blob: 6b91c8494f396142a75a1a2743f93bd2729e4ede [file] [log] [blame]
//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the PassManagerBuilder class, which is used to set up a
// "standard" optimization sequence suitable for languages like C and C++.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm-c/Transforms/PassManagerBuilder.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Target/CGPassBuilderOption.h"
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/LICM.h"
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Vectorize.h"
using namespace llvm;
PassManagerBuilder::PassManagerBuilder() {
OptLevel = 2;
SizeLevel = 0;
LibraryInfo = nullptr;
Inliner = nullptr;
DisableUnrollLoops = false;
SLPVectorize = false;
LoopVectorize = true;
LoopsInterleaved = true;
LicmMssaOptCap = SetLicmMssaOptCap;
LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
DisableGVNLoadPRE = false;
ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
VerifyInput = false;
VerifyOutput = false;
MergeFunctions = false;
DivergentTarget = false;
CallGraphProfile = true;
}
PassManagerBuilder::~PassManagerBuilder() {
delete LibraryInfo;
delete Inliner;
}
void PassManagerBuilder::addInitialAliasAnalysisPasses(
legacy::PassManagerBase &PM) const {
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
// BasicAliasAnalysis wins if they disagree. This is intended to help
// support "obvious" type-punning idioms.
PM.add(createTypeBasedAAWrapperPass());
PM.add(createScopedNoAliasAAWrapperPass());
}
void PassManagerBuilder::populateFunctionPassManager(
legacy::FunctionPassManager &FPM) {
// Add LibraryInfo if we have some.
if (LibraryInfo)
FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
if (OptLevel == 0) return;
addInitialAliasAnalysisPasses(FPM);
// Lower llvm.expect to metadata before attempting transforms.
// Compare/branch metadata may alter the behavior of passes like SimplifyCFG.
FPM.add(createLowerExpectIntrinsicPass());
FPM.add(createCFGSimplificationPass());
FPM.add(createSROAPass());
FPM.add(createEarlyCSEPass());
}
void PassManagerBuilder::addFunctionSimplificationPasses(
legacy::PassManagerBase &MPM) {
// Start of function pass.
// Break up aggregate allocas, using SSAUpdater.
assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!");
MPM.add(createSROAPass());
MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
if (OptLevel > 1) {
// Speculative execution if the target has divergent branches; otherwise nop.
MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
MPM.add(createJumpThreadingPass()); // Thread jumps.
MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
}
MPM.add(
createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
true))); // Merge & remove BBs
// Combine silly seq's
MPM.add(createInstructionCombiningPass());
if (SizeLevel == 0)
MPM.add(createLibCallsShrinkWrapPass());
// TODO: Investigate the cost/benefit of tail call elimination on debugging.
if (OptLevel > 1)
MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
MPM.add(
createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
true))); // Merge & remove BBs
MPM.add(createReassociatePass()); // Reassociate expressions
// Begin the loop pass pipeline.
// The simple loop unswitch pass relies on separate cleanup passes. Schedule
// them first so when we re-process a loop they run before other loop
// passes.
MPM.add(createLoopInstSimplifyPass());
MPM.add(createLoopSimplifyCFGPass());
// Try to remove as much code from the loop header as possible,
// to reduce amount of IR that will have to be duplicated. However,
// do not perform speculative hoisting the first time as LICM
// will destroy metadata that may not need to be destroyed if run
// after loop rotation.
// TODO: Investigate promotion cap for O1.
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
/*AllowSpeculation=*/false));
// Rotate Loop - disable header duplication at -Oz
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, false));
// TODO: Investigate promotion cap for O1.
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
/*AllowSpeculation=*/true));
MPM.add(createSimpleLoopUnswitchLegacyPass(OptLevel == 3));
// FIXME: We break the loop pass pipeline here in order to do full
// simplifycfg. Eventually loop-simplifycfg should be enhanced to replace the
// need for this.
MPM.add(createCFGSimplificationPass(
SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
MPM.add(createInstructionCombiningPass());
// We resume loop passes creating a second loop pipeline here.
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
MPM.add(createLoopDeletionPass()); // Delete dead loops
// Unroll small loops and perform peeling.
MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
ForgetAllSCEVInLoopUnroll));
// This ends the loop pass pipelines.
// Break up allocas that may now be splittable after loop unrolling.
MPM.add(createSROAPass());
if (OptLevel > 1) {
MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
}
MPM.add(createSCCPPass()); // Constant prop with SCCP
// Delete dead bit computations (instcombine runs after to fold away the dead
// computations, and then ADCE will run later to exploit any new DCE
// opportunities that creates).
MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations
// Run instcombine after redundancy elimination to exploit opportunities
// opened up by them.
MPM.add(createInstructionCombiningPass());
if (OptLevel > 1) {
MPM.add(createJumpThreadingPass()); // Thread jumps
MPM.add(createCorrelatedValuePropagationPass());
}
MPM.add(createAggressiveDCEPass()); // Delete dead instructions
MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset
// TODO: Investigate if this is too expensive at O1.
if (OptLevel > 1) {
MPM.add(createDeadStoreEliminationPass()); // Delete dead stores
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
/*AllowSpeculation=*/true));
}
// Merge & remove BBs and sink & hoist common instructions.
