blob: dc58bebd724b0f32231c558209d42dfb1cb71879 [file] [log] [blame]
//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Function evaluator for LLVM IR.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Evaluator.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "evaluator"
using namespace llvm;
static inline bool
isSimpleEnoughValueToCommit(Constant *C,
SmallPtrSetImpl<Constant *> &SimpleConstants,
const DataLayout &DL);
/// Return true if the specified constant can be handled by the code generator.
/// We don't want to generate something like:
/// void *X = &X/42;
/// because the code generator doesn't have a relocation that can handle that.
///
/// This function should be called if C was not found (but just got inserted)
/// in SimpleConstants to avoid having to rescan the same constants all the
/// time.
static bool
isSimpleEnoughValueToCommitHelper(Constant *C,
SmallPtrSetImpl<Constant *> &SimpleConstants,
const DataLayout &DL) {
// Simple global addresses are supported, do not allow dllimport or
// thread-local globals.
if (auto *GV = dyn_cast<GlobalValue>(C))
return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
// Simple integer, undef, constant aggregate zero, etc are all supported.
if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
return true;
// Aggregate values are safe if all their elements are.
if (isa<ConstantAggregate>(C)) {
for (Value *Op : C->operands())
if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
return false;
return true;
}
// We don't know exactly what relocations are allowed in constant expressions,
// so we allow &global+constantoffset, which is safe and uniformly supported
// across targets.
ConstantExpr *CE = cast<ConstantExpr>(C);
switch (CE->getOpcode()) {
case Instruction::BitCast:
// Bitcast is fine if the casted value is fine.
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
case Instruction::IntToPtr:
case Instruction::PtrToInt:
// int <=> ptr is fine if the int type is the same size as the
// pointer type.
if (DL.getTypeSizeInBits(CE->getType()) !=
DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
return false;
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
// GEP is fine if it is simple + constant offset.
case Instruction::GetElementPtr:
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
if (!isa<ConstantInt>(CE->getOperand(i)))
return false;
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
case Instruction::Add:
// We allow simple+cst.
if (!isa<ConstantInt>(CE->getOperand(1)))
return false;
return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
}
return false;
}
static inline bool
isSimpleEnoughValueToCommit(Constant *C,
SmallPtrSetImpl<Constant *> &SimpleConstants,
const DataLayout &DL) {
// If we already checked this constant, we win.
if (!SimpleConstants.insert(C).second)
return true;
// Check the constant.
return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
}
void Evaluator::MutableValue::clear() {
if (auto *Agg = Val.dyn_cast<MutableAggregate *>())
delete Agg;
Val = nullptr;
}
Constant *Evaluator::MutableValue::read(Type *Ty, APInt Offset,
const DataLayout &DL) const {
TypeSize TySize = DL.getTypeStoreSize(Ty);
const MutableValue *V = this;
while (const auto *Agg = V->Val.dyn_cast<MutableAggregate *>()) {
Type *AggTy = Agg->Ty;
std::optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset);
if (!Index || Index->uge(Agg->Elements.size()) ||
!TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy)))
return nullptr;
V = &Agg->Elements[Index->getZExtValue()];
}
return ConstantFoldLoadFromConst(V->Val.get<Constant *>(), Ty, Offset, DL);
}
bool Evaluator::MutableValue::makeMutable() {
Constant *C = Val.get<Constant *>();
Type *Ty = C->getType();
unsigned NumElements;
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
NumElements = VT->getNumElements();
} else if (auto *AT = dyn_cast<ArrayType>(Ty))
NumElements = AT->getNumElements();
else if (auto *ST = dyn_cast<StructType>(Ty))
NumElements = ST->getNumElements();
else
return false;
MutableAggregate *MA = new MutableAggregate(Ty);
MA->Elements.reserve(NumElements);
for (unsigned I = 0; I < NumElements; ++I)
MA->Elements.push_back(C->getAggregateElement(I));
Val = MA;
return true;
}
bool Evaluator::MutableValue::write(Constant *V, APInt Offset,
const DataLayout &DL) {
Type *Ty = V->getType();
TypeSize TySize = DL.getTypeStoreSize(Ty);
MutableValue *MV = this;
while (Offset != 0 ||
!CastInst::isBitOrNoopPointerCastable(Ty, MV->getType(), DL)) {
if (MV->Val.is<Constant *>() && !MV->makeMutable())
return false;
MutableAggregate *Agg = MV->Val.get<MutableAggregate *>();
Type *AggTy = Agg->Ty;
std::optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset);
if (!Index || Index->uge(Agg->Elements.size()) ||
!TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy)))
return false;
MV = &Agg->Elements[Index->getZExtValue()];
}
Type *MVType = MV->getType();
MV->clear();
if (Ty->isIntegerTy() && MVType->isPointerTy())
MV->Val = ConstantExpr::getIntToPtr(V, MVType);
else if (Ty->isPointerTy() && MVType->isIntegerTy())
MV->Val = ConstantExpr::getPtrToInt(V, MVType);
else if (Ty != MVType)
MV->Val = ConstantExpr::getBitCast(V, MVType);
else
MV->Val = V;
return true;
}
Constant *Evaluator::MutableAggregate::toConstant() const {
SmallVector<Constant *, 32> Consts;
for (const MutableValue &MV : Elements)
Consts.push_back(MV.toConstant());
if (auto *ST = dyn_cast<StructType>(Ty))
return ConstantStruct::get(ST, Consts);
if (auto *AT = dyn_cast<ArrayType>(Ty))
return ConstantArray::get(AT, Consts);
assert(isa<FixedVectorType>(Ty) && "Must be vector");
return ConstantVector::get(Consts);
}
/// Return the value that would be computed by a load from P after the stores
/// reflected by 'memory' have been performed. If we can't decide, return null.
