { |
| friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan); |
| friend inline raw_ostream &operator<<(raw_ostream &OS, |
| const struct VPlanIngredient &I); |
| |
| private: |
| raw_ostream &OS; |
| VPlan &Plan; |
| unsigned Depth; |
| unsigned TabWidth = 2; |
| std::string Indent; |
| unsigned BID = 0; |
| SmallDenseMap<const VPBlockBase *, unsigned> BlockID; |
| |
| VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {} |
| |
| /// Handle indentation. |
| void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } |
| |
| /// Print a given \p Block of the Plan. |
| void dumpBlock(const VPBlockBase *Block); |
| |
| /// Print the information related to the CFG edges going out of a given |
| /// \p Block, followed by printing the successor blocks themselves. |
| void dumpEdges(const VPBlockBase *Block); |
| |
| /// Print a given \p BasicBlock, including its VPRecipes, followed by printing |
| /// its successor blocks. |
| void dumpBasicBlock(const VPBasicBlock *BasicBlock); |
| |
| /// Print a given \p Region of the Plan. |
| void dumpRegion(const VPRegionBlock *Region); |
| |
| unsigned getOrCreateBID(const VPBlockBase *Block) { |
| return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; |
| } |
| |
| const Twine getOrCreateName(const VPBlockBase *Block); |
| |
| const Twine getUID(const VPBlockBase *Block); |
| |
| /// Print the information related to a CFG edge between two VPBlockBases. |
| void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, |
| const Twine &Label); |
| |
| void dump(); |
| |
| static void printAsIngredient(raw_ostream &O, Value *V); |
| }; |
| |
| struct VPlanIngredient { |
| Value *V; |
| |
| VPlanIngredient(Value *V) : V(V) {} |
| }; |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { |
| VPlanPrinter::printAsIngredient(OS, I.V); |
| return OS; |
| } |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) { |
| VPlanPrinter Printer(OS, Plan); |
| Printer.dump(); |
| return OS; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs // |
| //===----------------------------------------------------------------------===// |
| |
| // The following set of template specializations implement GraphTraits to treat |
| // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note |
| // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the |
| // VPBlockBase is a VPRegionBlock, this specialization provides access to its |
| // successors/predecessors but not to the blocks inside the region. |
| |
| template <> struct GraphTraits<VPBlockBase *> { |
| using NodeRef = VPBlockBase *; |
| using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; |
| |
| static NodeRef getEntryNode(NodeRef N) { return N; } |
| |
| static inline ChildIteratorType child_begin(NodeRef N) { |
| return N->getSuccessors().begin(); |
| } |
| |
| static inline ChildIteratorType child_end(NodeRef N) { |
| return N->getSuccessors().end(); |
| } |
| }; |
| |
| template <> struct GraphTraits<const VPBlockBase *> { |
| using NodeRef = const VPBlockBase *; |
| using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; |
| |
| static NodeRef getEntryNode(NodeRef N) { return N; } |
| |
| static inline ChildIteratorType child_begin(NodeRef N) { |
| return N->getSuccessors().begin(); |
| } |
| |
| static inline ChildIteratorType child_end(NodeRef N) { |
| return N->getSuccessors().end(); |
| } |
| }; |
| |
| // Inverse order specialization for VPBasicBlocks. Predecessors are used instead |
| // of successors for the inverse traversal. |
| template <> struct GraphTraits<Inverse<VPBlockBase *>> { |
| using NodeRef = VPBlockBase *; |
| using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; |
| |
| static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; } |
| |
| static inline ChildIteratorType child_begin(NodeRef N) { |
| return N->getPredecessors().begin(); |
| } |
| |
| static inline ChildIteratorType child_end(NodeRef N) { |
| return N->getPredecessors().end(); |
| } |
| }; |
| |
| // The following set of template specializations implement GraphTraits to |
| // treat VPRegionBlock as a graph and recurse inside its nodes. It's important |
| // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases |
| // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so |
| // there won't be automatic recursion into other VPBlockBases that turn to be |
| // VPRegionBlocks. |
| |
| template <> |
| struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> { |
| using GraphRef = VPRegionBlock *; |
| using nodes_iterator = df_iterator<NodeRef>; |
| |
