blob: 42158e4e05dde058ae906011e834b407a240ec3a [file] [log] [blame]
//===- AttributorAttributes.cpp - Attributes for Attributor deduction -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// See the Attributor.h file comment and the class descriptions in that file for
// more information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumeBundleQueries.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/CycleAnalysis.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Assumptions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <cassert>
#include <numeric>
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "attributor"
static cl::opt<bool> ManifestInternal(
"attributor-manifest-internal", cl::Hidden,
cl::desc("Manifest Attributor internal string attributes."),
cl::init(false));
static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size", cl::init(128),
cl::Hidden);
template <>
unsigned llvm::PotentialConstantIntValuesState::MaxPotentialValues = 0;
template <> unsigned llvm::PotentialLLVMValuesState::MaxPotentialValues = -1;
static cl::opt<unsigned, true> MaxPotentialValues(
"attributor-max-potential-values", cl::Hidden,
cl::desc("Maximum number of potential values to be "
"tracked for each position."),
cl::location(llvm::PotentialConstantIntValuesState::MaxPotentialValues),
cl::init(7));
static cl::opt<int> MaxPotentialValuesIterations(
"attributor-max-potential-values-iterations", cl::Hidden,
cl::desc(
"Maximum number of iterations we keep dismantling potential values."),
cl::init(64));
STATISTIC(NumAAs, "Number of abstract attributes created");
// Some helper macros to deal with statistics tracking.
//
// Usage:
// For simple IR attribute tracking overload trackStatistics in the abstract
// attribute and choose the right STATS_DECLTRACK_********* macro,
// e.g.,:
// void trackStatistics() const override {
// STATS_DECLTRACK_ARG_ATTR(returned)
// }
// If there is a single "increment" side one can use the macro
// STATS_DECLTRACK with a custom message. If there are multiple increment
// sides, STATS_DECL and STATS_TRACK can also be used separately.
//
#define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \
("Number of " #TYPE " marked '" #NAME "'")
#define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
#define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
#define STATS_DECL(NAME, TYPE, MSG) \
STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
#define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
#define STATS_DECLTRACK(NAME, TYPE, MSG) \
{ \
STATS_DECL(NAME, TYPE, MSG) \
STATS_TRACK(NAME, TYPE) \
}
#define STATS_DECLTRACK_ARG_ATTR(NAME) \
STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
#define STATS_DECLTRACK_CSARG_ATTR(NAME) \
STATS_DECLTRACK(NAME, CSArguments, \
BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
#define STATS_DECLTRACK_FN_ATTR(NAME) \
STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
#define STATS_DECLTRACK_CS_ATTR(NAME) \
STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
#define STATS_DECLTRACK_FNRET_ATTR(NAME) \
STATS_DECLTRACK(NAME, FunctionReturn, \
BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
#define STATS_DECLTRACK_CSRET_ATTR(NAME) \
STATS_DECLTRACK(NAME, CSReturn, \
BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
#define STATS_DECLTRACK_FLOATING_ATTR(NAME) \
STATS_DECLTRACK(NAME, Floating, \
("Number of floating values known to be '" #NAME "'"))
// Specialization of the operator<< for abstract attributes subclasses. This
// disambiguates situations where multiple operators are applicable.
namespace llvm {
#define PIPE_OPERATOR(CLASS) \
raw_ostream &operator<<(raw_ostream &OS, const CLASS &AA) { \
return OS << static_cast<const AbstractAttribute &>(AA); \
}
PIPE_OPERATOR(AAIsDead)
PIPE_OPERATOR(AANoUnwind)
PIPE_OPERATOR(AANoSync)
PIPE_OPERATOR(AANoRecurse)
PIPE_OPERATOR(AAWillReturn)
PIPE_OPERATOR(AANoReturn)
PIPE_OPERATOR(AAReturnedValues)
PIPE_OPERATOR(AANonNull)
PIPE_OPERATOR(AANoAlias)
PIPE_OPERATOR(AADereferenceable)
PIPE_OPERATOR(AAAlign)
PIPE_OPERATOR(AAInstanceInfo)
PIPE_OPERATOR(AANoCapture)
PIPE_OPERATOR(AAValueSimplify)
PIPE_OPERATOR(AANoFree)
PIPE_OPERATOR(AAHeapToStack)
PIPE_OPERATOR(AAIntraFnReachability)
PIPE_OPERATOR(AAMemoryBehavior)
PIPE_OPERATOR(AAMemoryLocation)
PIPE_OPERATOR(AAValueConstantRange)
PIPE_OPERATOR(AAPrivatizablePtr)
PIPE_OPERATOR(AAUndefinedBehavior)
PIPE_OPERATOR(AAPotentialConstantValues)
PIPE_OPERATOR(AAPotentialValues)
PIPE_OPERATOR(AANoUndef)
PIPE_OPERATOR(AACallEdges)
PIPE_OPERATOR(AAInterFnReachability)
PIPE_OPERATOR(AAPointerInfo)
PIPE_OPERATOR(AAAssumptionInfo)
PIPE_OPERATOR(AAUnderlyingObjects)
#undef PIPE_OPERATOR
template <>
ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
const DerefState &R) {
ChangeStatus CS0 =
clampStateAndIndicateChange(S.DerefBytesState, R.DerefBytesState);
ChangeStatus CS1 = clampStateAndIndicateChange(S.GlobalState, R.GlobalState);
return CS0 | CS1;
}
} // namespace llvm
/// Checks if a type could have padding bytes.
static bool isDenselyPacked(Type *Ty, const DataLayout &DL) {
// There is no size information, so be conservative.
if (!Ty->isSized())
return false;
// If the alloc size is not equal to the storage size, then there are padding
// bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
if (DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty))
return false;
// FIXME: This isn't the right way to check for padding in vectors with
// non-byte-size elements.
if (VectorType *SeqTy = dyn_cast<VectorType>(Ty))
return isDenselyPacked(SeqTy->getElementType(), DL);
// For array types, check for padding within members.
if (ArrayType *SeqTy = dyn_cast<ArrayType>(Ty))
return isDenselyPacked(SeqTy->getElementType(), DL);
if (!isa<StructType>(Ty))
return true;
// Check for padding within and between elements of a struct.