Constant *Evaluator::ComputeLoadResult(Constant *P, Type *Ty) {
APInt Offset(DL.getIndexTypeSizeInBits(P->getType()), 0);
P = cast<Constant>(P->stripAndAccumulateConstantOffsets(
DL, Offset, /* AllowNonInbounds */ true));
Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(P->getType()));
if (auto *GV = dyn_cast<GlobalVariable>(P))
return ComputeLoadResult(GV, Ty, Offset);
return nullptr;
}
Constant *Evaluator::ComputeLoadResult(GlobalVariable *GV, Type *Ty,
const APInt &Offset) {
auto It = MutatedMemory.find(GV);
if (It != MutatedMemory.end())
return It->second.read(Ty, Offset, DL);
if (!GV->hasDefinitiveInitializer())
return nullptr;
return ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL);
}
static Function *getFunction(Constant *C) {
if (auto *Fn = dyn_cast<Function>(C))
return Fn;
if (auto *Alias = dyn_cast<GlobalAlias>(C))
if (auto *Fn = dyn_cast<Function>(Alias->getAliasee()))
return Fn;
return nullptr;
}
Function *
Evaluator::getCalleeWithFormalArgs(CallBase &CB,
SmallVectorImpl<Constant *> &Formals) {
auto *V = CB.getCalledOperand()->stripPointerCasts();
if (auto *Fn = getFunction(getVal(V)))
return getFormalParams(CB, Fn, Formals) ? Fn : nullptr;
return nullptr;
}
bool Evaluator::getFormalParams(CallBase &CB, Function *F,
SmallVectorImpl<Constant *> &Formals) {
if (!F)
return false;
auto *FTy = F->getFunctionType();
if (FTy->getNumParams() > CB.arg_size()) {
LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
return false;
}
auto ArgI = CB.arg_begin();
for (Type *PTy : FTy->params()) {
auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), PTy, DL);
if (!ArgC) {
LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
return false;
}
Formals.push_back(ArgC);
++ArgI;
}
return true;
}
/// If call expression contains bitcast then we may need to cast
/// evaluated return value to a type of the call expression.
Constant *Evaluator::castCallResultIfNeeded(Type *ReturnType, Constant *RV) {
if (!RV || RV->getType() == ReturnType)
return RV;
RV = ConstantFoldLoadThroughBitcast(RV, ReturnType, DL);
if (!RV)
LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
return RV;
}
/// Evaluate all instructions in block BB, returning true if successful, false
/// if we can't evaluate it. NewBB returns the next BB that control flows into,
/// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if
/// we looked through pointer casts to evaluate something.
bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB,
bool &StrippedPointerCastsForAliasAnalysis) {
// This is the main evaluation loop.
while (true) {
Constant *InstResult = nullptr;
LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
if (SI->isVolatile()) {
LLVM_DEBUG(dbgs() << "Store is volatile! Can not evaluate.\n");
return false; // no volatile accesses.
}
Constant *Ptr = getVal(SI->getOperand(1));
Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
if (Ptr != FoldedPtr) {
LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
Ptr = FoldedPtr;
LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n");
}
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets(
DL, Offset, /* AllowNonInbounds */ true));
Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(Ptr->getType()));
auto *GV = dyn_cast<GlobalVariable>(Ptr);
if (!GV || !GV->hasUniqueInitializer()) {
LLVM_DEBUG(dbgs() << "Store is not to global with unique initializer: "
<< *Ptr << "\n");
return false;
}
// If this might be too difficult for the backend to handle (e.g. the addr
// of one global variable divided by another) then we can't commit it.
