blob: c834e51b5f292546c52b9c38c400ed0a9688e0db [file] [log] [blame]
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
// 1. The exit condition for the loop is canonicalized to compare the
// induction value against the exit value. This turns loops like:
// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
// 2. Any use outside of the loop of an expression derived from the indvar
// is changed to compute the derived value outside of the loop, eliminating
// the dependence on the exit value of the induction variable. If the only
// purpose of the loop is to compute the exit value of some derived
// expression, this transformation will make the loop dead.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/IndVarSimplify.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
#include <cassert>
#include <cstdint>
#include <utility>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "indvars"
STATISTIC(NumWidened , "Number of indvars widened");
STATISTIC(NumReplaced , "Number of exit values replaced");
STATISTIC(NumLFTR , "Number of loop exit tests replaced");
STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
// Trip count verification can be enabled by default under NDEBUG if we
// implement a strong expression equivalence checker in SCEV. Until then, we
// use the verify-indvars flag, which may assert in some cases.
static cl::opt<bool> VerifyIndvars(
"verify-indvars", cl::Hidden,
cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
"effect in release builds. (Note: this adds additional SCEV "
"queries potentially changing the analysis result)"));
static cl::opt<ReplaceExitVal> ReplaceExitValue(
"replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
cl::values(
clEnumValN(NeverRepl, "never", "never replace exit value"),
clEnumValN(OnlyCheapRepl, "cheap",
"only replace exit value when the cost is cheap"),
clEnumValN(
UnusedIndVarInLoop, "unusedindvarinloop",
"only replace exit value when it is an unused "
"induction variable in the loop and has cheap replacement cost"),
clEnumValN(NoHardUse, "noharduse",
"only replace exit values when loop def likely dead"),
clEnumValN(AlwaysRepl, "always",
"always replace exit value whenever possible")));
static cl::opt<bool> UsePostIncrementRanges(
"indvars-post-increment-ranges", cl::Hidden,
cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
cl::init(true));
static cl::opt<bool>
DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
cl::desc("Disable Linear Function Test Replace optimization"));
static cl::opt<bool>
LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
cl::desc("Predicate conditions in read only loops"));
static cl::opt<bool>
AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
cl::desc("Allow widening of indvars to eliminate s/zext"));
namespace {
class IndVarSimplify {
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
const DataLayout &DL;
TargetLibraryInfo *TLI;
const TargetTransformInfo *TTI;
std::unique_ptr<MemorySSAUpdater> MSSAU;
SmallVector<WeakTrackingVH, 16> DeadInsts;
bool WidenIndVars;
bool handleFloatingPointIV(Loop *L, PHINode *PH);
bool rewriteNonIntegerIVs(Loop *L);
bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
/// Try to improve our exit conditions by converting condition from signed
/// to unsigned or rotating computation out of the loop.
/// (See inline comment about why this is duplicated from simplifyAndExtend)
bool canonicalizeExitCondition(Loop *L);
/// Try to eliminate loop exits based on analyzeable exit counts
bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
/// Try to form loop invariant tests for loop exits by changing how many
/// iterations of the loop run when that is unobservable.
bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
bool rewriteFirstIterationLoopExitValues(Loop *L);
bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
const SCEV *ExitCount,
PHINode *IndVar, SCEVExpander &Rewriter);
bool sinkUnusedInvariants(Loop *L);
public:
IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
const DataLayout &DL, TargetLibraryInfo *TLI,
TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
: LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
WidenIndVars(WidenIndVars) {
if (MSSA)
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
}
bool run(Loop *L);
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// rewriteNonIntegerIVs and helpers. Prefer integer IVs.
//===----------------------------------------------------------------------===//
/// Convert APF to an integer, if possible.
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
bool isExact = false;
// See if we can convert this to an int64_t
uint64_t UIntVal;
if (APF.convertToInteger(MutableArrayRef(UIntVal), 64, true,
APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
!isExact)
return false;
IntVal = UIntVal;
return true;
}
/// If the loop has floating induction variable then insert corresponding
/// integer induction variable if possible.
/// For example,
/// for(double i = 0; i < 10000; ++i)
/// bar(i)
/// is converted into
/// for(int i = 0; i < 10000; ++i)
/// bar((double)i);
bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
unsigned BackEdge = IncomingEdge^1;
// Check incoming value.
auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
int64_t InitValue;
if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
return false;
// Check IV increment. Reject this PN if increment operation is not
// an add or increment value can not be represented by an integer.
auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
// If this is not an add of the PHI with a constantfp, or if the constant fp
// is not an integer, bail out.
ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
int64_t IncValue;
if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
!ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
return false;
// Check Incr uses. One user is PN and the other user is an exit condition
// used by the conditional terminator.
Value::user_iterator IncrUse = Incr->user_begin();
Instruction *U1 = cast<Instruction>(*IncrUse++);
if (IncrUse == Incr->user_end()) return false;
Instruction *U2 = cast<Instruction>(*IncrUse++);
if (IncrUse != Incr->user_end()) return false;
// Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
// only used by a branch, we can't transform it.
FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
if (!Compare)
Compare = dyn_cast<FCmpInst>(U2);
if (!Compare || !Compare->hasOneUse() ||
!isa<BranchInst>(Compare->user_back()))
return false;
BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
// We need to verify that the branch actually controls the iteration count
// of the loop. If not, the new IV can overflow and no one will notice.
// The branch block must be in the loop and one of the successors must be out
// of the loop.
assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
if (!L->contains(TheBr->getParent()) ||
(L->contains(TheBr->getSuccessor(0)) &&
L->contains(TheBr->getSuccessor(1))))
return false;
// If it isn't a comparison with an integer-as-fp (the exit value), we can't
// transform it.
ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
int64_t ExitValue;
if (ExitValueVal == nullptr ||
!ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
return false;
// Find new predicate for integer comparison.
CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
switch (Compare->getPredicate()) {
default: return false; // Unknown comparison.
case CmpInst::FCMP_OEQ:
case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
case CmpInst::FCMP_ONE:
case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
case CmpInst::FCMP_OGE:
case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
case CmpInst::FCMP_OLT:
case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
}
// We convert the floating point induction variable to a signed i32 value if
// we can. This is only safe if the comparison will not overflow in a way
// that won't be trapped by the integer equivalent operations. Check for this
// now.
// TODO: We could use i64 if it is native and the range requires it.
// The start/stride/exit values must all fit in signed i32.
if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
return false;
// If not actually striding (add x, 0.0), avoid touching the code.
if (IncValue == 0)
return false;
// Positive and negative strides have different safety conditions.
if (IncValue > 0) {
// If we have a positive stride, we require the init to be less than the
// exit value.
if (InitValue >= ExitValue)
return false;
uint32_t Range = uint32_t(ExitValue-InitValue);
// Check for infinite loop, either:
// while (i <= Exit) or until (i > Exit)
if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
if (++Range == 0) return false; // Range overflows.
}
unsigned Leftover = Range % uint32_t(IncValue);
// If this is an equality comparison, we require that the strided value
// exactly land on the exit value, otherwise the IV condition will wrap
// around and do things the fp IV wouldn't.
if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
Leftover != 0)
return false;
// If the stride would wrap around the i32 before exiting, we can't
// transform the IV.
if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
return false;
} else {
// If we have a negative stride, we require the init to be greater than the
// exit value.
if (InitValue <= ExitValue)
return false;
uint32_t Range = uint32_t(InitValue-ExitValue);
// Check for infinite loop, either:
// while (i >= Exit) or until (i < Exit)
if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
if (++Range == 0) return false; // Range overflows.
}
unsigned Leftover = Range % uint32_t(-IncValue);
// If this is an equality comparison, we require that the strided value
// exactly land on the exit value, otherwise the IV condition will wrap
// around and do things the fp IV wouldn't.
if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
Leftover != 0)
return false;
// If the stride would wrap around the i32 before exiting, we can't
// transform the IV.
if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
return false;
}
IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
// Insert new integer induction variable.
PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
PN->getIncomingBlock(IncomingEdge));
Value *NewAdd =
BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
Incr->getName()+".int", Incr);
NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
ConstantInt::get(Int32Ty, ExitValue),
Compare->getName());
// In the following deletions, PN may become dead and may be deleted.
// Use a WeakTrackingVH to observe whether this happens.
WeakTrackingVH WeakPH = PN;
// Delete the old floating point exit comparison. The branch starts using the
// new comparison.
NewCompare->takeName(Compare);
Compare->replaceAllUsesWith(NewCompare);
RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
// Delete the old floating point increment.
Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType()));
RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
// If the FP induction variable still has uses, this is because something else
// in the loop uses its value. In order to canonicalize the induction
// variable, we chose to eliminate the IV and rewrite it in terms of an
// int->fp cast.
//
// We give preference to sitofp over uitofp because it is faster on most
// platforms.
if (WeakPH) {
Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
&*PN->getParent()->getFirstInsertionPt());
PN->replaceAllUsesWith(Conv);
RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
}
return true;
}
bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
// First step. Check to see if there are any floating-point recurrences.
// If there are, change them into integer recurrences, permitting analysis by
// the SCEV routines.
BasicBlock *Header = L->getHeader();
SmallVector<WeakTrackingVH, 8> PHIs;
for (PHINode &PN : Header->phis())
PHIs.push_back(&PN);
bool Changed = false;
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
Changed |= handleFloatingPointIV(L, PN);
// If the loop previously had floating-point IV, ScalarEvolution
// may not have been able to compute a trip count. Now that we've done some
// re-writing, the trip count may be computable.
if (Changed)
SE->forgetLoop(L);
return Changed;
}
//===---------------------------------------------------------------------===//
// rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
// they will exit at the first iteration.
//===---------------------------------------------------------------------===//
/// Check to see if this loop has loop invariant conditions which lead to loop
/// exits. If so, we know that if the exit path is taken, it is at the first
/// loop iteration. This lets us predict exit values of PHI nodes that live in
/// loop header.
bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
// Verify the input to the pass is already in LCSSA form.
assert(L->isLCSSAForm(*DT));
SmallVector<BasicBlock *, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
bool MadeAnyChanges = false;
for (auto *ExitBB : ExitBlocks) {
// If there are no more PHI nodes in this exit block, then no more
// values defined inside the loop are used on this path.
for (PHINode &PN : ExitBB->phis()) {
for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
IncomingValIdx != E; ++IncomingValIdx) {
auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
// Can we prove that the exit must run on the first iteration if it
// runs at all? (i.e. early exits are fine for our purposes, but
// traces which lead to this exit being taken on the 2nd iteration
// aren't.) Note that this is about whether the exit branch is
// executed, not about whether it is taken.
if (!L->getLoopLatch() ||
!DT->dominates(IncomingBB, L->getLoopLatch()))
continue;
// Get condition that leads to the exit path.
auto *TermInst = IncomingBB->getTerminator();
Value *Cond = nullptr;
if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
// Must be a conditional branch, otherwise the block
// should not be in the loop.
Cond = BI->getCondition();
} else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
Cond = SI->getCondition();
else
continue;
if (!L->isLoopInvariant(Cond))
continue;
auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
// Only deal with PHIs in the loop header.
if (!ExitVal || ExitVal->getParent() != L->getHeader())
continue;
// If ExitVal is a PHI on the loop header, then we know its
// value along this exit because the exit can only be taken
// on the first iteration.
auto *LoopPreheader = L->getLoopPreheader();
assert(LoopPreheader && "Invalid loop");
int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
if (PreheaderIdx != -1) {
assert(ExitVal->getParent() == L->getHeader() &&
"ExitVal must be in loop header");
MadeAnyChanges = true;
PN.setIncomingValue(IncomingValIdx,
ExitVal->getIncomingValue(PreheaderIdx));
SE->forgetValue(&PN);
}
}
}
}
return MadeAnyChanges;
}
//===----------------------------------------------------------------------===//
// IV Widening - Extend the width of an IV to cover its widest uses.
//===----------------------------------------------------------------------===//
/// Update information about the induction variable that is extended by this
/// sign or zero extend operation. This is used to determine the final width of
/// the IV before actually widening it.
static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
ScalarEvolution *SE,
const TargetTransformInfo *TTI) {
bool IsSigned = Cast->getOpcode() == Instruction::SExt;
if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
return;
Type *Ty = Cast->getType();
uint64_t Width = SE->getTypeSizeInBits(Ty);
if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
return;
// Check that `Cast` actually extends the induction variable (we rely on this
// later). This takes care of cases where `Cast` is extending a truncation of
// the narrow induction variable, and thus can end up being narrower than the
// "narrow" induction variable.
uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
if (NarrowIVWidth >= Width)
return;
// Cast is either an sext or zext up to this point.
// We should not widen an indvar if arithmetics on the wider indvar are more
// expensive than those on the narrower indvar. We check only the cost of ADD
// because at least an ADD is required to increment the induction variable. We
// could compute more comprehensively the cost of all instructions on the
// induction variable when necessary.
if (TTI &&
TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
TTI->getArithmeticInstrCost(Instruction::Add,
Cast->getOperand(0)->getType())) {
return;
}
if (!WI.WidestNativeType ||
Width > SE->getTypeSizeInBits(WI.WidestNativeType)) {
WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
WI.IsSigned = IsSigned;
return;
}
// We extend the IV to satisfy the sign of its user(s), or 'signed'
// if there are multiple users with both sign- and zero extensions,
// in order not to introduce nondeterministic behaviour based on the
// unspecified order of a PHI nodes' users-iterator.
WI.IsSigned |= IsSigned;
}
//===----------------------------------------------------------------------===//
// Live IV Reduction - Minimize IVs live across the loop.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Simplification of IV users based on SCEV evaluation.
//===----------------------------------------------------------------------===//
namespace {
class IndVarSimplifyVisitor : public IVVisitor {
ScalarEvolution *SE;
const TargetTransformInfo *TTI;
PHINode *IVPhi;
public:
WideIVInfo WI;
IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
const TargetTransformInfo *TTI,
const DominatorTree *DTree)
: SE(SCEV), TTI(TTI), IVPhi(IV) {
DT = DTree;
WI.NarrowIV = IVPhi;
}
// Implement the interface used by simplifyUsersOfIV.
void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
};
} // end anonymous namespace
/// Iteratively perform simplification on a worklist of IV users. Each
/// successive simplification may push more users which may themselves be
/// candidates for simplification.
///
/// Sign/Zero extend elimination is interleaved with IV simplification.
bool IndVarSimplify::simplifyAndExtend(Loop *L,
SCEVExpander &Rewriter,
LoopInfo *LI) {
SmallVector<WideIVInfo, 8> WideIVs;
auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
Intrinsic::getName(Intrinsic::experimental_guard));
bool HasGuards = GuardDecl && !GuardDecl->use_empty();
SmallVector<PHINode *, 8> LoopPhis;
for (PHINode &PN : L->getHeader()->phis())
LoopPhis.push_back(&PN);
// Each round of simplification iterates through the SimplifyIVUsers worklist
// for all current phis, then determines whether any IVs can be
// widened. Widening adds new phis to LoopPhis, inducing another round of
// simplification on the wide IVs.
bool Changed = false;
while (!LoopPhis.empty()) {
// Evaluate as many IV expressions as possible before widening any IVs. This
// forces SCEV to set no-wrap flags before evaluating sign/zero
// extension. The first time SCEV attempts to normalize sign/zero extension,
// the result becomes final. So for the most predictable results, we delay
// evaluation of sign/zero extend evaluation until needed, and avoid running
// other SCEV based analysis prior to simplifyAndExtend.
do {
PHINode *CurrIV = LoopPhis.pop_back_val();
// Information about sign/zero extensions of CurrIV.
IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
&Visitor);
if (Visitor.WI.WidestNativeType) {
WideIVs.push_back(Visitor.WI);
}
} while(!LoopPhis.empty());
// Continue if we disallowed widening.
if (!WidenIndVars)
continue;
for (; !WideIVs.empty(); WideIVs.pop_back()) {
unsigned ElimExt;
unsigned Widened;
if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
DT, DeadInsts, ElimExt, Widened,
HasGuards, UsePostIncrementRanges)) {
NumElimExt += ElimExt;
NumWidened += Widened;
Changed = true;
LoopPhis.push_back(WidePhi);
}
}
}
return Changed;
}
//===----------------------------------------------------------------------===//
// linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
//===----------------------------------------------------------------------===//
/// Given an Value which is hoped to be part of an add recurance in the given
/// loop, return the associated Phi node if so. Otherwise, return null. Note
/// that this is less general than SCEVs AddRec checking.
static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
Instruction *IncI = dyn_cast<Instruction>(IncV);
if (!IncI)
return nullptr;
switch (IncI->getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
break;
case Instruction::GetElementPtr:
// An IV counter must preserve its type.
if (IncI->getNumOperands() == 2)
break;
[[fallthrough]];
default:
return nullptr;
}
PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
if (Phi && Phi->getParent() == L->getHeader()) {
if (L->isLoopInvariant(IncI->getOperand(1)))
return Phi;
return nullptr;
}
if (IncI->getOpcode() == Instruction::GetElementPtr)
return nullptr;
// Allow add/sub to be commuted.