StructType *StructTy = cast<StructType>(Ty);
const StructLayout *Layout = DL.getStructLayout(StructTy);
uint64_t StartPos = 0;
for (unsigned I = 0, E = StructTy->getNumElements(); I < E; ++I) {
Type *ElTy = StructTy->getElementType(I);
if (!isDenselyPacked(ElTy, DL))
return false;
if (StartPos != Layout->getElementOffsetInBits(I))
return false;
StartPos += DL.getTypeAllocSizeInBits(ElTy);
}
return true;
}
/// Get pointer operand of memory accessing instruction. If \p I is
/// not a memory accessing instruction, return nullptr. If \p AllowVolatile,
/// is set to false and the instruction is volatile, return nullptr.
static const Value *getPointerOperand(const Instruction *I,
bool AllowVolatile) {
if (!AllowVolatile && I->isVolatile())
return nullptr;
if (auto *LI = dyn_cast<LoadInst>(I)) {
return LI->getPointerOperand();
}
if (auto *SI = dyn_cast<StoreInst>(I)) {
return SI->getPointerOperand();
}
if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) {
return CXI->getPointerOperand();
}
if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) {
return RMWI->getPointerOperand();
}
return nullptr;
}
/// Helper function to create a pointer of type \p ResTy, based on \p Ptr, and
/// advanced by \p Offset bytes. To aid later analysis the method tries to build
/// getelement pointer instructions that traverse the natural type of \p Ptr if
/// possible. If that fails, the remaining offset is adjusted byte-wise, hence
/// through a cast to i8*.
///
/// TODO: This could probably live somewhere more prominantly if it doesn't
/// already exist.
static Value *constructPointer(Type *ResTy, Type *PtrElemTy, Value *Ptr,
int64_t Offset, IRBuilder<NoFolder> &IRB,
const DataLayout &DL) {
assert(Offset >= 0 && "Negative offset not supported yet!");
LLVM_DEBUG(dbgs() << "Construct pointer: " << *Ptr << " + " << Offset
<< "-bytes as " << *ResTy << "\n");
if (Offset) {
Type *Ty = PtrElemTy;
APInt IntOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), Offset);
SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(Ty, IntOffset);
SmallVector<Value *, 4> ValIndices;
std::string GEPName = Ptr->getName().str();
for (const APInt &Index : IntIndices) {
ValIndices.push_back(IRB.getInt(Index));
GEPName += "." + std::to_string(Index.getZExtValue());
}
// Create a GEP for the indices collected above.
Ptr = IRB.CreateGEP(PtrElemTy, Ptr, ValIndices, GEPName);
// If an offset is left we use byte-wise adjustment.
if (IntOffset != 0) {
Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy());
Ptr = IRB.CreateGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(IntOffset),
GEPName + ".b" + Twine(IntOffset.getZExtValue()));
}
}
// Ensure the result has the requested type.
Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, ResTy,
Ptr->getName() + ".cast");
LLVM_DEBUG(dbgs() << "Constructed pointer: " << *Ptr << "\n");
return Ptr;
}
static const Value *
stripAndAccumulateOffsets(Attributor &A, const AbstractAttribute &QueryingAA,
const Value *Val, const DataLayout &DL, APInt &Offset,
bool GetMinOffset, bool AllowNonInbounds,
bool UseAssumed = false) {
auto AttributorAnalysis = [&](Value &V, APInt &ROffset) -> bool {
const IRPosition &Pos = IRPosition::value(V);
// Only track dependence if we are going to use the assumed info.
const AAValueConstantRange &ValueConstantRangeAA =
A.getAAFor<AAValueConstantRange>(QueryingAA, Pos,
UseAssumed ? DepClassTy::OPTIONAL
: DepClassTy::NONE);
ConstantRange Range = UseAssumed ? ValueConstantRangeAA.getAssumed()
: ValueConstantRangeAA.getKnown();
if (Range.isFullSet())
return false;
// We can only use the lower part of the range because the upper part can
// be higher than what the value can really be.
if (GetMinOffset)
ROffset = Range.getSignedMin();
else
ROffset = Range.getSignedMax();
return true;
};
return Val->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds,
/* AllowInvariant */ true,
AttributorAnalysis);
}
static const Value *
getMinimalBaseOfPointer(Attributor &A, const AbstractAttribute &QueryingAA,
const Value *Ptr, int64_t &BytesOffset,
const DataLayout &DL, bool AllowNonInbounds = false) {
APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
const Value *Base =
stripAndAccumulateOffsets(A, QueryingAA, Ptr, DL, OffsetAPInt,
/* GetMinOffset */ true, AllowNonInbounds);
BytesOffset = OffsetAPInt.getSExtValue();
return Base;
}
/// Clamp the information known for all returned values of a function
/// (identified by \p QueryingAA) into \p S.
template <typename AAType, typename StateType = typename AAType::StateType>
static void clampReturnedValueStates(
Attributor &A, const AAType &QueryingAA, StateType &S,
const IRPosition::CallBaseContext *CBContext = nullptr) {
LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
<< QueryingAA << " into " << S << "\n");
assert((QueryingAA.getIRPosition().getPositionKind() ==
IRPosition::IRP_RETURNED ||
QueryingAA.getIRPosition().getPositionKind() ==
IRPosition::IRP_CALL_SITE_RETURNED) &&
"Can only clamp returned value states for a function returned or call "
"site returned position!");
// Use an optional state as there might not be any return values and we want
// to join (IntegerState::operator&) the state of all there are.
std::optional<StateType> T;
// Callback for each possibly returned value.
auto CheckReturnValue = [&](Value &RV) -> bool {
const IRPosition &RVPos = IRPosition::value(RV, CBContext);
const AAType &AA =
A.getAAFor<AAType>(QueryingAA, RVPos, DepClassTy::REQUIRED);
LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
<< " @ " << RVPos << "\n");
const StateType &AAS = AA.getState();
if (!T)
T = StateType::getBestState(AAS);
*T &= AAS;
LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
<< "\n");
return T->isValidState();
};
if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
S.indicatePessimisticFixpoint();
else if (T)
S ^= *T;
}
namespace {
/// Helper class for generic deduction: return value -> returned position.