| static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } |
| |
| static nodes_iterator nodes_begin(GraphRef N) { |
| return nodes_iterator::begin(N->getEntry()); |
| } |
| |
| static nodes_iterator nodes_end(GraphRef N) { |
| // df_iterator::end() returns an empty iterator so the node used doesn't |
| // matter. |
| return nodes_iterator::end(N); |
| } |
| }; |
| |
| template <> |
| struct GraphTraits<const VPRegionBlock *> |
| : public GraphTraits<const VPBlockBase *> { |
| using GraphRef = const VPRegionBlock *; |
| using nodes_iterator = df_iterator<NodeRef>; |
| |
| static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } |
| |
| static nodes_iterator nodes_begin(GraphRef N) { |
| return nodes_iterator::begin(N->getEntry()); |
| } |
| |
| static nodes_iterator nodes_end(GraphRef N) { |
| // df_iterator::end() returns an empty iterator so the node used doesn't |
| // matter. |
| return nodes_iterator::end(N); |
| } |
| }; |
| |
| template <> |
| struct GraphTraits<Inverse<VPRegionBlock *>> |
| : public GraphTraits<Inverse<VPBlockBase *>> { |
| using GraphRef = VPRegionBlock *; |
| using nodes_iterator = df_iterator<NodeRef>; |
| |
| static NodeRef getEntryNode(Inverse<GraphRef> N) { |
| return N.Graph->getExit(); |
| } |
| |
| static nodes_iterator nodes_begin(GraphRef N) { |
| return nodes_iterator::begin(N->getExit()); |
| } |
| |
| static nodes_iterator nodes_end(GraphRef N) { |
| // df_iterator::end() returns an empty iterator so the node used doesn't |
| // matter. |
| return nodes_iterator::end(N); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // VPlan Utilities |
| //===----------------------------------------------------------------------===// |
| |
| /// Class that provides utilities for VPBlockBases in VPlan. |
| class VPBlockUtils { |
| public: |
| VPBlockUtils() = delete; |
| |
| /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p |
| /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p |
| /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr |
| /// has more than one successor, its conditional bit is propagated to \p |
| /// NewBlock. \p NewBlock must have neither successors nor predecessors. |
| static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { |
| assert(NewBlock->getSuccessors().empty() && |
| "Can't insert new block with successors."); |
| // TODO: move successors from BlockPtr to NewBlock when this functionality |
| // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr |
| // already has successors. |
| BlockPtr->setOneSuccessor(NewBlock); |
| NewBlock->setPredecessors({BlockPtr}); |
| NewBlock->setParent(BlockPtr->getParent()); |
| } |
| |
| /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p |
| /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p |
| /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr |
| /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor |
| /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse |
| /// must have neither successors nor predecessors. |
| static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, |
| VPValue *Condition, VPBlockBase *BlockPtr) { |
| assert(IfTrue->getSuccessors().empty() && |
| "Can't insert IfTrue with successors."); |
| assert(IfFalse->getSuccessors().empty() && |
| "Can't insert IfFalse with successors."); |
| BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); |
| IfTrue->setPredecessors({BlockPtr}); |
| IfFalse->setPredecessors({BlockPtr}); |
| IfTrue->setParent(BlockPtr->getParent()); |
| IfFalse->setParent(BlockPtr->getParent()); |
| } |
| |
| /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to |
| /// the successors of \p From and \p From to the predecessors of \p To. Both |
| /// VPBlockBases must have the same parent, which can be null. Both |
| /// VPBlockBases can be already connected to other VPBlockBases. |
| static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { |
| assert((From->getParent() == To->getParent()) && |
| "Can't connect two block with different parents"); |
| assert(From->getNumSuccessors() < 2 && |
| "Blocks can't have more than two successors."); |
| From->appendSuccessor(To); |
| To->appendPredecessor(From); |
| } |
| |
| /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To |
| /// from the successors of \p From and \p From from the predecessors of \p To. |
| static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { |
| assert(To && "Successor to disconnect is null."); |
| From->removeSuccessor(To); |
| To->removePredecessor(From); |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H |