MPM.add(createCFGSimplificationPass(
SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true)));
// Clean up after everything.
MPM.add(createInstructionCombiningPass());
}
/// FIXME: Should LTO cause any differences to this set of passes?
void PassManagerBuilder::addVectorPasses(legacy::PassManagerBase &PM,
bool IsFullLTO) {
PM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));
if (IsFullLTO) {
// The vectorizer may have significantly shortened a loop body; unroll
// again. Unroll small loops to hide loop backedge latency and saturate any
// parallel execution resources of an out-of-order processor. We also then
// need to clean up redundancies and loop invariant code.
// FIXME: It would be really good to use a loop-integrated instruction
// combiner for cleanup here so that the unrolling and LICM can be pipelined
// across the loop nests.
PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
ForgetAllSCEVInLoopUnroll));
PM.add(createWarnMissedTransformationsPass());
}
if (!IsFullLTO) {
// Eliminate loads by forwarding stores from the previous iteration to loads
// of the current iteration.
PM.add(createLoopLoadEliminationPass());
}
// Cleanup after the loop optimization passes.
PM.add(createInstructionCombiningPass());
// Now that we've formed fast to execute loop structures, we do further
// optimizations. These are run afterward as they might block doing complex
// analyses and transforms such as what are needed for loop vectorization.
// Cleanup after loop vectorization, etc. Simplification passes like CVP and
// GVN, loop transforms, and others have already run, so it's now better to
// convert to more optimized IR using more aggressive simplify CFG options.
// The extra sinking transform can create larger basic blocks, so do this
// before SLP vectorization.
PM.add(createCFGSimplificationPass(SimplifyCFGOptions()
.forwardSwitchCondToPhi(true)
.convertSwitchRangeToICmp(true)
.convertSwitchToLookupTable(true)
.needCanonicalLoops(false)
.hoistCommonInsts(true)
.sinkCommonInsts(true)));
if (IsFullLTO) {
PM.add(createSCCPPass()); // Propagate exposed constants
PM.add(createInstructionCombiningPass()); // Clean up again
PM.add(createBitTrackingDCEPass());
}
// Optimize parallel scalar instruction chains into SIMD instructions.
if (SLPVectorize) {
PM.add(createSLPVectorizerPass());
}
// Enhance/cleanup vector code.
PM.add(createVectorCombinePass());
if (!IsFullLTO) {
PM.add(createInstructionCombiningPass());
// Unroll small loops
PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
ForgetAllSCEVInLoopUnroll));
if (!DisableUnrollLoops) {
// LoopUnroll may generate some redundency to cleanup.
PM.add(createInstructionCombiningPass());
// Runtime unrolling will introduce runtime check in loop prologue. If the
// unrolled loop is a inner loop, then the prologue will be inside the
// outer loop. LICM pass can help to promote the runtime check out if the
// checked value is loop invariant.
PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
/*AllowSpeculation=*/true));
}
PM.add(createWarnMissedTransformationsPass());
}
// After vectorization and unrolling, assume intrinsics may tell us more
// about pointer alignments.
PM.add(createAlignmentFromAssumptionsPass());
if (IsFullLTO)
PM.add(createInstructionCombiningPass());
}
void PassManagerBuilder::populateModulePassManager(
legacy::PassManagerBase &MPM) {
MPM.add(createAnnotation2MetadataLegacyPass());
// Allow forcing function attributes as a debugging and tuning aid.
MPM.add(createForceFunctionAttrsLegacyPass());
// If all optimizations are disabled, just run the always-inline pass and,
// if enabled, the function merging pass.
if (OptLevel == 0) {
if (Inliner) {
MPM.add(Inliner);
Inliner = nullptr;
}
// FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
// creates a CGSCC pass manager, but we don't want to add extensions into
// that pass manager. To prevent this we insert a no-op module pass to reset
// the pass manager to get the same behavior as EP_OptimizerLast in non-O0
// builds. The function merging pass is
if (MergeFunctions)
MPM.add(createMergeFunctionsPass());
return;
}
// Add LibraryInfo if we have some.
if (LibraryInfo)
MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
addInitialAliasAnalysisPasses(MPM);
// Infer attributes about declarations if possible.
MPM.add(createInferFunctionAttrsLegacyPass());
if (OptLevel > 2)
MPM.add(createCallSiteSplittingPass());
MPM.add(createIPSCCPPass()); // IP SCCP
MPM.add(createCalledValuePropagationPass());
MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
// Promote any localized global vars.
MPM.add(createPromoteMemoryToRegisterPass());
MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE
MPM.add(
createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
true))); // Clean up after IPCP & DAE
// We add a module alias analysis pass here. In part due to bugs in the
// analysis infrastructure this "works" in that the analysis stays alive
// for the entire SCC pass run below.