Phi = dyn_cast<PHINode>(IncI->getOperand(1));
if (Phi && Phi->getParent() == L->getHeader()) {
if (L->isLoopInvariant(IncI->getOperand(0)))
return Phi;
}
return nullptr;
}
/// Whether the current loop exit test is based on this value. Currently this
/// is limited to a direct use in the loop condition.
static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
// TODO: Allow non-icmp loop test.
if (!ICmp)
return false;
// TODO: Allow indirect use.
return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
}
/// linearFunctionTestReplace policy. Return true unless we can show that the
/// current exit test is already sufficiently canonical.
static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
assert(L->getLoopLatch() && "Must be in simplified form");
// Avoid converting a constant or loop invariant test back to a runtime
// test. This is critical for when SCEV's cached ExitCount is less precise
// than the current IR (such as after we've proven a particular exit is
// actually dead and thus the BE count never reaches our ExitCount.)
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
if (L->isLoopInvariant(BI->getCondition()))
return false;
// Do LFTR to simplify the exit condition to an ICMP.
ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
if (!Cond)
return true;
// Do LFTR to simplify the exit ICMP to EQ/NE
ICmpInst::Predicate Pred = Cond->getPredicate();
if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
return true;
// Look for a loop invariant RHS
Value *LHS = Cond->getOperand(0);
Value *RHS = Cond->getOperand(1);
if (!L->isLoopInvariant(RHS)) {
if (!L->isLoopInvariant(LHS))
return true;
std::swap(LHS, RHS);
}
// Look for a simple IV counter LHS
PHINode *Phi = dyn_cast<PHINode>(LHS);
if (!Phi)
Phi = getLoopPhiForCounter(LHS, L);
if (!Phi)
return true;
// Do LFTR if PHI node is defined in the loop, but is *not* a counter.
int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
if (Idx < 0)
return true;
// Do LFTR if the exit condition's IV is *not* a simple counter.
Value *IncV = Phi->getIncomingValue(Idx);
return Phi != getLoopPhiForCounter(IncV, L);
}
/// Return true if undefined behavior would provable be executed on the path to
/// OnPathTo if Root produced a posion result. Note that this doesn't say
/// anything about whether OnPathTo is actually executed or whether Root is
/// actually poison. This can be used to assess whether a new use of Root can
/// be added at a location which is control equivalent with OnPathTo (such as
/// immediately before it) without introducing UB which didn't previously
/// exist. Note that a false result conveys no information.
static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
Instruction *OnPathTo,
DominatorTree *DT) {
// Basic approach is to assume Root is poison, propagate poison forward
// through all users we can easily track, and then check whether any of those
// users are provable UB and must execute before out exiting block might
// exit.
// The set of all recursive users we've visited (which are assumed to all be
// poison because of said visit)
SmallSet<const Value *, 16> KnownPoison;
SmallVector<const Instruction*, 16> Worklist;
Worklist.push_back(Root);
while (!Worklist.empty()) {
const Instruction *I = Worklist.pop_back_val();
// If we know this must trigger UB on a path leading our target.
if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
return true;
// If we can't analyze propagation through this instruction, just skip it
// and transitive users. Safe as false is a conservative result.
if (I != Root && !any_of(I->operands(), [&KnownPoison](const Use &U) {
return KnownPoison.contains(U) && propagatesPoison(U);
}))
continue;
if (KnownPoison.insert(I).second)
for (const User *User : I->users())
Worklist.push_back(cast<Instruction>(User));
}
// Might be non-UB, or might have a path we couldn't prove must execute on
// way to exiting bb.
return false;
}
/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
/// down to checking that all operands are constant and listing instructions
/// that may hide undef.
static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
unsigned Depth) {
if (isa<Constant>(V))
return !isa<UndefValue>(V);
if (Depth >= 6)
return false;
// Conservatively handle non-constant non-instructions. For example, Arguments
// may be undef.
Instruction *I = dyn_cast<Instruction>(V);
if (!I)
return false;
// Load and return values may be undef.
if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
return false;
// Optimistically handle other instructions.
for (Value *Op : I->operands()) {
if (!Visited.insert(Op).second)
continue;
if (!hasConcreteDefImpl(Op, Visited, Depth+1))
return false;
}
return true;
}
/// Return true if the given value is concrete. We must prove that undef can
/// never reach it.
///
/// TODO: If we decide that this is a good approach to checking for undef, we
/// may factor it into a common location.
static bool hasConcreteDef(Value *V) {
SmallPtrSet<Value*, 8> Visited;
Visited.insert(V);
return hasConcreteDefImpl(V, Visited, 0);
}
/// Return true if this IV has any uses other than the (soon to be rewritten)
/// loop exit test.
static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
Value *IncV = Phi->getIncomingValue(LatchIdx);
for (User *U : Phi->users())
if (U != Cond && U != IncV) return false;
for (User *U : IncV->users())
if (U != Cond && U != Phi) return false;
return true;
}
/// Return true if the given phi is a "counter" in L. A counter is an
/// add recurance (of integer or pointer type) with an arbitrary start, and a
/// step of 1. Note that L must have exactly one latch.
static bool isLoopCounter(PHINode* Phi, Loop *L,
ScalarEvolution *SE) {
assert(Phi->getParent() == L->getHeader());
assert(L->getLoopLatch());
if (!SE->isSCEVable(Phi->getType()))
return false;
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
if (!AR || AR->getLoop() != L || !AR->isAffine())
return false;
const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
if (!Step || !Step->isOne())
return false;
int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
Value *IncV = Phi->getIncomingValue(LatchIdx);
return (getLoopPhiForCounter(IncV, L) == Phi &&
isa<SCEVAddRecExpr>(SE->getSCEV(IncV)));
}
/// Search the loop header for a loop counter (anadd rec w/step of one)
/// suitable for use by LFTR. If multiple counters are available, select the
/// "best" one based profitable heuristics.
///
/// BECount may be an i8* pointer type. The pointer difference is already
/// valid count without scaling the address stride, so it remains a pointer
/// expression as far as SCEV is concerned.
static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
const SCEV *BECount,
ScalarEvolution *SE, DominatorTree *DT) {
uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
// Loop over all of the PHI nodes, looking for a simple counter.
PHINode *BestPhi = nullptr;
const SCEV *BestInit = nullptr;
BasicBlock *LatchBlock = L->getLoopLatch();
assert(LatchBlock && "Must be in simplified form");
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
PHINode *Phi = cast<PHINode>(I);
if (!isLoopCounter(Phi, L, SE))
continue;
// Avoid comparing an integer IV against a pointer Limit.
if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
continue;
const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
// AR may be a pointer type, while BECount is an integer type.
// AR may be wider than BECount. With eq/ne tests overflow is immaterial.
// AR may not be a narrower type, or we may never exit.
uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
continue;
// Avoid reusing a potentially undef value to compute other values that may
// have originally had a concrete definition.
if (!hasConcreteDef(Phi)) {
// We explicitly allow unknown phis as long as they are already used by
// the loop exit test. This is legal since performing LFTR could not
// increase the number of undef users.
Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
!isLoopExitTestBasedOn(IncPhi, ExitingBB))
continue;
}
// Avoid introducing undefined behavior due to poison which didn't exist in
// the original program. (Annoyingly, the rules for poison and undef
// propagation are distinct, so this does NOT cover the undef case above.)
