blob: 4a7efb28e853959a37e0bed39b0db1b465ac42bf [file] [log] [blame]
//===- FunctionSpecialization.cpp - Function Specialization ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This specialises functions with constant parameters. Constant parameters
// like function pointers and constant globals are propagated to the callee by
// specializing the function. The main benefit of this pass at the moment is
// that indirect calls are transformed into direct calls, which provides inline
// opportunities that the inliner would not have been able to achieve. That's
// why function specialisation is run before the inliner in the optimisation
// pipeline; that is by design. Otherwise, we would only benefit from constant
// passing, which is a valid use-case too, but hasn't been explored much in
// terms of performance uplifts, cost-model and compile-time impact.
//
// Current limitations:
// - It does not yet handle integer ranges. We do support "literal constants",
// but that's off by default under an option.
// - The cost-model could be further looked into (it mainly focuses on inlining
// benefits),
//
// Ideas:
// - With a function specialization attribute for arguments, we could have
// a direct way to steer function specialization, avoiding the cost-model,
// and thus control compile-times / code-size.
//
// Todos:
// - Specializing recursive functions relies on running the transformation a
// number of times, which is controlled by option
// `func-specialization-max-iters`. Thus, increasing this value and the
// number of iterations, will linearly increase the number of times recursive
// functions get specialized, see also the discussion in
// https://reviews.llvm.org/D106426 for details. Perhaps there is a
// compile-time friendlier way to control/limit the number of specialisations
// for recursive functions.
// - Don't transform the function if function specialization does not trigger;
// the SCCPSolver may make IR changes.
//
// References:
// - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
// it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/FunctionSpecialization.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SCCPSolver.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <cmath>
using namespace llvm;
#define DEBUG_TYPE "function-specialization"
STATISTIC(NumFuncSpecialized, "Number of functions specialized");
static cl::opt<bool> ForceFunctionSpecialization(
"force-function-specialization", cl::init(false), cl::Hidden,
cl::desc("Force function specialization for every call site with a "
"constant argument"));
static cl::opt<unsigned> MaxClonesThreshold(
"func-specialization-max-clones", cl::Hidden,
cl::desc("The maximum number of clones allowed for a single function "
"specialization"),
cl::init(3));
static cl::opt<unsigned> SmallFunctionThreshold(
"func-specialization-size-threshold", cl::Hidden,
cl::desc("Don't specialize functions that have less than this theshold "
"number of instructions"),
cl::init(100));
static cl::opt<unsigned>
AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
cl::desc("Average loop iteration count cost"),
cl::init(10));
static cl::opt<bool> SpecializeOnAddresses(
"func-specialization-on-address", cl::init(false), cl::Hidden,
cl::desc("Enable function specialization on the address of global values"));
// Disabled by default as it can significantly increase compilation times.
//
// https://llvm-compile-time-tracker.com
// https://github.com/nikic/llvm-compile-time-tracker
static cl::opt<bool> EnableSpecializationForLiteralConstant(
"function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
cl::desc("Enable specialization of functions that take a literal constant "
"as an argument."));
Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
CallInst *Call) {
Value *StoreValue = nullptr;
for (auto *User : Alloca->users()) {
// We can't use llvm::isAllocaPromotable() as that would fail because of
// the usage in the CallInst, which is what we check here.
if (User == Call)
continue;
if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
return nullptr;
continue;
}
if (auto *Store = dyn_cast<StoreInst>(User)) {
// This is a duplicate store, bail out.
if (StoreValue || Store->isVolatile())
return nullptr;
StoreValue = Store->getValueOperand();
continue;
}
// Bail if there is any other unknown usage.
return nullptr;
}
return getCandidateConstant(StoreValue);
}
// A constant stack value is an AllocaInst that has a single constant
// value stored to it. Return this constant if such an alloca stack value
// is a function argument.
Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
Value *Val) {
if (!Val)
return nullptr;
Val = Val->stripPointerCasts();
if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
return ConstVal;
auto *Alloca = dyn_cast<AllocaInst>(Val);
if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
return nullptr;
return getPromotableAlloca(Alloca, Call);
}
// To support specializing recursive functions, it is important to propagate
// constant arguments because after a first iteration of specialisation, a
// reduced example may look like this:
//
// define internal void @RecursiveFn(i32* arg1) {
// %temp = alloca i32, align 4
// store i32 2 i32* %temp, align 4
// call void @RecursiveFn.1(i32* nonnull %temp)
// ret void
// }
//
// Before a next iteration, we need to propagate the constant like so
// which allows further specialization in next iterations.