MPM.add(createGlobalsAAWrapperPass());
// Start of CallGraph SCC passes.
bool RunInliner = false;
if (Inliner) {
MPM.add(Inliner);
Inliner = nullptr;
RunInliner = true;
}
MPM.add(createPostOrderFunctionAttrsLegacyPass());
addFunctionSimplificationPasses(MPM);
// FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
// pass manager that we are specifically trying to avoid. To prevent this
// we must insert a no-op module pass to reset the pass manager.
MPM.add(createBarrierNoopPass());
if (OptLevel > 1)
// Remove avail extern fns and globals definitions if we aren't
// compiling an object file for later LTO. For LTO we want to preserve
// these so they are eligible for inlining at link-time. Note if they
// are unreferenced they will be removed by GlobalDCE later, so
// this only impacts referenced available externally globals.
// Eventually they will be suppressed during codegen, but eliminating
// here enables more opportunity for GlobalDCE as it may make
// globals referenced by available external functions dead
// and saves running remaining passes on the eliminated functions.
MPM.add(createEliminateAvailableExternallyPass());
MPM.add(createReversePostOrderFunctionAttrsPass());
// The inliner performs some kind of dead code elimination as it goes,
// but there are cases that are not really caught by it. We might
// at some point consider teaching the inliner about them, but it
// is OK for now to run GlobalOpt + GlobalDCE in tandem as their
// benefits generally outweight the cost, making the whole pipeline
// faster.
if (RunInliner) {
MPM.add(createGlobalOptimizerPass());
MPM.add(createGlobalDCEPass());
}
// We add a fresh GlobalsModRef run at this point. This is particularly
// useful as the above will have inlined, DCE'ed, and function-attr
// propagated everything. We should at this point have a reasonably minimal
// and richly annotated call graph. By computing aliasing and mod/ref
// information for all local globals here, the late loop passes and notably
// the vectorizer will be able to use them to help recognize vectorizable
// memory operations.
//
// Note that this relies on a bug in the pass manager which preserves
// a module analysis into a function pass pipeline (and throughout it) so
// long as the first function pass doesn't invalidate the module analysis.
// Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
// this to work. Fortunately, it is trivial to preserve AliasAnalysis
// (doing nothing preserves it as it is required to be conservatively
// correct in the face of IR changes).
MPM.add(createGlobalsAAWrapperPass());
MPM.add(createFloat2IntPass());
MPM.add(createLowerConstantIntrinsicsPass());
// Re-rotate loops in all our loop nests. These may have fallout out of
// rotated form due to GVN or other transformations, and the vectorizer relies
// on the rotated form. Disable header duplication at -Oz.
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, false));
// Distribute loops to allow partial vectorization. I.e. isolate dependences
// into separate loop that would otherwise inhibit vectorization. This is
// currently only performed for loops marked with the metadata
// llvm.loop.distribute=true or when -enable-loop-distribute is specified.
MPM.add(createLoopDistributePass());
addVectorPasses(MPM, /* IsFullLTO */ false);
// FIXME: We shouldn't bother with this anymore.
MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
// GlobalOpt already deletes dead functions and globals, at -O2 try a
// late pass of GlobalDCE. It is capable of deleting dead cycles.
if (OptLevel > 1) {
MPM.add(createGlobalDCEPass()); // Remove dead fns and globals.
MPM.add(createConstantMergePass()); // Merge dup global constants
}
if (MergeFunctions)
MPM.add(createMergeFunctionsPass());
// LoopSink pass sinks instructions hoisted by LICM, which serves as a
// canonicalization pass that enables other optimizations. As a result,
// LoopSink pass needs to be a very late IR pass to avoid undoing LICM
// result too early.
MPM.add(createLoopSinkPass());
// Get rid of LCSSA nodes.
MPM.add(createInstSimplifyLegacyPass());
// This hoists/decomposes div/rem ops. It should run after other sink/hoist
// passes to avoid re-sinking, but before SimplifyCFG because it can allow
// flattening of blocks.
MPM.add(createDivRemPairsPass());
// LoopSink (and other loop passes since the last simplifyCFG) might have
// resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
MPM.add(createCFGSimplificationPass(
SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
}
LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
PassManagerBuilder *PMB = new PassManagerBuilder();
return wrap(PMB);
}
void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
PassManagerBuilder *Builder = unwrap(PMB);
delete Builder;
}
void
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
unsigned OptLevel) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->OptLevel = OptLevel;
}
void
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
unsigned SizeLevel) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->SizeLevel = SizeLevel;
}
void
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
// NOTE: The DisableUnitAtATime switch has been removed.
}
void
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->DisableUnrollLoops = Value;
}
void
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
// NOTE: The simplify-libcalls pass has been removed.
}
void
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
unsigned Threshold) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->Inliner = createFunctionInliningPass(Threshold);
}
void
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM) {
PassManagerBuilder *Builder = unwrap(PMB);
legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
Builder->populateFunctionPassManager(*FPM);
}
void
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM) {
PassManagerBuilder *Builder = unwrap(PMB);
legacy::PassManagerBase *MPM = unwrap(PM);
Builder->populateModulePassManager(*MPM);
}