template <typename AAType, typename BaseType,
typename StateType = typename BaseType::StateType,
bool PropagateCallBaseContext = false>
struct AAReturnedFromReturnedValues : public BaseType {
AAReturnedFromReturnedValues(const IRPosition &IRP, Attributor &A)
: BaseType(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
StateType S(StateType::getBestState(this->getState()));
clampReturnedValueStates<AAType, StateType>(
A, *this, S,
PropagateCallBaseContext ? this->getCallBaseContext() : nullptr);
// TODO: If we know we visited all returned values, thus no are assumed
// dead, we can take the known information from the state T.
return clampStateAndIndicateChange<StateType>(this->getState(), S);
}
};
/// Clamp the information known at all call sites for a given argument
/// (identified by \p QueryingAA) into \p S.
template <typename AAType, typename StateType = typename AAType::StateType>
static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
StateType &S) {
LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
<< QueryingAA << " into " << S << "\n");
assert(QueryingAA.getIRPosition().getPositionKind() ==
IRPosition::IRP_ARGUMENT &&
"Can only clamp call site argument states for an argument position!");
// Use an optional state as there might not be any return values and we want
// to join (IntegerState::operator&) the state of all there are.
std::optional<StateType> T;
// The argument number which is also the call site argument number.
unsigned ArgNo = QueryingAA.getIRPosition().getCallSiteArgNo();
auto CallSiteCheck = [&](AbstractCallSite ACS) {
const IRPosition &ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
// Check if a coresponding argument was found or if it is on not associated
// (which can happen for callback calls).
if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
return false;
const AAType &AA =
A.getAAFor<AAType>(QueryingAA, ACSArgPos, DepClassTy::REQUIRED);
LLVM_DEBUG(dbgs() << "[Attributor] ACS: " << *ACS.getInstruction()
<< " AA: " << AA.getAsStr() << " @" << ACSArgPos << "\n");
const StateType &AAS = AA.getState();
if (!T)
T = StateType::getBestState(AAS);
*T &= AAS;
LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
<< "\n");
return T->isValidState();
};
bool UsedAssumedInformation = false;
if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true,
UsedAssumedInformation))
S.indicatePessimisticFixpoint();
else if (T)
S ^= *T;
}
/// This function is the bridge between argument position and the call base
/// context.
template <typename AAType, typename BaseType,
typename StateType = typename AAType::StateType>
bool getArgumentStateFromCallBaseContext(Attributor &A,
BaseType &QueryingAttribute,
IRPosition &Pos, StateType &State) {
assert((Pos.getPositionKind() == IRPosition::IRP_ARGUMENT) &&
"Expected an 'argument' position !");
const CallBase *CBContext = Pos.getCallBaseContext();
if (!CBContext)
return false;
int ArgNo = Pos.getCallSiteArgNo();
assert(ArgNo >= 0 && "Invalid Arg No!");
const auto &AA = A.getAAFor<AAType>(
QueryingAttribute, IRPosition::callsite_argument(*CBContext, ArgNo),
DepClassTy::REQUIRED);
const StateType &CBArgumentState =
static_cast<const StateType &>(AA.getState());
LLVM_DEBUG(dbgs() << "[Attributor] Briding Call site context to argument"
<< "Position:" << Pos << "CB Arg state:" << CBArgumentState
<< "\n");
// NOTE: If we want to do call site grouping it should happen here.
State ^= CBArgumentState;
return true;
}
/// Helper class for generic deduction: call site argument -> argument position.
template <typename AAType, typename BaseType,
typename StateType = typename AAType::StateType,
bool BridgeCallBaseContext = false>
struct AAArgumentFromCallSiteArguments : public BaseType {
AAArgumentFromCallSiteArguments(const IRPosition &IRP, Attributor &A)
: BaseType(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
StateType S = StateType::getBestState(this->getState());
if (BridgeCallBaseContext) {
bool Success =
getArgumentStateFromCallBaseContext<AAType, BaseType, StateType>(
A, *this, this->getIRPosition(), S);
if (Success)
return clampStateAndIndicateChange<StateType>(this->getState(), S);
}
clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
// TODO: If we know we visited all incoming values, thus no are assumed
// dead, we can take the known information from the state T.
return clampStateAndIndicateChange<StateType>(this->getState(), S);
}
};
/// Helper class for generic replication: function returned -> cs returned.
template <typename AAType, typename BaseType,
typename StateType = typename BaseType::StateType,
bool IntroduceCallBaseContext = false>
struct AACallSiteReturnedFromReturned : public BaseType {
AACallSiteReturnedFromReturned(const IRPosition &IRP, Attributor &A)
: BaseType(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
assert(this->getIRPosition().getPositionKind() ==
IRPosition::IRP_CALL_SITE_RETURNED &&
"Can only wrap function returned positions for call site returned "
"positions!");
auto &S = this->getState();
const Function *AssociatedFunction =
this->getIRPosition().getAssociatedFunction();
if (!AssociatedFunction)
return S.indicatePessimisticFixpoint();
CallBase &CBContext = cast<CallBase>(this->getAnchorValue());
if (IntroduceCallBaseContext)
LLVM_DEBUG(dbgs() << "[Attributor] Introducing call base context:"
<< CBContext << "\n");
IRPosition FnPos = IRPosition::returned(
*AssociatedFunction, IntroduceCallBaseContext ? &CBContext : nullptr);
const AAType &AA = A.getAAFor<AAType>(*this, FnPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(S, AA.getState());
}
};
/// Helper function to accumulate uses.
template <class AAType, typename StateType = typename AAType::StateType>
static void followUsesInContext(AAType &AA, Attributor &A,
MustBeExecutedContextExplorer &Explorer,
const Instruction *CtxI,
SetVector<const Use *> &Uses,
StateType &State) {
auto EIt = Explorer.begin(CtxI), EEnd = Explorer.end(CtxI);
for (unsigned u = 0; u < Uses.size(); ++u) {
const Use *U = Uses[u];
if (const Instruction *UserI = dyn_cast<Instruction>(U->getUser())) {
bool Found = Explorer.findInContextOf(UserI, EIt, EEnd);
if (Found && AA.followUseInMBEC(A, U, UserI, State))
for (const Use &Us : UserI->uses())
Uses.insert(&Us);
}
}
}
/// Use the must-be-executed-context around \p I to add information into \p S.