// We have to ensure that we don't introduce UB by introducing a use on an
// iteration where said IV produces poison. Our strategy here differs for
// pointers and integer IVs. For integers, we strip and reinfer as needed,
// see code in linearFunctionTestReplace. For pointers, we restrict
// transforms as there is no good way to reinfer inbounds once lost.
if (!Phi->getType()->isIntegerTy() &&
!mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
continue;
const SCEV *Init = AR->getStart();
if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
// Don't force a live loop counter if another IV can be used.
if (AlmostDeadIV(Phi, LatchBlock, Cond))
continue;
// Prefer to count-from-zero. This is a more "canonical" counter form. It
// also prefers integer to pointer IVs.
if (BestInit->isZero() != Init->isZero()) {
if (BestInit->isZero())
continue;
}
// If two IVs both count from zero or both count from nonzero then the
// narrower is likely a dead phi that has been widened. Use the wider phi
// to allow the other to be eliminated.
else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
continue;
}
BestPhi = Phi;
BestInit = Init;
}
return BestPhi;
}
/// Insert an IR expression which computes the value held by the IV IndVar
/// (which must be an loop counter w/unit stride) after the backedge of loop L
/// is taken ExitCount times.
static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
const SCEV *ExitCount, bool UsePostInc, Loop *L,
SCEVExpander &Rewriter, ScalarEvolution *SE) {
assert(isLoopCounter(IndVar, L, SE));
const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
const SCEV *IVInit = AR->getStart();
assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
// IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
// finds a valid pointer IV. Sign extend ExitCount in order to materialize a
// GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
// the existing GEPs whenever possible.
if (IndVar->getType()->isPointerTy() &&
!ExitCount->getType()->isPointerTy()) {
// IVOffset will be the new GEP offset that is interpreted by GEP as a
// signed value. ExitCount on the other hand represents the loop trip count,
// which is an unsigned value. FindLoopCounter only allows induction
// variables that have a positive unit stride of one. This means we don't
// have to handle the case of negative offsets (yet) and just need to zero
// extend ExitCount.
Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
if (UsePostInc)
IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
// Expand the code for the iteration count.
assert(SE->isLoopInvariant(IVOffset, L) &&
"Computed iteration count is not loop invariant!");
const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
} else {
// In any other case, convert both IVInit and ExitCount to integers before
// comparing. This may result in SCEV expansion of pointers, but in practice
// SCEV will fold the pointer arithmetic away as such:
// BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
//
// Valid Cases: (1) both integers is most common; (2) both may be pointers
// for simple memset-style loops.
//
// IVInit integer and ExitCount pointer would only occur if a canonical IV
// were generated on top of case #2, which is not expected.
// For unit stride, IVCount = Start + ExitCount with 2's complement
// overflow.
// For integer IVs, truncate the IV before computing IVInit + BECount,
// unless we know apriori that the limit must be a constant when evaluated
// in the bitwidth of the IV. We prefer (potentially) keeping a truncate
// of the IV in the loop over a (potentially) expensive expansion of the
// widened exit count add(zext(add)) expression.
if (SE->getTypeSizeInBits(IVInit->getType())
> SE->getTypeSizeInBits(ExitCount->getType())) {
if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
else
IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
}
const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
if (UsePostInc)
IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
// Expand the code for the iteration count.
assert(SE->isLoopInvariant(IVLimit, L) &&
"Computed iteration count is not loop invariant!");
// Ensure that we generate the same type as IndVar, or a smaller integer
// type. In the presence of null pointer values, we have an integer type
// SCEV expression (IVInit) for a pointer type IV value (IndVar).
Type *LimitTy = ExitCount->getType()->isPointerTy() ?
IndVar->getType() : ExitCount->getType();
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
}
}
/// This method rewrites the exit condition of the loop to be a canonical !=
/// comparison against the incremented loop induction variable. This pass is
/// able to rewrite the exit tests of any loop where the SCEV analysis can
/// determine a loop-invariant trip count of the loop, which is actually a much
/// broader range than just linear tests.
bool IndVarSimplify::
linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
const SCEV *ExitCount,
PHINode *IndVar, SCEVExpander &Rewriter) {
assert(L->getLoopLatch() && "Loop no longer in simplified form?");
assert(isLoopCounter(IndVar, L, SE));
Instruction * const IncVar =
cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
// Initialize CmpIndVar to the preincremented IV.
Value *CmpIndVar = IndVar;
bool UsePostInc = false;
// If the exiting block is the same as the backedge block, we prefer to
// compare against the post-incremented value, otherwise we must compare
// against the preincremented value.
if (ExitingBB == L->getLoopLatch()) {
// For pointer IVs, we chose to not strip inbounds which requires us not
// to add a potentially UB introducing use. We need to either a) show
// the loop test we're modifying is already in post-inc form, or b) show
// that adding a use must not introduce UB.
bool SafeToPostInc =
IndVar->getType()->isIntegerTy() ||
isLoopExitTestBasedOn(IncVar, ExitingBB) ||
mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
if (SafeToPostInc) {
UsePostInc = true;
CmpIndVar = IncVar;
}
}
// It may be necessary to drop nowrap flags on the incrementing instruction
// if either LFTR moves from a pre-inc check to a post-inc check (in which
// case the increment might have previously been poison on the last iteration
// only) or if LFTR switches to a different IV that was previously dynamically
// dead (and as such may be arbitrarily poison). We remove any nowrap flags
// that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
// check), because the pre-inc addrec flags may be adopted from the original
// instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
// TODO: This handling is inaccurate for one case: If we switch to a
// dynamically dead IV that wraps on the first loop iteration only, which is
// not covered by the post-inc addrec. (If the new IV was not dynamically
// dead, it could not be poison on the first iteration in the first place.)
if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
if (BO->hasNoUnsignedWrap())
BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
if (BO->hasNoSignedWrap())
BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
}
Value *ExitCnt = genLoopLimit(
IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
assert(ExitCnt->getType()->isPointerTy() ==
IndVar->getType()->isPointerTy() &&
"genLoopLimit missed a cast");
// Insert a new icmp_ne or icmp_eq instruction before the branch.
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
ICmpInst::Predicate P;
if (L->contains(BI->getSuccessor(0)))
P = ICmpInst::ICMP_NE;
else
P = ICmpInst::ICMP_EQ;
IRBuilder<> Builder(BI);
// The new loop exit condition should reuse the debug location of the
// original loop exit condition.
if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
// For integer IVs, if we evaluated the limit in the narrower bitwidth to
// avoid the expensive expansion of the limit expression in the wider type,
// emit a truncate to narrow the IV to the ExitCount type. This is safe
// since we know (from the exit count bitwidth), that we can't self-wrap in
// the narrower type.
unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
if (CmpIndVarSize > ExitCntSize) {
assert(!CmpIndVar->getType()->isPointerTy() &&
!ExitCnt->getType()->isPointerTy());
// Before resorting to actually inserting the truncate, use the same
// reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
// the other side of the comparison instead. We still evaluate the limit
// in the narrower bitwidth, we just prefer a zext/sext outside the loop to
// a truncate within in.
bool Extended = false;
const SCEV *IV = SE->getSCEV(CmpIndVar);
const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
ExitCnt->getType());
const SCEV *ZExtTrunc =
SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
if (ZExtTrunc == IV) {
Extended = true;
ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
"wide.trip.count");
} else {
const SCEV *SExtTrunc =
SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
if (SExtTrunc == IV) {
Extended = true;
ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
"wide.trip.count");
}
}
if (Extended) {
bool Discard;
L->makeLoopInvariant(ExitCnt, Discard);
} else
CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
"lftr.wideiv");
}
LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
<< " LHS:" << *CmpIndVar << '\n'
<< " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
<< "\n"
<< " RHS:\t" << *ExitCnt << "\n"
<< "ExitCount:\t" << *ExitCount << "\n"
<< " was: " << *BI->getCondition() << "\n");
Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
Value *OrigCond = BI->getCondition();
// It's tempting to use replaceAllUsesWith here to fully replace the old
// comparison, but that's not immediately safe, since users of the old
// comparison may not be dominated by the new comparison. Instead, just
// update the branch to use the new comparison; in the common case this
// will make old comparison dead.
BI->setCondition(Cond);
DeadInsts.emplace_back(OrigCond);
++NumLFTR;
return true;
}
//===----------------------------------------------------------------------===//
// sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
//===----------------------------------------------------------------------===//
/// If there's a single exit block, sink any loop-invariant values that
/// were defined in the preheader but not used inside the loop into the
/// exit block to reduce register pressure in the loop.
bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
BasicBlock *ExitBlock = L->getExitBlock();
if (!ExitBlock) return false;
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) return false;
bool MadeAnyChanges = false;
BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
BasicBlock::iterator I(Preheader->getTerminator());
while (I != Preheader->begin()) {
--I;
// New instructions were inserted at the end of the preheader.
if (isa<PHINode>(I))
break;
// Don't move instructions which might have side effects, since the side
// effects need to complete before instructions inside the loop. Also don't
// move instructions which might read memory, since the loop may modify
// memory. Note that it's okay if the instruction might have undefined
// behavior: LoopSimplify guarantees that the preheader dominates the exit
// block.
if (I->mayHaveSideEffects() || I->mayReadFromMemory())
continue;
// Skip debug info intrinsics.
if (isa<DbgInfoIntrinsic>(I))
continue;
// Skip eh pad instructions.
if (I->isEHPad())
continue;
// Don't sink alloca: we never want to sink static alloca's out of the
// entry block, and correctly sinking dynamic alloca's requires
// checks for stacksave/stackrestore intrinsics.