Constant *Val = getVal(SI->getOperand(0));
if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
<< *Val << "\n");
return false;
}
auto Res = MutatedMemory.try_emplace(GV, GV->getInitializer());
if (!Res.first->second.write(Val, Offset, DL))
return false;
} else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
if (LI->isVolatile()) {
LLVM_DEBUG(
dbgs() << "Found a Load! Volatile load, can not evaluate.\n");
return false; // no volatile accesses.
}
Constant *Ptr = getVal(LI->getOperand(0));
Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
if (Ptr != FoldedPtr) {
Ptr = FoldedPtr;
LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
"folding: "
<< *Ptr << "\n");
}
InstResult = ComputeLoadResult(Ptr, LI->getType());
if (!InstResult) {
LLVM_DEBUG(
dbgs() << "Failed to compute load result. Can not evaluate load."
"\n");
return false; // Could not evaluate load.
}
LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
if (AI->isArrayAllocation()) {
LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
return false; // Cannot handle array allocs.
}
Type *Ty = AI->getAllocatedType();
AllocaTmps.push_back(std::make_unique<GlobalVariable>(
Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal,
AI->getType()->getPointerAddressSpace()));
InstResult = AllocaTmps.back().get();
LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
} else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
CallBase &CB = *cast<CallBase>(&*CurInst);
// Debug info can safely be ignored here.
if (isa<DbgInfoIntrinsic>(CB)) {
LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
++CurInst;
continue;
}
// Cannot handle inline asm.
if (CB.isInlineAsm()) {
LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
return false;
}
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CB)) {
if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
if (MSI->isVolatile()) {
LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
<< "intrinsic.\n");
return false;
}
auto *LenC = dyn_cast<ConstantInt>(getVal(MSI->getLength()));
if (!LenC) {
LLVM_DEBUG(dbgs() << "Memset with unknown length.\n");
return false;
}
Constant *Ptr = getVal(MSI->getDest());
APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets(
DL, Offset, /* AllowNonInbounds */ true));
auto *GV = dyn_cast<GlobalVariable>(Ptr);
if (!GV) {
LLVM_DEBUG(dbgs() << "Memset with unknown base.\n");
return false;
}
Constant *Val = getVal(MSI->getValue());
APInt Len = LenC->getValue();
while (Len != 0) {
Constant *DestVal = ComputeLoadResult(GV, Val->getType(), Offset);
if (DestVal != Val) {
LLVM_DEBUG(dbgs() << "Memset is not a no-op at offset "
<< Offset << " of " << *GV << ".\n");
return false;
}
++Offset;
--Len;
}
LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
++CurInst;
continue;
}
if (II->isLifetimeStartOrEnd()) {
LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
++CurInst;
continue;
}
if (II->getIntrinsicID() == Intrinsic::invariant_start) {
// We don't insert an entry into Values, as it doesn't have a
// meaningful return value.
if (!II->use_empty()) {
LLVM_DEBUG(dbgs()
<< "Found unused invariant_start. Can't evaluate.\n");
return false;
}
ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
Value *PtrArg = getVal(II->getArgOperand(1));
Value *Ptr = PtrArg->stripPointerCasts();
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
Type *ElemTy = GV->getValueType();
if (!Size->isMinusOne() &&
Size->getValue().getLimitedValue() >=
DL.getTypeStoreSize(ElemTy)) {
Invariants.insert(GV);
LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
<< *GV << "\n");
} else {
LLVM_DEBUG(dbgs()
<< "Found a global var, but can not treat it as an "
"invariant.\n");
}
}
// Continue even if we do nothing.
++CurInst;
continue;
} else if (II->getIntrinsicID() == Intrinsic::assume) {
LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
++CurInst;
continue;
} else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
++CurInst;
continue;
} else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) {
LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n");
++CurInst;
continue;
} else {
Value *Stripped = CurInst->stripPointerCastsForAliasAnalysis();
// Only attempt to getVal() if we've actually managed to strip
// anything away, or else we'll call getVal() on the current
// instruction.
if (Stripped != &*CurInst) {
InstResult = getVal(Stripped);
}
if (InstResult) {
LLVM_DEBUG(dbgs()
<< "Stripped pointer casts for alias analysis for "
"intrinsic call.\n");
StrippedPointerCastsForAliasAnalysis = true;
InstResult = ConstantExpr::getBitCast(InstResult, II->getType());
} else {
LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n");
return false;
}
}
}
if (!InstResult) {
// Resolve function pointers.
SmallVector<Constant *, 8> Formals;
Function *Callee = getCalleeWithFormalArgs(CB, Formals);
if (!Callee || Callee->isInterposable()) {
LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
return false; // Cannot resolve.
}
if (Callee->isDeclaration()) {
// If this is a function we can constant fold, do it.
if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) {
InstResult = castCallResultIfNeeded(CB.getType(), C);
if (!InstResult)
return false;
LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
<< *InstResult << "\n");
} else {
LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
return false;
}
} else {
if (Callee->getFunctionType()->isVarArg()) {
LLVM_DEBUG(dbgs()
<< "Can not constant fold vararg function call.\n");
return false;
}
Constant *RetVal = nullptr;
// Execute the call, if successful, use the return value.