/// The AAType class is required to have `followUseInMBEC` method with the
/// following signature and behaviour:
///
/// bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I)
/// U - Underlying use.
/// I - The user of the \p U.
/// Returns true if the value should be tracked transitively.
///
template <class AAType, typename StateType = typename AAType::StateType>
static void followUsesInMBEC(AAType &AA, Attributor &A, StateType &S,
Instruction &CtxI) {
// Container for (transitive) uses of the associated value.
SetVector<const Use *> Uses;
for (const Use &U : AA.getIRPosition().getAssociatedValue().uses())
Uses.insert(&U);
MustBeExecutedContextExplorer &Explorer =
A.getInfoCache().getMustBeExecutedContextExplorer();
followUsesInContext<AAType>(AA, A, Explorer, &CtxI, Uses, S);
if (S.isAtFixpoint())
return;
SmallVector<const BranchInst *, 4> BrInsts;
auto Pred = [&](const Instruction *I) {
if (const BranchInst *Br = dyn_cast<BranchInst>(I))
if (Br->isConditional())
BrInsts.push_back(Br);
return true;
};
// Here, accumulate conditional branch instructions in the context. We
// explore the child paths and collect the known states. The disjunction of
// those states can be merged to its own state. Let ParentState_i be a state
// to indicate the known information for an i-th branch instruction in the
// context. ChildStates are created for its successors respectively.
//
// ParentS_1 = ChildS_{1, 1} /\ ChildS_{1, 2} /\ ... /\ ChildS_{1, n_1}
// ParentS_2 = ChildS_{2, 1} /\ ChildS_{2, 2} /\ ... /\ ChildS_{2, n_2}
// ...
// ParentS_m = ChildS_{m, 1} /\ ChildS_{m, 2} /\ ... /\ ChildS_{m, n_m}
//
// Known State |= ParentS_1 \/ ParentS_2 \/... \/ ParentS_m
//
// FIXME: Currently, recursive branches are not handled. For example, we
// can't deduce that ptr must be dereferenced in below function.
//
// void f(int a, int c, int *ptr) {
// if(a)
// if (b) {
// *ptr = 0;
// } else {
// *ptr = 1;
// }
// else {
// if (b) {
// *ptr = 0;
// } else {
// *ptr = 1;
// }
// }
// }
Explorer.checkForAllContext(&CtxI, Pred);
for (const BranchInst *Br : BrInsts) {
StateType ParentState;
// The known state of the parent state is a conjunction of children's
// known states so it is initialized with a best state.
ParentState.indicateOptimisticFixpoint();
for (const BasicBlock *BB : Br->successors()) {
StateType ChildState;
size_t BeforeSize = Uses.size();
followUsesInContext(AA, A, Explorer, &BB->front(), Uses, ChildState);
// Erase uses which only appear in the child.
for (auto It = Uses.begin() + BeforeSize; It != Uses.end();)
It = Uses.erase(It);
ParentState &= ChildState;
}
// Use only known state.
S += ParentState;
}
}
} // namespace
/// ------------------------ PointerInfo ---------------------------------------
namespace llvm {
namespace AA {
namespace PointerInfo {
struct State;
} // namespace PointerInfo
} // namespace AA
/// Helper for AA::PointerInfo::Access DenseMap/Set usage.
template <>
struct DenseMapInfo<AAPointerInfo::Access> : DenseMapInfo<Instruction *> {
using Access = AAPointerInfo::Access;
static inline Access getEmptyKey();
static inline Access getTombstoneKey();
static unsigned getHashValue(const Access &A);
static bool isEqual(const Access &LHS, const Access &RHS);
};
/// Helper that allows RangeTy as a key in a DenseMap.
template <> struct DenseMapInfo<AA::RangeTy> {
static inline AA::RangeTy getEmptyKey() {
auto EmptyKey = DenseMapInfo<int64_t>::getEmptyKey();
return AA::RangeTy{EmptyKey, EmptyKey};
}
static inline AA::RangeTy getTombstoneKey() {
auto TombstoneKey = DenseMapInfo<int64_t>::getTombstoneKey();
return AA::RangeTy{TombstoneKey, TombstoneKey};
}
static unsigned getHashValue(const AA::RangeTy &Range) {
return detail::combineHashValue(
DenseMapInfo<int64_t>::getHashValue(Range.Offset),
DenseMapInfo<int64_t>::getHashValue(Range.Size));
}
static bool isEqual(const AA::RangeTy &A, const AA::RangeTy B) {
return A == B;
}
};
/// Helper for AA::PointerInfo::Access DenseMap/Set usage ignoring everythign
/// but the instruction
struct AccessAsInstructionInfo : DenseMapInfo<Instruction *> {
using Base = DenseMapInfo<Instruction *>;
using Access = AAPointerInfo::Access;
static inline Access getEmptyKey();
static inline Access getTombstoneKey();
static unsigned getHashValue(const Access &A);
static bool isEqual(const Access &LHS, const Access &RHS);
};
} // namespace llvm
/// A type to track pointer/struct usage and accesses for AAPointerInfo.
struct AA::PointerInfo::State : public AbstractState {
/// Return the best possible representable state.
static State getBestState(const State &SIS) { return State(); }
/// Return the worst possible representable state.
static State getWorstState(const State &SIS) {
State R;
R.indicatePessimisticFixpoint();
return R;
}
State() = default;
State(State &&SIS) = default;
const State &getAssumed() const { return *this; }
/// See AbstractState::isValidState().
bool isValidState() const override { return BS.isValidState(); }
/// See AbstractState::isAtFixpoint().
bool isAtFixpoint() const override { return BS.isAtFixpoint(); }
/// See AbstractState::indicateOptimisticFixpoint().