// FIXME: Refactor this check somehow?
if (isa<AllocaInst>(I))
continue;
// Determine if there is a use in or before the loop (direct or
// otherwise).
bool UsedInLoop = false;
for (Use &U : I->uses()) {
Instruction *User = cast<Instruction>(U.getUser());
BasicBlock *UseBB = User->getParent();
if (PHINode *P = dyn_cast<PHINode>(User)) {
unsigned i =
PHINode::getIncomingValueNumForOperand(U.getOperandNo());
UseBB = P->getIncomingBlock(i);
}
if (UseBB == Preheader || L->contains(UseBB)) {
UsedInLoop = true;
break;
}
}
// If there is, the def must remain in the preheader.
if (UsedInLoop)
continue;
// Otherwise, sink it to the exit block.
Instruction *ToMove = &*I;
bool Done = false;
if (I != Preheader->begin()) {
// Skip debug info intrinsics.
do {
--I;
} while (I->isDebugOrPseudoInst() && I != Preheader->begin());
if (I->isDebugOrPseudoInst() && I == Preheader->begin())
Done = true;
} else {
Done = true;
}
MadeAnyChanges = true;
ToMove->moveBefore(*ExitBlock, InsertPt);
SE->forgetValue(ToMove);
if (Done) break;
InsertPt = ToMove->getIterator();
}
return MadeAnyChanges;
}
static void replaceExitCond(BranchInst *BI, Value *NewCond,
SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
auto *OldCond = BI->getCondition();
LLVM_DEBUG(dbgs() << "Replacing condition of loop-exiting branch " << *BI
<< " with " << *NewCond << "\n");
BI->setCondition(NewCond);
if (OldCond->use_empty())
DeadInsts.emplace_back(OldCond);
}
static Constant *createFoldedExitCond(const Loop *L, BasicBlock *ExitingBB,
bool IsTaken) {
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
auto *OldCond = BI->getCondition();
return ConstantInt::get(OldCond->getType(),
IsTaken ? ExitIfTrue : !ExitIfTrue);
}
static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
auto *NewCond = createFoldedExitCond(L, ExitingBB, IsTaken);
replaceExitCond(BI, NewCond, DeadInsts);
}
static void replaceLoopPHINodesWithPreheaderValues(
LoopInfo *LI, Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
ScalarEvolution &SE) {
assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!");
auto *LoopPreheader = L->getLoopPreheader();
auto *LoopHeader = L->getHeader();
SmallVector<Instruction *> Worklist;
for (auto &PN : LoopHeader->phis()) {
auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader);
for (User *U : PN.users())
Worklist.push_back(cast<Instruction>(U));
SE.forgetValue(&PN);
PN.replaceAllUsesWith(PreheaderIncoming);
DeadInsts.emplace_back(&PN);
}
// Replacing with the preheader value will often allow IV users to simplify
// (especially if the preheader value is a constant).
SmallPtrSet<Instruction *, 16> Visited;
while (!Worklist.empty()) {
auto *I = cast<Instruction>(Worklist.pop_back_val());
if (!Visited.insert(I).second)
continue;
// Don't simplify instructions outside the loop.
if (!L->contains(I))
continue;
Value *Res = simplifyInstruction(I, I->getModule()->getDataLayout());
if (Res && LI->replacementPreservesLCSSAForm(I, Res)) {
for (User *U : I->users())
Worklist.push_back(cast<Instruction>(U));
I->replaceAllUsesWith(Res);
DeadInsts.emplace_back(I);
}
}
}
static Value *
createInvariantCond(const Loop *L, BasicBlock *ExitingBB,
const ScalarEvolution::LoopInvariantPredicate &LIP,
SCEVExpander &Rewriter) {
ICmpInst::Predicate InvariantPred = LIP.Pred;
BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
Rewriter.setInsertPoint(BI);
auto *LHSV = Rewriter.expandCodeFor(LIP.LHS);
auto *RHSV = Rewriter.expandCodeFor(LIP.RHS);
bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
if (ExitIfTrue)
InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
IRBuilder<> Builder(BI);
return Builder.CreateICmp(InvariantPred, LHSV, RHSV,
BI->getCondition()->getName());
}
static std::optional<Value *>
createReplacement(ICmpInst *ICmp, const Loop *L, BasicBlock *ExitingBB,
const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
ScalarEvolution *SE, SCEVExpander &Rewriter) {
ICmpInst::Predicate Pred = ICmp->getPredicate();
Value *LHS = ICmp->getOperand(0);
Value *RHS = ICmp->getOperand(1);
// 'LHS pred RHS' should now mean that we stay in loop.
auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
if (Inverted)
Pred = CmpInst::getInversePredicate(Pred);
const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
// Can we prove it to be trivially true or false?
if (auto EV = SE->evaluatePredicateAt(Pred, LHSS, RHSS, BI))
return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ !*EV);
auto *ARTy = LHSS->getType();
auto *MaxIterTy = MaxIter->getType();
// If possible, adjust types.
if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
const SCEV *MinusOne = SE->getMinusOne(ARTy);
auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
}
if (SkipLastIter) {
// Semantically skip last iter is "subtract 1, do not bother about unsigned
// wrap". getLoopInvariantExitCondDuringFirstIterations knows how to deal
// with umin in a smart way, but umin(a, b) - 1 will likely not simplify.
// So we manually construct umin(a - 1, b - 1).
SmallVector<const SCEV *, 4> Elements;
if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter)) {
for (auto *Op : UMin->operands())
Elements.push_back(SE->getMinusSCEV(Op, SE->getOne(Op->getType())));
MaxIter = SE->getUMinFromMismatchedTypes(Elements);
} else
MaxIter = SE->getMinusSCEV(MaxIter, SE->getOne(MaxIter->getType()));
}
// Check if there is a loop-invariant predicate equivalent to our check.
auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
L, BI, MaxIter);
if (!LIP)
return std::nullopt;
// Can we prove it to be trivially true?
if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ false);
else
return createInvariantCond(L, ExitingBB, *LIP, Rewriter);
}
static bool optimizeLoopExitWithUnknownExitCount(
const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, const SCEV *MaxIter,
bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter,
SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
assert(
(L->contains(BI->getSuccessor(0)) != L->contains(BI->getSuccessor(1))) &&
"Not a loop exit!");
// For branch that stays in loop by TRUE condition, go through AND. For branch
// that stays in loop by FALSE condition, go through OR. Both gives the
// similar logic: "stay in loop iff all conditions are true(false)".
bool Inverted = L->contains(BI->getSuccessor(1));
SmallVector<ICmpInst *, 4> LeafConditions;
SmallVector<Value *, 4> Worklist;
SmallPtrSet<Value *, 4> Visited;
Value *OldCond = BI->getCondition();
Visited.insert(OldCond);
Worklist.push_back(OldCond);
auto GoThrough = [&](Value *V) {
Value *LHS = nullptr, *RHS = nullptr;
if (Inverted) {
if (!match(V, m_LogicalOr(m_Value(LHS), m_Value(RHS))))
return false;
} else {
if (!match(V, m_LogicalAnd(m_Value(LHS), m_Value(RHS))))
return false;
}
if (Visited.insert(LHS).second)
Worklist.push_back(LHS);
if (Visited.insert(RHS).second)
Worklist.push_back(RHS);
return true;
};
do {
Value *Curr = Worklist.pop_back_val();
// Go through AND/OR conditions. Collect leaf ICMPs. We only care about
// those with one use, to avoid instruction duplication.
if (Curr->hasOneUse())
if (!GoThrough(Curr))
if (auto *ICmp = dyn_cast<ICmpInst>(Curr))
LeafConditions.push_back(ICmp);
} while (!Worklist.empty());
// If the current basic block has the same exit count as the whole loop, and
// it consists of multiple icmp's, try to collect all icmp's that give exact
// same exit count. For all other icmp's, we could use one less iteration,
// because their value on the last iteration doesn't really matter.