//
// @funcspec.arg = internal constant i32 2
//
// define internal void @someFunc(i32* arg1) {
// call void @otherFunc(i32* nonnull @funcspec.arg)
// ret void
// }
//
void FunctionSpecializer::promoteConstantStackValues() {
// Iterate over the argument tracked functions see if there
// are any new constant values for the call instruction via
// stack variables.
for (Function &F : M) {
if (!Solver.isArgumentTrackedFunction(&F))
continue;
for (auto *User : F.users()) {
auto *Call = dyn_cast<CallInst>(User);
if (!Call)
continue;
if (!Solver.isBlockExecutable(Call->getParent()))
continue;
bool Changed = false;
for (const Use &U : Call->args()) {
unsigned Idx = Call->getArgOperandNo(&U);
Value *ArgOp = Call->getArgOperand(Idx);
Type *ArgOpType = ArgOp->getType();
if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
continue;
auto *ConstVal = getConstantStackValue(Call, ArgOp);
if (!ConstVal)
continue;
Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
GlobalValue::InternalLinkage, ConstVal,
"funcspec.arg");
if (ArgOpType != ConstVal->getType())
GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType);
Call->setArgOperand(Idx, GV);
Changed = true;
}
// Add the changed CallInst to Solver Worklist
if (Changed)
Solver.visitCall(*Call);
}
}
}
// ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
// interfere with the promoteConstantStackValues() optimization.
static void removeSSACopy(Function &F) {
for (BasicBlock &BB : F) {
for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
auto *II = dyn_cast<IntrinsicInst>(&Inst);
if (!II)
continue;
if (II->getIntrinsicID() != Intrinsic::ssa_copy)
continue;
Inst.replaceAllUsesWith(II->getOperand(0));
Inst.eraseFromParent();
}
}
}
/// Remove any ssa_copy intrinsics that may have been introduced.
void FunctionSpecializer::cleanUpSSA() {
for (Function *F : SpecializedFuncs)
removeSSACopy(*F);
}
template <> struct llvm::DenseMapInfo<SpecSig> {
static inline SpecSig getEmptyKey() { return {~0U, {}}; }
static inline SpecSig getTombstoneKey() { return {~1U, {}}; }
static unsigned getHashValue(const SpecSig &S) {
return static_cast<unsigned>(hash_value(S));
}
static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) {
return LHS == RHS;
}
};
/// Attempt to specialize functions in the module to enable constant
/// propagation across function boundaries.
///
/// \returns true if at least one function is specialized.
bool FunctionSpecializer::run() {
// Find possible specializations for each function.
SpecMap SM;
SmallVector<Spec, 32> AllSpecs;
unsigned NumCandidates = 0;
for (Function &F : M) {
if (!isCandidateFunction(&F))
continue;
auto Cost = getSpecializationCost(&F);
if (!Cost.isValid()) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialization cost for "
<< F.getName() << "\n");
continue;
}
LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
<< F.getName() << " is " << Cost << "\n");
if (!findSpecializations(&F, Cost, AllSpecs, SM)) {
LLVM_DEBUG(
dbgs() << "FnSpecialization: No possible specializations found for "
<< F.getName() << "\n");
continue;
}
++NumCandidates;
}
if (!NumCandidates) {
LLVM_DEBUG(
dbgs()
<< "FnSpecialization: No possible specializations found in module\n");
return false;
}
// Choose the most profitable specialisations, which fit in the module
// specialization budget, which is derived from maximum number of
// specializations per specialization candidate function.
auto CompareGain = [&AllSpecs](unsigned I, unsigned J) {
return AllSpecs[I].Gain > AllSpecs[J].Gain;
};
const unsigned NSpecs =
std::min(NumCandidates * MaxClonesThreshold, unsigned(AllSpecs.size()));
SmallVector<unsigned> BestSpecs(NSpecs + 1);
std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
if (AllSpecs.size() > NSpecs) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
<< "the maximum number of clones threshold.\n"
<< "FnSpecialization: Specializing the "
<< NSpecs
<< " most profitable candidates.\n");
std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareGain);
for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
BestSpecs[NSpecs] = I;
std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareGain);
std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareGain);
}
}
LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n";
for (unsigned I = 0; I < NSpecs; ++I) {
const Spec &S = AllSpecs[BestSpecs[I]];
dbgs() << "FnSpecialization: Function " << S.F->getName()
<< " , gain " << S.Gain << "\n";
for (const ArgInfo &Arg : S.Sig.Args)
dbgs() << "FnSpecialization: FormalArg = "
<< Arg.Formal->getNameOrAsOperand()
<< ", ActualArg = " << Arg.Actual->getNameOrAsOperand()
<< "\n";
});
// Create the chosen specializations.