ChangeStatus indicateOptimisticFixpoint() override {
BS.indicateOptimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
/// See AbstractState::indicatePessimisticFixpoint().
ChangeStatus indicatePessimisticFixpoint() override {
BS.indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
State &operator=(const State &R) {
if (this == &R)
return *this;
BS = R.BS;
AccessList = R.AccessList;
OffsetBins = R.OffsetBins;
RemoteIMap = R.RemoteIMap;
return *this;
}
State &operator=(State &&R) {
if (this == &R)
return *this;
std::swap(BS, R.BS);
std::swap(AccessList, R.AccessList);
std::swap(OffsetBins, R.OffsetBins);
std::swap(RemoteIMap, R.RemoteIMap);
return *this;
}
/// Add a new Access to the state at offset \p Offset and with size \p Size.
/// The access is associated with \p I, writes \p Content (if anything), and
/// is of kind \p Kind. If an Access already exists for the same \p I and same
/// \p RemoteI, the two are combined, potentially losing information about
/// offset and size. The resulting access must now be moved from its original
/// OffsetBin to the bin for its new offset.
///
/// \Returns CHANGED, if the state changed, UNCHANGED otherwise.
ChangeStatus addAccess(Attributor &A, const AAPointerInfo::RangeList &Ranges,
Instruction &I, std::optional<Value *> Content,
AAPointerInfo::AccessKind Kind, Type *Ty,
Instruction *RemoteI = nullptr);
using OffsetBinsTy = DenseMap<RangeTy, SmallSet<unsigned, 4>>;
using const_bin_iterator = OffsetBinsTy::const_iterator;
const_bin_iterator begin() const { return OffsetBins.begin(); }
const_bin_iterator end() const { return OffsetBins.end(); }
const AAPointerInfo::Access &getAccess(unsigned Index) const {
return AccessList[Index];
}
protected:
// Every memory instruction results in an Access object. We maintain a list of
// all Access objects that we own, along with the following maps:
//
// - OffsetBins: RangeTy -> { Access }
// - RemoteIMap: RemoteI x LocalI -> Access
//
// A RemoteI is any instruction that accesses memory. RemoteI is different
// from LocalI if and only if LocalI is a call; then RemoteI is some
// instruction in the callgraph starting from LocalI. Multiple paths in the
// callgraph from LocalI to RemoteI may produce multiple accesses, but these
// are all combined into a single Access object. This may result in loss of
// information in RangeTy in the Access object.
SmallVector<AAPointerInfo::Access> AccessList;
OffsetBinsTy OffsetBins;
DenseMap<const Instruction *, SmallVector<unsigned>> RemoteIMap;
/// See AAPointerInfo::forallInterferingAccesses.
bool forallInterferingAccesses(
AA::RangeTy Range,
function_ref<bool(const AAPointerInfo::Access &, bool)> CB) const {
if (!isValidState())
return false;
for (const auto &It : OffsetBins) {
AA::RangeTy ItRange = It.getFirst();
if (!Range.mayOverlap(ItRange))
continue;
bool IsExact = Range == ItRange && !Range.offsetOrSizeAreUnknown();
for (auto Index : It.getSecond()) {
auto &Access = AccessList[Index];
if (!CB(Access, IsExact))
return false;
}
}
return true;
}
/// See AAPointerInfo::forallInterferingAccesses.
bool forallInterferingAccesses(
Instruction &I,
function_ref<bool(const AAPointerInfo::Access &, bool)> CB,
AA::RangeTy &Range) const {
if (!isValidState())
return false;
auto LocalList = RemoteIMap.find(&I);
if (LocalList == RemoteIMap.end()) {
return true;
}
for (unsigned Index : LocalList->getSecond()) {
for (auto &R : AccessList[Index]) {
Range &= R;
if (Range.offsetOrSizeAreUnknown())
break;
}
}
return forallInterferingAccesses(Range, CB);
}
private:
/// State to track fixpoint and validity.
BooleanState BS;
};
ChangeStatus AA::PointerInfo::State::addAccess(
Attributor &A, const AAPointerInfo::RangeList &Ranges, Instruction &I,
std::optional<Value *> Content, AAPointerInfo::AccessKind Kind, Type *Ty,
Instruction *RemoteI) {
RemoteI = RemoteI ? RemoteI : &I;
// Check if we have an access for this instruction, if not, simply add it.
auto &LocalList = RemoteIMap[RemoteI];
bool AccExists = false;
unsigned AccIndex = AccessList.size();
for (auto Index : LocalList) {
auto &A = AccessList[Index];
if (A.getLocalInst() == &I) {
AccExists = true;
AccIndex = Index;
break;
}
}
auto AddToBins = [&](const AAPointerInfo::RangeList &ToAdd) {
LLVM_DEBUG(
if (ToAdd.size())
dbgs() << "[AAPointerInfo] Inserting access in new offset bins\n";
);
for (auto Key : ToAdd) {
LLVM_DEBUG(dbgs() << " key " << Key << "\n");
OffsetBins[Key].insert(AccIndex);
}
};
if (!AccExists) {
AccessList.emplace_back(&I, RemoteI, Ranges, Content, Kind, Ty);
assert((AccessList.size() == AccIndex + 1) &&
"New Access should have been at AccIndex");
LocalList.push_back(AccIndex);
AddToBins(AccessList[AccIndex].getRanges());
return ChangeStatus::CHANGED;
}
// Combine the new Access with the existing Access, and then update the
// mapping in the offset bins.
AAPointerInfo::Access Acc(&I, RemoteI, Ranges, Content, Kind, Ty);
auto &Current = AccessList[AccIndex];
auto Before = Current;
Current &= Acc;
if (Current == Before)
return ChangeStatus::UNCHANGED;
auto &ExistingRanges = Before.getRanges();
auto &NewRanges = Current.getRanges();
// Ranges that are in the old access but not the new access need to be removed
// from the offset bins.