SmallPtrSet<ICmpInst *, 4> ICmpsFailingOnLastIter;
if (!SkipLastIter && LeafConditions.size() > 1 &&
SE->getExitCount(L, ExitingBB,
ScalarEvolution::ExitCountKind::SymbolicMaximum) ==
MaxIter)
for (auto *ICmp : LeafConditions) {
auto EL = SE->computeExitLimitFromCond(L, ICmp, Inverted,
/*ControlsExit*/ false);
auto *ExitMax = EL.SymbolicMaxNotTaken;
if (isa<SCEVCouldNotCompute>(ExitMax))
continue;
// They could be of different types (specifically this happens after
// IV widening).
auto *WiderType =
SE->getWiderType(ExitMax->getType(), MaxIter->getType());
auto *WideExitMax = SE->getNoopOrZeroExtend(ExitMax, WiderType);
auto *WideMaxIter = SE->getNoopOrZeroExtend(MaxIter, WiderType);
if (WideExitMax == WideMaxIter)
ICmpsFailingOnLastIter.insert(ICmp);
}
bool Changed = false;
for (auto *OldCond : LeafConditions) {
// Skip last iteration for this icmp under one of two conditions:
// - We do it for all conditions;
// - There is another ICmp that would fail on last iter, so this one doesn't
// really matter.
bool OptimisticSkipLastIter = SkipLastIter;
if (!OptimisticSkipLastIter) {
if (ICmpsFailingOnLastIter.size() > 1)
OptimisticSkipLastIter = true;
else if (ICmpsFailingOnLastIter.size() == 1)
OptimisticSkipLastIter = !ICmpsFailingOnLastIter.count(OldCond);
}
if (auto Replaced =
createReplacement(OldCond, L, ExitingBB, MaxIter, Inverted,
OptimisticSkipLastIter, SE, Rewriter)) {
Changed = true;
auto *NewCond = *Replaced;
if (auto *NCI = dyn_cast<Instruction>(NewCond)) {
NCI->setName(OldCond->getName() + ".first_iter");
NCI->moveBefore(cast<Instruction>(OldCond));
}
LLVM_DEBUG(dbgs() << "Unknown exit count: Replacing " << *OldCond
<< " with " << *NewCond << "\n");
assert(OldCond->hasOneUse() && "Must be!");
OldCond->replaceAllUsesWith(NewCond);
DeadInsts.push_back(OldCond);
// Make sure we no longer consider this condition as failing on last
// iteration.
ICmpsFailingOnLastIter.erase(OldCond);
}
}
return Changed;
}
bool IndVarSimplify::canonicalizeExitCondition(Loop *L) {
// Note: This is duplicating a particular part on SimplifyIndVars reasoning.
// We need to duplicate it because given icmp zext(small-iv), C, IVUsers
// never reaches the icmp since the zext doesn't fold to an AddRec unless
// it already has flags. The alternative to this would be to extending the
// set of "interesting" IV users to include the icmp, but doing that
// regresses results in practice by querying SCEVs before trip counts which
// rely on them which results in SCEV caching sub-optimal answers. The
// concern about caching sub-optimal results is why we only query SCEVs of
// the loop invariant RHS here.
SmallVector<BasicBlock*, 16> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
bool Changed = false;
for (auto *ExitingBB : ExitingBlocks) {
auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
if (!BI)
continue;
assert(BI->isConditional() && "exit branch must be conditional");
auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
if (!ICmp || !ICmp->hasOneUse())
continue;
auto *LHS = ICmp->getOperand(0);
auto *RHS = ICmp->getOperand(1);
// For the range reasoning, avoid computing SCEVs in the loop to avoid
// poisoning cache with sub-optimal results. For the must-execute case,
// this is a neccessary precondition for correctness.
if (!L->isLoopInvariant(RHS)) {
if (!L->isLoopInvariant(LHS))
continue;
// Same logic applies for the inverse case
std::swap(LHS, RHS);
}
// Match (icmp signed-cond zext, RHS)
Value *LHSOp = nullptr;
if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned())
continue;
const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
auto FullCR = ConstantRange::getFull(InnerBitWidth);
FullCR = FullCR.zeroExtend(OuterBitWidth);
auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
if (FullCR.contains(RHSCR)) {
// We have now matched icmp signed-cond zext(X), zext(Y'), and can thus
// replace the signed condition with the unsigned version.
ICmp->setPredicate(ICmp->getUnsignedPredicate());
Changed = true;
// Note: No SCEV invalidation needed. We've changed the predicate, but
// have not changed exit counts, or the values produced by the compare.
continue;
}
}
// Now that we've canonicalized the condition to match the extend,
// see if we can rotate the extend out of the loop.
for (auto *ExitingBB : ExitingBlocks) {
auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
if (!BI)
continue;
assert(BI->isConditional() && "exit branch must be conditional");
auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned())
continue;
bool Swapped = false;
auto *LHS = ICmp->getOperand(0);
auto *RHS = ICmp->getOperand(1);
if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS))
// Nothing to rotate
continue;
if (L->isLoopInvariant(LHS)) {
// Same logic applies for the inverse case until we actually pick
// which operand of the compare to update.
Swapped = true;
std::swap(LHS, RHS);
}
assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS));
// Match (icmp unsigned-cond zext, RHS)
// TODO: Extend to handle corresponding sext/signed-cmp case
// TODO: Extend to other invertible functions
Value *LHSOp = nullptr;
if (!match(LHS, m_ZExt(m_Value(LHSOp))))
continue;
// In general, we only rotate if we can do so without increasing the number
// of instructions. The exception is when we have an zext(add-rec). The
// reason for allowing this exception is that we know we need to get rid
// of the zext for SCEV to be able to compute a trip count for said loops;
// we consider the new trip count valuable enough to increase instruction
// count by one.
if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp)))
continue;
// Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS
// replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS)
// when zext is loop varying and RHS is loop invariant. This converts
// loop varying work to loop-invariant work.
auto doRotateTransform = [&]() {
assert(ICmp->isUnsigned() && "must have proven unsigned already");
auto *NewRHS =
CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "",
L->getLoopPreheader()->getTerminator());
ICmp->setOperand(Swapped ? 1 : 0, LHSOp);
ICmp->setOperand(Swapped ? 0 : 1, NewRHS);
if (LHS->use_empty())
DeadInsts.push_back(LHS);
};
const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
auto FullCR = ConstantRange::getFull(InnerBitWidth);
FullCR = FullCR.zeroExtend(OuterBitWidth);
auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
if (FullCR.contains(RHSCR)) {
doRotateTransform();
Changed = true;
// Note, we are leaving SCEV in an unfortunately imprecise case here
// as rotation tends to reveal information about trip counts not
// previously visible.
continue;
}
}
return Changed;
}
bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
SmallVector<BasicBlock*, 16> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
// Remove all exits which aren't both rewriteable and execute on every
// iteration.
llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
// If our exitting block exits multiple loops, we can only rewrite the
// innermost one. Otherwise, we're changing how many times the innermost
// loop runs before it exits.
if (LI->getLoopFor(ExitingBB) != L)
return true;
// Can't rewrite non-branch yet.
BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
if (!BI)
return true;
// Likewise, the loop latch must be dominated by the exiting BB.
if (!DT->dominates(ExitingBB, L->getLoopLatch()))
return true;
if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
// If already constant, nothing to do. However, if this is an
// unconditional exit, we can still replace header phis with their
// preheader value.
if (!L->contains(BI->getSuccessor(CI->isNullValue())))
replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE);
return true;
}
return false;
});
if (ExitingBlocks.empty())
return false;
// Get a symbolic upper bound on the loop backedge taken count.
const SCEV *MaxBECount = SE->getSymbolicMaxBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(MaxBECount))
return false;
// Visit our exit blocks in order of dominance. We know from the fact that
// all exits must dominate the latch, so there is a total dominance order
// between them.
llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
// std::sort sorts in ascending order, so we want the inverse of
// the normal dominance relation.
if (A == B) return false;
if (DT->properlyDominates(A, B))
return true;
else {
assert(DT->properlyDominates(B, A) &&
"expected total dominance order!");
return false;
}
});
#ifdef ASSERT
for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
}
#endif
bool Changed = false;
bool SkipLastIter = false;
const SCEV *CurrMaxExit = SE->getCouldNotCompute();
auto UpdateSkipLastIter = [&](const SCEV *MaxExitCount) {
if (SkipLastIter || isa<SCEVCouldNotCompute>(MaxExitCount))
return;
if (isa<SCEVCouldNotCompute>(CurrMaxExit))
CurrMaxExit = MaxExitCount;
else
CurrMaxExit = SE->getUMinFromMismatchedTypes(CurrMaxExit, MaxExitCount);
// If the loop has more than 1 iteration, all further checks will be
// executed 1 iteration less.
if (CurrMaxExit == MaxBECount)
SkipLastIter = true;
};
SmallSet<const SCEV *, 8> DominatingExactExitCounts;
for (BasicBlock *ExitingBB : ExitingBlocks) {
const SCEV *ExactExitCount = SE->getExitCount(L, ExitingBB);
const SCEV *MaxExitCount = SE->getExitCount(
L, ExitingBB, ScalarEvolution::ExitCountKind::SymbolicMaximum);
if (isa<SCEVCouldNotCompute>(ExactExitCount)) {
// Okay, we do not know the exit count here. Can we at least prove that it
// will remain the same within iteration space?
auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
auto OptimizeCond = [&](bool SkipLastIter) {
return optimizeLoopExitWithUnknownExitCount(L, BI, ExitingBB,
MaxBECount, SkipLastIter,
SE, Rewriter, DeadInsts);
};
// TODO: We might have proved that we can skip the last iteration for
// this check. In this case, we only want to check the condition on the
// pre-last iteration (MaxBECount - 1). However, there is a nasty
// corner case:
//
// for (i = len; i != 0; i--) { ... check (i ult X) ... }
//
// If we could not prove that len != 0, then we also could not prove that
// (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
// OptimizeCond will likely not prove anything for it, even if it could
// prove the same fact for len.