SmallPtrSet<Function *, 8> OriginalFuncs;
SmallVector<Function *> Clones;
for (unsigned I = 0; I < NSpecs; ++I) {
Spec &S = AllSpecs[BestSpecs[I]];
S.Clone = createSpecialization(S.F, S.Sig);
// Update the known call sites to call the clone.
for (CallBase *Call : S.CallSites) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call
<< " to call " << S.Clone->getName() << "\n");
Call->setCalledFunction(S.Clone);
}
Clones.push_back(S.Clone);
OriginalFuncs.insert(S.F);
}
Solver.solveWhileResolvedUndefsIn(Clones);
// Update the rest of the call sites - these are the recursive calls, calls
// to discarded specialisations and calls that may match a specialisation
// after the solver runs.
for (Function *F : OriginalFuncs) {
auto [Begin, End] = SM[F];
updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
}
promoteConstantStackValues();
LLVM_DEBUG(if (NbFunctionsSpecialized) dbgs()
<< "FnSpecialization: Specialized " << NbFunctionsSpecialized
<< " functions in module " << M.getName() << "\n");
NumFuncSpecialized += NbFunctionsSpecialized;
return true;
}
void FunctionSpecializer::removeDeadFunctions() {
for (Function *F : FullySpecialized) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
<< F->getName() << "\n");
if (FAM)
FAM->clear(*F, F->getName());
F->eraseFromParent();
}
FullySpecialized.clear();
}
// Compute the code metrics for function \p F.
CodeMetrics &FunctionSpecializer::analyzeFunction(Function *F) {
auto I = FunctionMetrics.insert({F, CodeMetrics()});
CodeMetrics &Metrics = I.first->second;
if (I.second) {
// The code metrics were not cached.
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
for (BasicBlock &BB : *F)
Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
LLVM_DEBUG(dbgs() << "FnSpecialization: Code size of function "
<< F->getName() << " is " << Metrics.NumInsts
<< " instructions\n");
}
return Metrics;
}
/// Clone the function \p F and remove the ssa_copy intrinsics added by
/// the SCCPSolver in the cloned version.
static Function *cloneCandidateFunction(Function *F) {
ValueToValueMapTy Mappings;
Function *Clone = CloneFunction(F, Mappings);
removeSSACopy(*Clone);
return Clone;
}
bool FunctionSpecializer::findSpecializations(Function *F, InstructionCost Cost,
SmallVectorImpl<Spec> &AllSpecs,
SpecMap &SM) {
// A mapping from a specialisation signature to the index of the respective
// entry in the all specialisation array. Used to ensure uniqueness of
// specialisations.
DenseMap<SpecSig, unsigned> UM;
// Get a list of interesting arguments.
SmallVector<Argument *> Args;
for (Argument &Arg : F->args())
if (isArgumentInteresting(&Arg))
Args.push_back(&Arg);
if (Args.empty())
return false;
bool Found = false;
for (User *U : F->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto &CS = *cast<CallBase>(U);
// The user instruction does not call our function.
if (CS.getCalledFunction() != F)
continue;
// If the call site has attribute minsize set, that callsite won't be
// specialized.
if (CS.hasFnAttr(Attribute::MinSize))
continue;
// If the parent of the call site will never be executed, we don't need
// to worry about the passed value.
if (!Solver.isBlockExecutable(CS.getParent()))
continue;
// Examine arguments and create a specialisation candidate from the
// constant operands of this call site.
SpecSig S;
for (Argument *A : Args) {
Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo()));
if (!C)
continue;
LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
<< A->getName() << " : " << C->getNameOrAsOperand()
<< "\n");
S.Args.push_back({A, C});
}
if (S.Args.empty())
continue;
// Check if we have encountered the same specialisation already.
if (auto It = UM.find(S); It != UM.end()) {
// Existing specialisation. Add the call to the list to rewrite, unless
// it's a recursive call. A specialisation, generated because of a
// recursive call may end up as not the best specialisation for all
// the cloned instances of this call, which result from specialising
// functions. Hence we don't rewrite the call directly, but match it with
// the best specialisation once all specialisations are known.
if (CS.getFunction() == F)
continue;
const unsigned Index = It->second;
AllSpecs[Index].CallSites.push_back(&CS);
} else {
// Calculate the specialisation gain.