AAPointerInfo::RangeList ToRemove;
AAPointerInfo::RangeList::set_difference(ExistingRanges, NewRanges, ToRemove);
LLVM_DEBUG(
if (ToRemove.size())
dbgs() << "[AAPointerInfo] Removing access from old offset bins\n";
);
for (auto Key : ToRemove) {
LLVM_DEBUG(dbgs() << " key " << Key << "\n");
assert(OffsetBins.count(Key) && "Existing Access must be in some bin.");
auto &Bin = OffsetBins[Key];
assert(Bin.count(AccIndex) &&
"Expected bin to actually contain the Access.");
Bin.erase(AccIndex);
}
// Ranges that are in the new access but not the old access need to be added
// to the offset bins.
AAPointerInfo::RangeList ToAdd;
AAPointerInfo::RangeList::set_difference(NewRanges, ExistingRanges, ToAdd);
AddToBins(ToAdd);
return ChangeStatus::CHANGED;
}
namespace {
/// A helper containing a list of offsets computed for a Use. Ideally this
/// list should be strictly ascending, but we ensure that only when we
/// actually translate the list of offsets to a RangeList.
struct OffsetInfo {
using VecTy = SmallVector<int64_t>;
using const_iterator = VecTy::const_iterator;
VecTy Offsets;
const_iterator begin() const { return Offsets.begin(); }
const_iterator end() const { return Offsets.end(); }
bool operator==(const OffsetInfo &RHS) const {
return Offsets == RHS.Offsets;
}
bool operator!=(const OffsetInfo &RHS) const { return !(*this == RHS); }
void insert(int64_t Offset) { Offsets.push_back(Offset); }
bool isUnassigned() const { return Offsets.size() == 0; }
bool isUnknown() const {
if (isUnassigned())
return false;
if (Offsets.size() == 1)
return Offsets.front() == AA::RangeTy::Unknown;
return false;
}
void setUnknown() {
Offsets.clear();
Offsets.push_back(AA::RangeTy::Unknown);
}
void addToAll(int64_t Inc) {
for (auto &Offset : Offsets) {
Offset += Inc;
}
}
/// Copy offsets from \p R into the current list.
///
/// Ideally all lists should be strictly ascending, but we defer that to the
/// actual use of the list. So we just blindly append here.
void merge(const OffsetInfo &R) { Offsets.append(R.Offsets); }
};
#ifndef NDEBUG
static raw_ostream &operator<<(raw_ostream &OS, const OffsetInfo &OI) {
ListSeparator LS;
OS << "[";
for (auto Offset : OI) {
OS << LS << Offset;
}
OS << "]";
return OS;
}
#endif // NDEBUG
struct AAPointerInfoImpl
: public StateWrapper<AA::PointerInfo::State, AAPointerInfo> {
using BaseTy = StateWrapper<AA::PointerInfo::State, AAPointerInfo>;
AAPointerInfoImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return std::string("PointerInfo ") +
(isValidState() ? (std::string("#") +
std::to_string(OffsetBins.size()) + " bins")
: "<invalid>");
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
return AAPointerInfo::manifest(A);
}
bool forallInterferingAccesses(
AA::RangeTy Range,
function_ref<bool(const AAPointerInfo::Access &, bool)> CB)
const override {
return State::forallInterferingAccesses(Range, CB);
}
bool forallInterferingAccesses(
Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I,
function_ref<bool(const Access &, bool)> UserCB, bool &HasBeenWrittenTo,
AA::RangeTy &Range) const override {
HasBeenWrittenTo = false;
SmallPtrSet<const Access *, 8> DominatingWrites;
SmallVector<std::pair<const Access *, bool>, 8> InterferingAccesses;
Function &Scope = *I.getFunction();
const auto &NoSyncAA = A.getAAFor<AANoSync>(
QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
const auto *ExecDomainAA = A.lookupAAFor<AAExecutionDomain>(
IRPosition::function(Scope), &QueryingAA, DepClassTy::NONE);
bool AllInSameNoSyncFn = NoSyncAA.isAssumedNoSync();
bool InstIsExecutedByInitialThreadOnly =
ExecDomainAA && ExecDomainAA->isExecutedByInitialThreadOnly(I);
bool InstIsExecutedInAlignedRegion =
ExecDomainAA && ExecDomainAA->isExecutedInAlignedRegion(A, I);
if (InstIsExecutedInAlignedRegion || InstIsExecutedByInitialThreadOnly)
A.recordDependence(*ExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
InformationCache &InfoCache = A.getInfoCache();
bool IsThreadLocalObj =
AA::isAssumedThreadLocalObject(A, getAssociatedValue(), *this);
// Helper to determine if we need to consider threading, which we cannot
// right now. However, if the function is (assumed) nosync or the thread
// executing all instructions is the main thread only we can ignore
// threading. Also, thread-local objects do not require threading reasoning.
// Finally, we can ignore threading if either access is executed in an
// aligned region.
auto CanIgnoreThreadingForInst = [&](const Instruction &I) -> bool {
if (IsThreadLocalObj || AllInSameNoSyncFn)
return true;
const auto *FnExecDomainAA =
I.getFunction() == &Scope
? ExecDomainAA
: A.lookupAAFor<AAExecutionDomain>(
IRPosition::function(*I.getFunction()), &QueryingAA,
DepClassTy::NONE);
if (!FnExecDomainAA)
return false;
if (InstIsExecutedInAlignedRegion ||
FnExecDomainAA->isExecutedInAlignedRegion(A, I)) {
A.recordDependence(*FnExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
return true;
}
if (InstIsExecutedByInitialThreadOnly &&
FnExecDomainAA->isExecutedByInitialThreadOnly(I)) {
A.recordDependence(*FnExecDomainAA, QueryingAA, DepClassTy::OPTIONAL);
return true;
}
return false;
};
// Helper to determine if the access is executed by the same thread as the
// given instruction, for now it is sufficient to avoid any potential
// threading effects as we cannot deal with them anyway.
auto CanIgnoreThreading = [&](const Access &Acc) -> bool {
return CanIgnoreThreadingForInst(*Acc.getRemoteInst()) ||
(Acc.getRemoteInst() != Acc.getLocalInst() &&
CanIgnoreThreadingForInst(*Acc.getLocalInst()));
};
// TODO: Use inter-procedural reachability and dominance.