//
// As a temporary solution, we query both last and pre-last iterations in
// hope that we will be able to prove triviality for at least one of
// them. We can stop querying MaxBECount for this case once SCEV
// understands that (MaxBECount - 1) will not overflow here.
if (OptimizeCond(false))
Changed = true;
else if (SkipLastIter && OptimizeCond(true))
Changed = true;
UpdateSkipLastIter(MaxExitCount);
continue;
}
UpdateSkipLastIter(ExactExitCount);
// If we know we'd exit on the first iteration, rewrite the exit to
// reflect this. This does not imply the loop must exit through this
// exit; there may be an earlier one taken on the first iteration.
// We know that the backedge can't be taken, so we replace all
// the header PHIs with values coming from the preheader.
if (ExactExitCount->isZero()) {
foldExit(L, ExitingBB, true, DeadInsts);
replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE);
Changed = true;
continue;
}
assert(ExactExitCount->getType()->isIntegerTy() &&
MaxBECount->getType()->isIntegerTy() &&
"Exit counts must be integers");
Type *WiderType =
SE->getWiderType(MaxBECount->getType(), ExactExitCount->getType());
ExactExitCount = SE->getNoopOrZeroExtend(ExactExitCount, WiderType);
MaxBECount = SE->getNoopOrZeroExtend(MaxBECount, WiderType);
assert(MaxBECount->getType() == ExactExitCount->getType());
// Can we prove that some other exit must be taken strictly before this
// one?
if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, MaxBECount,
ExactExitCount)) {
foldExit(L, ExitingBB, false, DeadInsts);
Changed = true;
continue;
}
// As we run, keep track of which exit counts we've encountered. If we
// find a duplicate, we've found an exit which would have exited on the
// exiting iteration, but (from the visit order) strictly follows another
// which does the same and is thus dead.
if (!DominatingExactExitCounts.insert(ExactExitCount).second) {
foldExit(L, ExitingBB, false, DeadInsts);
Changed = true;
continue;
}
// TODO: There might be another oppurtunity to leverage SCEV's reasoning
// here. If we kept track of the min of dominanting exits so far, we could
// discharge exits with EC >= MDEC. This is less powerful than the existing
// transform (since later exits aren't considered), but potentially more
// powerful for any case where SCEV can prove a >=u b, but neither a == b
// or a >u b. Such a case is not currently known.
}
return Changed;
}
bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
SmallVector<BasicBlock*, 16> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
// Finally, see if we can rewrite our exit conditions into a loop invariant
// form. If we have a read-only loop, and we can tell that we must exit down
// a path which does not need any of the values computed within the loop, we
// can rewrite the loop to exit on the first iteration. Note that this
// doesn't either a) tell us the loop exits on the first iteration (unless
// *all* exits are predicateable) or b) tell us *which* exit might be taken.
// This transformation looks a lot like a restricted form of dead loop
// elimination, but restricted to read-only loops and without neccesssarily
// needing to kill the loop entirely.
if (!LoopPredication)
return false;
// Note: ExactBTC is the exact backedge taken count *iff* the loop exits
// through *explicit* control flow. We have to eliminate the possibility of
// implicit exits (see below) before we know it's truly exact.
const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(ExactBTC) || !Rewriter.isSafeToExpand(ExactBTC))
return false;
assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant");
assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer");
auto BadExit = [&](BasicBlock *ExitingBB) {
// If our exiting block exits multiple loops, we can only rewrite the
// innermost one. Otherwise, we're changing how many times the innermost
// loop runs before it exits.
if (LI->getLoopFor(ExitingBB) != L)
return true;
// Can't rewrite non-branch yet.
BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
if (!BI)
return true;
// If already constant, nothing to do.
if (isa<Constant>(BI->getCondition()))
return true;
// If the exit block has phis, we need to be able to compute the values
// within the loop which contains them. This assumes trivially lcssa phis
// have already been removed; TODO: generalize
BasicBlock *ExitBlock =
BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
if (!ExitBlock->phis().empty())
return true;
const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
if (isa<SCEVCouldNotCompute>(ExitCount) ||
!Rewriter.isSafeToExpand(ExitCount))
return true;
assert(SE->isLoopInvariant(ExitCount, L) &&
"Exit count must be loop invariant");
assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer");
return false;
};
// If we have any exits which can't be predicated themselves, than we can't
// predicate any exit which isn't guaranteed to execute before it. Consider
// two exits (a) and (b) which would both exit on the same iteration. If we
// can predicate (b), but not (a), and (a) preceeds (b) along some path, then
// we could convert a loop from exiting through (a) to one exiting through
// (b). Note that this problem exists only for exits with the same exit
// count, and we could be more aggressive when exit counts are known inequal.
llvm::sort(ExitingBlocks,
[&](BasicBlock *A, BasicBlock *B) {
// std::sort sorts in ascending order, so we want the inverse of
// the normal dominance relation, plus a tie breaker for blocks
// unordered by dominance.
if (DT->properlyDominates(A, B)) return true;
if (DT->properlyDominates(B, A)) return false;
return A->getName() < B->getName();
});
// Check to see if our exit blocks are a total order (i.e. a linear chain of
// exits before the backedge). If they aren't, reasoning about reachability
// is complicated and we choose not to for now.
for (unsigned i = 1; i < ExitingBlocks.size(); i++)
if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
return false;
// Given our sorted total order, we know that exit[j] must be evaluated
// after all exit[i] such j > i.
for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
if (BadExit(ExitingBlocks[i])) {
ExitingBlocks.resize(i);
break;
}
if (ExitingBlocks.empty())
return false;
// We rely on not being able to reach an exiting block on a later iteration
// then it's statically compute exit count. The implementaton of
// getExitCount currently has this invariant, but assert it here so that
// breakage is obvious if this ever changes..
assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
return DT->dominates(ExitingBB, L->getLoopLatch());
}));
// At this point, ExitingBlocks consists of only those blocks which are
// predicatable. Given that, we know we have at least one exit we can
// predicate if the loop is doesn't have side effects and doesn't have any
// implicit exits (because then our exact BTC isn't actually exact).
// @Reviewers - As structured, this is O(I^2) for loop nests. Any
// suggestions on how to improve this? I can obviously bail out for outer
// loops, but that seems less than ideal. MemorySSA can find memory writes,
// is that enough for *all* side effects?
for (BasicBlock *BB : L->blocks())
for (auto &I : *BB)
// TODO:isGuaranteedToTransfer
if (I.mayHaveSideEffects())
return false;
bool Changed = false;
// Finally, do the actual predication for all predicatable blocks. A couple
// of notes here:
// 1) We don't bother to constant fold dominated exits with identical exit
// counts; that's simply a form of CSE/equality propagation and we leave
// it for dedicated passes.
// 2) We insert the comparison at the branch. Hoisting introduces additional
// legality constraints and we leave that to dedicated logic. We want to
// predicate even if we can't insert a loop invariant expression as
// peeling or unrolling will likely reduce the cost of the otherwise loop
// varying check.
Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
IRBuilder<> B(L->getLoopPreheader()->getTerminator());
Value *ExactBTCV = nullptr; // Lazily generated if needed.
for (BasicBlock *ExitingBB : ExitingBlocks) {
const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
Value *NewCond;
if (ExitCount == ExactBTC) {
NewCond = L->contains(BI->getSuccessor(0)) ?