ValueStack.emplace_back();
if (!EvaluateFunction(Callee, RetVal, Formals)) {
LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
return false;
}
ValueStack.pop_back();
InstResult = castCallResultIfNeeded(CB.getType(), RetVal);
if (RetVal && !InstResult)
return false;
if (InstResult) {
LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
<< *InstResult << "\n\n");
} else {
LLVM_DEBUG(dbgs()
<< "Successfully evaluated function. Result: 0\n\n");
}
}
}
} else if (CurInst->isTerminator()) {
LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
if (BI->isUnconditional()) {
NextBB = BI->getSuccessor(0);
} else {
ConstantInt *Cond =
dyn_cast<ConstantInt>(getVal(BI->getCondition()));
if (!Cond) return false; // Cannot determine.
NextBB = BI->getSuccessor(!Cond->getZExtValue());
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
ConstantInt *Val =
dyn_cast<ConstantInt>(getVal(SI->getCondition()));
if (!Val) return false; // Cannot determine.
NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
} else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
NextBB = BA->getBasicBlock();
else
return false; // Cannot determine.
} else if (isa<ReturnInst>(CurInst)) {
NextBB = nullptr;
} else {
// invoke, unwind, resume, unreachable.
LLVM_DEBUG(dbgs() << "Can not handle terminator.");
return false; // Cannot handle this terminator.
}
// We succeeded at evaluating this block!
LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
return true;
} else {
SmallVector<Constant *> Ops;
for (Value *Op : CurInst->operands())
Ops.push_back(getVal(Op));
InstResult = ConstantFoldInstOperands(&*CurInst, Ops, DL, TLI);
if (!InstResult) {
LLVM_DEBUG(dbgs() << "Cannot fold instruction: " << *CurInst << "\n");
return false;
}
LLVM_DEBUG(dbgs() << "Folded instruction " << *CurInst << " to "
<< *InstResult << "\n");
}
if (!CurInst->use_empty()) {
InstResult = ConstantFoldConstant(InstResult, DL, TLI);
setVal(&*CurInst, InstResult);
}
// If we just processed an invoke, we finished evaluating the block.
if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
NextBB = II->getNormalDest();
LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
return true;
}
// Advance program counter.
++CurInst;
}
}
/// Evaluate a call to function F, returning true if successful, false if we
/// can't evaluate it. ActualArgs contains the formal arguments for the
/// function.
bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
const SmallVectorImpl<Constant*> &ActualArgs) {
assert(ActualArgs.size() == F->arg_size() && "wrong number of arguments");
// Check to see if this function is already executing (recursion). If so,
// bail out. TODO: we might want to accept limited recursion.
if (is_contained(CallStack, F))
return false;
CallStack.push_back(F);
// Initialize arguments to the incoming values specified.
for (const auto &[ArgNo, Arg] : llvm::enumerate(F->args()))
setVal(&Arg, ActualArgs[ArgNo]);
// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
// we can only evaluate any one basic block at most once. This set keeps
// track of what we have executed so we can detect recursive cases etc.
SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
// CurBB - The current basic block we're evaluating.
BasicBlock *CurBB = &F->front();
BasicBlock::iterator CurInst = CurBB->begin();
while (true) {
BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
bool StrippedPointerCastsForAliasAnalysis = false;
if (!EvaluateBlock(CurInst, NextBB, StrippedPointerCastsForAliasAnalysis))
return false;
if (!NextBB) {
// Successfully running until there's no next block means that we found
// the return. Fill it the return value and pop the call stack.
ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
if (RI->getNumOperands()) {
// The Evaluator can look through pointer casts as long as alias
// analysis holds because it's just a simple interpreter and doesn't
// skip memory accesses due to invariant group metadata, but we can't
// let users of Evaluator use a value that's been gleaned looking
// through stripping pointer casts.
if (StrippedPointerCastsForAliasAnalysis &&
!RI->getReturnValue()->getType()->isVoidTy()) {
return false;
}
RetVal = getVal(RI->getOperand(0));
}
CallStack.pop_back();
return true;
}
// Okay, we succeeded in evaluating this control flow. See if we have
// executed the new block before. If so, we have a looping function,
// which we cannot evaluate in reasonable time.
if (!ExecutedBlocks.insert(NextBB).second)
return false; // looped!
// Okay, we have never been in this block before. Check to see if there
// are any PHI nodes. If so, evaluate them with information about where
// we came from.
PHINode *PN = nullptr;
for (CurInst = NextBB->begin();
(PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
// Advance to the next block.
CurBB = NextBB;
}
}