const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
const bool FindInterferingWrites = I.mayReadFromMemory();
const bool FindInterferingReads = I.mayWriteToMemory();
const bool UseDominanceReasoning =
FindInterferingWrites && NoRecurseAA.isKnownNoRecurse();
const DominatorTree *DT =
InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(Scope);
// Helper to check if a value has "kernel lifetime", that is it will not
// outlive a GPU kernel. This is true for shared, constant, and local
// globals on AMD and NVIDIA GPUs.
auto HasKernelLifetime = [&](Value *V, Module &M) {
Triple T(M.getTargetTriple());
if (!(T.isAMDGPU() || T.isNVPTX()))
return false;
switch (AA::GPUAddressSpace(V->getType()->getPointerAddressSpace())) {
case AA::GPUAddressSpace::Shared:
case AA::GPUAddressSpace::Constant:
case AA::GPUAddressSpace::Local:
return true;
default:
return false;
};
};
// The IsLiveInCalleeCB will be used by the AA::isPotentiallyReachable query
// to determine if we should look at reachability from the callee. For
// certain pointers we know the lifetime and we do not have to step into the
// callee to determine reachability as the pointer would be dead in the
// callee. See the conditional initialization below.
std::function<bool(const Function &)> IsLiveInCalleeCB;
if (auto *AI = dyn_cast<AllocaInst>(&getAssociatedValue())) {
// If the alloca containing function is not recursive the alloca
// must be dead in the callee.
const Function *AIFn = AI->getFunction();
const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
*this, IRPosition::function(*AIFn), DepClassTy::OPTIONAL);
if (NoRecurseAA.isAssumedNoRecurse()) {
IsLiveInCalleeCB = [AIFn](const Function &Fn) { return AIFn != &Fn; };
}
} else if (auto *GV = dyn_cast<GlobalValue>(&getAssociatedValue())) {
// If the global has kernel lifetime we can stop if we reach a kernel
// as it is "dead" in the (unknown) callees.
if (HasKernelLifetime(GV, *GV->getParent()))
IsLiveInCalleeCB = [](const Function &Fn) {
return !Fn.hasFnAttribute("kernel");
};
}
// Set of accesses/instructions that will overwrite the result and are
// therefore blockers in the reachability traversal.
AA::InstExclusionSetTy ExclusionSet;
auto AccessCB = [&](const Access &Acc, bool Exact) {
if (Exact && Acc.isMustAccess() && Acc.getRemoteInst() != &I) {
if (Acc.isWrite() || (isa<LoadInst>(I) && Acc.isWriteOrAssumption()))
ExclusionSet.insert(Acc.getRemoteInst());
}
if ((!FindInterferingWrites || !Acc.isWriteOrAssumption()) &&
(!FindInterferingReads || !Acc.isRead()))
return true;
bool Dominates = FindInterferingWrites && DT && Exact &&
Acc.isMustAccess() &&
(Acc.getRemoteInst()->getFunction() == &Scope) &&
DT->dominates(Acc.getRemoteInst(), &I);
if (Dominates)
DominatingWrites.insert(&Acc);
// Track if all interesting accesses are in the same `nosync` function as
// the given instruction.
AllInSameNoSyncFn &= Acc.getRemoteInst()->getFunction() == &Scope;
InterferingAccesses.push_back({&Acc, Exact});
return true;
};
if (!State::forallInterferingAccesses(I, AccessCB, Range))
return false;
HasBeenWrittenTo = !DominatingWrites.empty();
// Dominating writes form a chain, find the least/lowest member.
Instruction *LeastDominatingWriteInst = nullptr;
for (const Access *Acc : DominatingWrites) {
if (!LeastDominatingWriteInst) {
LeastDominatingWriteInst = Acc->getRemoteInst();
} else if (DT->dominates(LeastDominatingWriteInst,
Acc->getRemoteInst())) {
LeastDominatingWriteInst = Acc->getRemoteInst();
}
}
// Helper to determine if we can skip a specific write access.
auto CanSkipAccess = [&](const Access &Acc, bool Exact) {
if (!CanIgnoreThreading(Acc))
return false;
// Check read (RAW) dependences and write (WAR) dependences as necessary.
// If we successfully excluded all effects we are interested in, the
// access can be skipped.
bool ReadChecked = !FindInterferingReads;
bool WriteChecked = !FindInterferingWrites;
// If the instruction cannot reach the access, the former does not
// interfere with what the access reads.
if (!ReadChecked) {
if (!AA::isPotentiallyReachable(A, I, *Acc.getRemoteInst(), QueryingAA,
&ExclusionSet, IsLiveInCalleeCB))
ReadChecked = true;
}
// If the instruction cannot be reach from the access, the latter does not
// interfere with what the instruction reads.
if (!WriteChecked) {
if (!AA::isPotentiallyReachable(A, *Acc.getRemoteInst(), I, QueryingAA,
&ExclusionSet, IsLiveInCalleeCB))
WriteChecked = true;
}
// If we still might be affected by the write of the access but there are
// dominating writes in the function of the instruction
// (HasBeenWrittenTo), we can try to reason that the access is overwritten
// by them. This would have happend above if they are all in the same
// function, so we only check the inter-procedural case. Effectively, we
// want to show that there is no call after the dominting write that might
// reach the access, and when it returns reach the instruction with the
// updated value. To this end, we iterate all call sites, check if they
// might reach the instruction without going through another access
// (ExclusionSet) and at the same time might reach the access. However,
// that is all part of AAInterFnReachability.
if (!WriteChecked && HasBeenWrittenTo &&
Acc.getRemoteInst()->getFunction() != &Scope) {
const auto &FnReachabilityAA = A.getAAFor<AAInterFnReachability>(
QueryingAA, IRPosition::function(Scope), DepClassTy::OPTIONAL);
// Without going backwards in the call tree, can we reach the access
// from the least dominating write. Do not allow to pass the instruction
// itself either.