B.getFalse() : B.getTrue();
} else {
Value *ECV = Rewriter.expandCodeFor(ExitCount);
if (!ExactBTCV)
ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
Value *RHS = ExactBTCV;
if (ECV->getType() != RHS->getType()) {
Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
ECV = B.CreateZExt(ECV, WiderTy);
RHS = B.CreateZExt(RHS, WiderTy);
}
auto Pred = L->contains(BI->getSuccessor(0)) ?
ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
NewCond = B.CreateICmp(Pred, ECV, RHS);
}
Value *OldCond = BI->getCondition();
BI->setCondition(NewCond);
if (OldCond->use_empty())
DeadInsts.emplace_back(OldCond);
Changed = true;
}
return Changed;
}
//===----------------------------------------------------------------------===//
// IndVarSimplify driver. Manage several subpasses of IV simplification.
//===----------------------------------------------------------------------===//
bool IndVarSimplify::run(Loop *L) {
// We need (and expect!) the incoming loop to be in LCSSA.
assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
"LCSSA required to run indvars!");
// If LoopSimplify form is not available, stay out of trouble. Some notes:
// - LSR currently only supports LoopSimplify-form loops. Indvars'
// canonicalization can be a pessimization without LSR to "clean up"
// afterwards.
// - We depend on having a preheader; in particular,
// Loop::getCanonicalInductionVariable only supports loops with preheaders,
// and we're in trouble if we can't find the induction variable even when
// we've manually inserted one.
// - LFTR relies on having a single backedge.
if (!L->isLoopSimplifyForm())
return false;
#ifndef NDEBUG
// Used below for a consistency check only
// Note: Since the result returned by ScalarEvolution may depend on the order
// in which previous results are added to its cache, the call to
// getBackedgeTakenCount() may change following SCEV queries.
const SCEV *BackedgeTakenCount;
if (VerifyIndvars)
BackedgeTakenCount = SE->getBackedgeTakenCount(L);
#endif
bool Changed = false;
// If there are any floating-point recurrences, attempt to
// transform them to use integer recurrences.
Changed |= rewriteNonIntegerIVs(L);
// Create a rewriter object which we'll use to transform the code with.
SCEVExpander Rewriter(*SE, DL, "indvars");
#ifndef NDEBUG
Rewriter.setDebugType(DEBUG_TYPE);
#endif
// Eliminate redundant IV users.
//
// Simplification works best when run before other consumers of SCEV. We
// attempt to avoid evaluating SCEVs for sign/zero extend operations until
// other expressions involving loop IVs have been evaluated. This helps SCEV
// set no-wrap flags before normalizing sign/zero extension.
Rewriter.disableCanonicalMode();
Changed |= simplifyAndExtend(L, Rewriter, LI);
// Check to see if we can compute the final value of any expressions
// that are recurrent in the loop, and substitute the exit values from the
// loop into any instructions outside of the loop that use the final values
// of the current expressions.
if (ReplaceExitValue != NeverRepl) {
if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
ReplaceExitValue, DeadInsts)) {
NumReplaced += Rewrites;
Changed = true;
}
}
// Eliminate redundant IV cycles.
NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI);
// Try to convert exit conditions to unsigned and rotate computation
// out of the loop. Note: Handles invalidation internally if needed.
Changed |= canonicalizeExitCondition(L);
// Try to eliminate loop exits based on analyzeable exit counts
if (optimizeLoopExits(L, Rewriter)) {
Changed = true;
// Given we've changed exit counts, notify SCEV
// Some nested loops may share same folded exit basic block,
// thus we need to notify top most loop.
SE->forgetTopmostLoop(L);
}
// Try to form loop invariant tests for loop exits by changing how many
// iterations of the loop run when that is unobservable.
if (predicateLoopExits(L, Rewriter)) {
Changed = true;
// Given we've changed exit counts, notify SCEV
SE->forgetLoop(L);
}
// If we have a trip count expression, rewrite the loop's exit condition
// using it.
if (!DisableLFTR) {
BasicBlock *PreHeader = L->getLoopPreheader();
SmallVector<BasicBlock*, 16> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (BasicBlock *ExitingBB : ExitingBlocks) {
// Can't rewrite non-branch yet.
if (!isa<BranchInst>(ExitingBB->getTerminator()))
continue;
// If our exitting block exits multiple loops, we can only rewrite the
// innermost one. Otherwise, we're changing how many times the innermost
// loop runs before it exits.
if (LI->getLoopFor(ExitingBB) != L)
continue;
if (!needsLFTR(L, ExitingBB))
continue;
const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
if (isa<SCEVCouldNotCompute>(ExitCount))
continue;
// This was handled above, but as we form SCEVs, we can sometimes refine
// existing ones; this allows exit counts to be folded to zero which
// weren't when optimizeLoopExits saw them. Arguably, we should iterate
// until stable to handle cases like this better.
if (ExitCount->isZero())
continue;
PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
if (!IndVar)
continue;
// Avoid high cost expansions. Note: This heuristic is questionable in
// that our definition of "high cost" is not exactly principled.
if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
TTI, PreHeader->getTerminator()))
continue;
// Check preconditions for proper SCEVExpander operation. SCEV does not
// express SCEVExpander's dependencies, such as LoopSimplify. Instead
// any pass that uses the SCEVExpander must do it. This does not work
// well for loop passes because SCEVExpander makes assumptions about
// all loops, while LoopPassManager only forces the current loop to be
// simplified.
//
// FIXME: SCEV expansion has no way to bail out, so the caller must
// explicitly check any assumptions made by SCEV. Brittle.
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
if (!AR || AR->getLoop()->getLoopPreheader())
Changed |= linearFunctionTestReplace(L, ExitingBB,
ExitCount, IndVar,
Rewriter);
}
}
// Clear the rewriter cache, because values that are in the rewriter's cache
// can be deleted in the loop below, causing the AssertingVH in the cache to
// trigger.
Rewriter.clear();
// Now that we're done iterating through lists, clean up any instructions
// which are now dead.
while (!DeadInsts.empty()) {
Value *V = DeadInsts.pop_back_val();
if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
Changed |=
RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
}
// The Rewriter may not be used from this point on.
// Loop-invariant instructions in the preheader that aren't used in the
// loop may be sunk below the loop to reduce register pressure.
Changed |= sinkUnusedInvariants(L);
// rewriteFirstIterationLoopExitValues does not rely on the computation of
// trip count and therefore can further simplify exit values in addition to
// rewriteLoopExitValues.
Changed |= rewriteFirstIterationLoopExitValues(L);
// Clean up dead instructions.
Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
// Check a post-condition.
assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
"Indvars did not preserve LCSSA!");
// Verify that LFTR, and any other change have not interfered with SCEV's
// ability to compute trip count. We may have *changed* the exit count, but
// only by reducing it.
#ifndef NDEBUG
if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
SE->forgetLoop(L);
const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
SE->getTypeSizeInBits(NewBECount->getType()))
NewBECount = SE->getTruncateOrNoop(NewBECount,
BackedgeTakenCount->getType());
else
BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
NewBECount->getType());
assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
NewBECount) && "indvars must preserve SCEV");
}
if (VerifyMemorySSA && MSSAU)
MSSAU->getMemorySSA()->verifyMemorySSA();
#endif
return Changed;
}
PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &) {
Function *F = L.getHeader()->getParent();
const DataLayout &DL = F->getParent()->getDataLayout();
IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
WidenIndVars && AllowIVWidening);
if (!IVS.run(&L))
return PreservedAnalyses::all();
auto PA = getLoopPassPreservedAnalyses();
PA.preserveSet<CFGAnalyses>();
if (AR.MSSA)
PA.preserve<MemorySSAAnalysis>();
return PA;
}
namespace {
struct IndVarSimplifyLegacyPass : public LoopPass {
static char ID; // Pass identification, replacement for typeid
IndVarSimplifyLegacyPass() : LoopPass(ID) {
initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
if (skipLoop(L))
return false;
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
MemorySSA *MSSA = nullptr;
if (MSSAAnalysis)
MSSA = &MSSAAnalysis->getMSSA();
IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
return IVS.run(L);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addPreserved<MemorySSAWrapperPass>();
getLoopAnalysisUsage(AU);
}
};
} // end anonymous namespace
char IndVarSimplifyLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
"Induction Variable Simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
"Induction Variable Simplification", false, false)
Pass *llvm::createIndVarSimplifyPass() {
return new IndVarSimplifyLegacyPass();
}