InstructionCost Gain = 0 - Cost;
for (ArgInfo &A : S.Args)
Gain +=
getSpecializationBonus(A.Formal, A.Actual, Solver.getLoopInfo(*F));
// Discard unprofitable specialisations.
if (!ForceFunctionSpecialization && Gain <= 0)
continue;
// Create a new specialisation entry.
auto &Spec = AllSpecs.emplace_back(F, S, Gain);
if (CS.getFunction() != F)
Spec.CallSites.push_back(&CS);
const unsigned Index = AllSpecs.size() - 1;
UM[S] = Index;
if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
It->second.second = Index + 1;
Found = true;
}
}
return Found;
}
bool FunctionSpecializer::isCandidateFunction(Function *F) {
if (F->isDeclaration())
return false;
if (F->hasFnAttribute(Attribute::NoDuplicate))
return false;
if (!Solver.isArgumentTrackedFunction(F))
return false;
// Do not specialize the cloned function again.
if (SpecializedFuncs.contains(F))
return false;
// If we're optimizing the function for size, we shouldn't specialize it.
if (F->hasOptSize() ||
shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
return false;
// Exit if the function is not executable. There's no point in specializing
// a dead function.
if (!Solver.isBlockExecutable(&F->getEntryBlock()))
return false;
// It wastes time to specialize a function which would get inlined finally.
if (F->hasFnAttribute(Attribute::AlwaysInline))
return false;
LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
<< "\n");
return true;
}
Function *FunctionSpecializer::createSpecialization(Function *F, const SpecSig &S) {
Function *Clone = cloneCandidateFunction(F);
// Initialize the lattice state of the arguments of the function clone,
// marking the argument on which we specialized the function constant
// with the given value.
Solver.markArgInFuncSpecialization(Clone, S.Args);
Solver.addArgumentTrackedFunction(Clone);
Solver.markBlockExecutable(&Clone->front());
// Mark all the specialized functions
SpecializedFuncs.insert(Clone);
NbFunctionsSpecialized++;
return Clone;
}
/// Compute and return the cost of specializing function \p F.
InstructionCost FunctionSpecializer::getSpecializationCost(Function *F) {
CodeMetrics &Metrics = analyzeFunction(F);
// If the code metrics reveal that we shouldn't duplicate the function, we
// shouldn't specialize it. Set the specialization cost to Invalid.
// Or if the lines of codes implies that this function is easy to get
// inlined so that we shouldn't specialize it.
if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
(!ForceFunctionSpecialization &&
!F->hasFnAttribute(Attribute::NoInline) &&
Metrics.NumInsts < SmallFunctionThreshold))
return InstructionCost::getInvalid();
// Otherwise, set the specialization cost to be the cost of all the
// instructions in the function.
return Metrics.NumInsts * InlineConstants::getInstrCost();
}
static InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
const LoopInfo &LI) {
auto *I = dyn_cast_or_null<Instruction>(U);
// If not an instruction we do not know how to evaluate.
// Keep minimum possible cost for now so that it doesnt affect
// specialization.
if (!I)
return std::numeric_limits<unsigned>::min();
InstructionCost Cost =
TTI.getInstructionCost(U, TargetTransformInfo::TCK_SizeAndLatency);
// Increase the cost if it is inside the loop.
unsigned LoopDepth = LI.getLoopDepth(I->getParent());
Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
// Traverse recursively if there are more uses.
// TODO: Any other instructions to be added here?
if (I->mayReadFromMemory() || I->isCast())
for (auto *User : I->users())
Cost += getUserBonus(User, TTI, LI);
return Cost;
}
/// Compute a bonus for replacing argument \p A with constant \p C.
InstructionCost
FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C,
const LoopInfo &LI) {
Function *F = A->getParent();
auto &TTI = (GetTTI)(*F);
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
<< C->getNameOrAsOperand() << "\n");
InstructionCost TotalCost = 0;
for (auto *U : A->users()) {
TotalCost += getUserBonus(U, TTI, LI);
LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
}
// The below heuristic is only concerned with exposing inlining
// opportunities via indirect call promotion. If the argument is not a
// (potentially casted) function pointer, give up.
Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
if (!CalledFunction)
return TotalCost;
// Get TTI for the called function (used for the inline cost).
auto &CalleeTTI = (GetTTI)(*CalledFunction);
// Look at all the call sites whose called value is the argument.
// Specializing the function on the argument would allow these indirect
// calls to be promoted to direct calls. If the indirect call promotion
// would likely enable the called function to be inlined, specializing is a
// good idea.
int Bonus = 0;
for (User *U : A->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto *CS = cast<CallBase>(U);
if (CS->getCalledOperand() != A)
continue;
if (CS->getFunctionType() != CalledFunction->getFunctionType())
continue;
// Get the cost of inlining the called function at this call site. Note
// that this is only an estimate. The called function may eventually
// change in a way that leads to it not being inlined here, even though
// inlining looks profitable now. For example, one of its called
// functions may be inlined into it, making the called function too large
// to be inlined into this call site.
//
// We apply a boost for performing indirect call promotion by increasing
// the default threshold by the threshold for indirect calls.
auto Params = getInlineParams();
Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
InlineCost IC =
getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
// We clamp the bonus for this call to be between zero and the default
// threshold.
if (IC.isAlways())
Bonus += Params.DefaultThreshold;
else if (IC.isVariable() && IC.getCostDelta() > 0)
Bonus += IC.getCostDelta();
LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << Bonus
<< " for user " << *U << "\n");
}
return TotalCost + Bonus;
}
/// Determine if it is possible to specialise the function for constant values
/// of the formal parameter \p A.
bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
// No point in specialization if the argument is unused.
if (A->user_empty())
return false;
// For now, don't attempt to specialize functions based on the values of
// composite types.
Type *ArgTy = A->getType();
if (!ArgTy->isSingleValueType())
return false;
// Specialization of integer and floating point types needs to be explicitly
// enabled.
if (!EnableSpecializationForLiteralConstant &&
(ArgTy->isIntegerTy() || ArgTy->isFloatingPointTy()))
return false;
// SCCP solver does not record an argument that will be constructed on
// stack.
if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
return false;
// Check the lattice value and decide if we should attemt to specialize,
// based on this argument. No point in specialization, if the lattice value
// is already a constant.
const ValueLatticeElement &LV = Solver.getLatticeValueFor(A);
if (LV.isUnknownOrUndef() || LV.isConstant() ||
(LV.isConstantRange() && LV.getConstantRange().isSingleElement())) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Nothing to do, parameter "
<< A->getNameOrAsOperand() << " is already constant\n");
return false;
}
LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting parameter "
<< A->getNameOrAsOperand() << "\n");
return true;
}
/// Check if the valuy \p V (an actual argument) is a constant or can only
/// have a constant value. Return that constant.
Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
if (isa<PoisonValue>(V))
return nullptr;
// TrackValueOfGlobalVariable only tracks scalar global variables.
if (auto *GV = dyn_cast<GlobalVariable>(V)) {
// Check if we want to specialize on the address of non-constant
// global values.
if (!GV->isConstant() && !SpecializeOnAddresses)
return nullptr;
if (!GV->getValueType()->isSingleValueType())
return nullptr;
}
// Select for possible specialisation values that are constants or
// are deduced to be constants or constant ranges with a single element.
Constant *C = dyn_cast<Constant>(V);
if (!C) {
const ValueLatticeElement &LV = Solver.getLatticeValueFor(V);
if (LV.isConstant())
C = LV.getConstant();
else if (LV.isConstantRange() && LV.getConstantRange().isSingleElement()) {
assert(V->getType()->isIntegerTy() && "Non-integral constant range");
C = Constant::getIntegerValue(V->getType(),
*LV.getConstantRange().getSingleElement());
} else
return nullptr;
}
return C;
}
void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
const Spec *End) {
// Collect the call sites that need updating.
SmallVector<CallBase *> ToUpdate;
for (User *U : F->users())
if (auto *CS = dyn_cast<CallBase>(U);
CS && CS->getCalledFunction() == F &&
Solver.isBlockExecutable(CS->getParent()))
ToUpdate.push_back(CS);
unsigned NCallsLeft = ToUpdate.size();
for (CallBase *CS : ToUpdate) {
bool ShouldDecrementCount = CS->getFunction() == F;
// Find the best matching specialisation.
const Spec *BestSpec = nullptr;
for (const Spec &S : make_range(Begin, End)) {
if (!S.Clone || (BestSpec && S.Gain <= BestSpec->Gain))
continue;
if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
unsigned ArgNo = Arg.Formal->getArgNo();
return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual;
}))
continue;
BestSpec = &S;
}
if (BestSpec) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS
<< " to call " << BestSpec->Clone->getName() << "\n");
CS->setCalledFunction(BestSpec->Clone);
ShouldDecrementCount = true;
}
if (ShouldDecrementCount)
--NCallsLeft;
}
// If the function has been completely specialized, the original function
// is no longer needed. Mark it unreachable.
if (NCallsLeft == 0) {
Solver.markFunctionUnreachable(F);
FullySpecialized.insert(F);
}
}