bool Inserted = ExclusionSet.insert(&I).second;
if (!FnReachabilityAA.instructionCanReach(
A, *LeastDominatingWriteInst,
*Acc.getRemoteInst()->getFunction(), &ExclusionSet))
WriteChecked = true;
if (Inserted)
ExclusionSet.erase(&I);
}
if (ReadChecked && WriteChecked)
return true;
if (!DT || !UseDominanceReasoning)
return false;
if (!DominatingWrites.count(&Acc))
return false;
return LeastDominatingWriteInst != Acc.getRemoteInst();
};
// Run the user callback on all accesses we cannot skip and return if
// that succeeded for all or not.
for (auto &It : InterferingAccesses) {
if ((!AllInSameNoSyncFn && !IsThreadLocalObj && !ExecDomainAA) ||
!CanSkipAccess(*It.first, It.second)) {
if (!UserCB(*It.first, It.second))
return false;
}
}
return true;
}
ChangeStatus translateAndAddStateFromCallee(Attributor &A,
const AAPointerInfo &OtherAA,
CallBase &CB) {
using namespace AA::PointerInfo;
if (!OtherAA.getState().isValidState() || !isValidState())
return indicatePessimisticFixpoint();
const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA);
bool IsByval = OtherAAImpl.getAssociatedArgument()->hasByValAttr();
// Combine the accesses bin by bin.
ChangeStatus Changed = ChangeStatus::UNCHANGED;
const auto &State = OtherAAImpl.getState();
for (const auto &It : State) {
for (auto Index : It.getSecond()) {
const auto &RAcc = State.getAccess(Index);
if (IsByval && !RAcc.isRead())
continue;
bool UsedAssumedInformation = false;
AccessKind AK = RAcc.getKind();
auto Content = A.translateArgumentToCallSiteContent(
RAcc.getContent(), CB, *this, UsedAssumedInformation);
AK = AccessKind(AK & (IsByval ? AccessKind::AK_R : AccessKind::AK_RW));
AK = AccessKind(AK | (RAcc.isMayAccess() ? AK_MAY : AK_MUST));
Changed |= addAccess(A, RAcc.getRanges(), CB, Content, AK,
RAcc.getType(), RAcc.getRemoteInst());
}
}
return Changed;
}
ChangeStatus translateAndAddState(Attributor &A, const AAPointerInfo &OtherAA,
const OffsetInfo &Offsets, CallBase &CB) {
using namespace AA::PointerInfo;
if (!OtherAA.getState().isValidState() || !isValidState())
return indicatePessimisticFixpoint();
const auto &OtherAAImpl = static_cast<const AAPointerInfoImpl &>(OtherAA);
// Combine the accesses bin by bin.
ChangeStatus Changed = ChangeStatus::UNCHANGED;
const auto &State = OtherAAImpl.getState();
for (const auto &It : State) {
for (auto Index : It.getSecond()) {
const auto &RAcc = State.getAccess(Index);
for (auto Offset : Offsets) {
auto NewRanges = Offset == AA::RangeTy::Unknown
? AA::RangeTy::getUnknown()
: RAcc.getRanges();
if (!NewRanges.isUnknown()) {
NewRanges.addToAllOffsets(Offset);
}
Changed |=
addAccess(A, NewRanges, CB, RAcc.getContent(), RAcc.getKind(),
RAcc.getType(), RAcc.getRemoteInst());
}
}
}
return Changed;
}
/// Statistic tracking for all AAPointerInfo implementations.
/// See AbstractAttribute::trackStatistics().
void trackPointerInfoStatistics(const IRPosition &IRP) const {}
/// Dump the state into \p O.
void dumpState(raw_ostream &O) {
for (auto &It : OffsetBins) {
O << "[" << It.first.Offset << "-" << It.first.Offset + It.first.Size
<< "] : " << It.getSecond().size() << "\n";
for (auto AccIndex : It.getSecond()) {
auto &Acc = AccessList[AccIndex];
O << " - " << Acc.getKind() << " - " << *Acc.getLocalInst() << "\n";
if (Acc.getLocalInst() != Acc.getRemoteInst())
O << " --> " << *Acc.getRemoteInst()
<< "\n";
if (!Acc.isWrittenValueYetUndetermined()) {
if (Acc.getWrittenValue())
O << " - c: " << *Acc.getWrittenValue() << "\n";
else
O << " - c: <unknown>\n";
}
}
}
}
};
struct AAPointerInfoFloating : public AAPointerInfoImpl {
using AccessKind = AAPointerInfo::AccessKind;
AAPointerInfoFloating(const IRPosition &IRP, Attributor &A)
: AAPointerInfoImpl(IRP, A) {}
/// Deal with an access and signal if it was handled successfully.
bool handleAccess(Attributor &A, Instruction &I,
std::optional<Value *> Content, AccessKind Kind,
SmallVectorImpl<int64_t> &Offsets, ChangeStatus &Changed,
Type &Ty) {
using namespace AA::PointerInfo;
auto Size = AA::RangeTy::Unknown;
const DataLayout &DL = A.getDataLayout();
TypeSize AccessSize = DL.getTypeStoreSize(&Ty);
if (!AccessSize.isScalable())
Size = AccessSize.getFixedValue();
// Make a strictly ascending list of offsets as required by addAccess()
llvm::sort(Offsets);
auto *Last = std::unique(Offsets.begin(), Offsets.end());
Offsets.erase(Last, Offsets.end());
VectorType *VT = dyn_cast<VectorType>(&Ty);
if (!VT || VT->getElementCount().isScalable() ||
!Content.value_or(nullptr) || !isa<Constant>(*Content) ||
(*Content)->getType() != VT ||
DL.getTypeStoreSize(VT->getElementType()).isScalable()) {
Changed = Changed | addAccess(A, {Offsets, Size}, I, Content, Kind, &Ty);
} else {
// Handle vector stores with constant content element-wise.
// TODO: We could look for the elements or create instructions
// representing them.
// TODO: We need to push the Content into the range abstraction
// (AA::RangeTy) to allow different content values for different
// ranges. ranges. Hence, support vectors storing different values.
Type *ElementType = VT->getElementType();
int64_t ElementSize = DL.getTypeStoreSize(ElementType).getFixedValue();
auto *ConstContent = cast<Constant>(*Content);
Type *Int32Ty = Type::getInt32Ty(ElementType->getContext());
SmallVector<int64_t> ElementOffsets(Offsets.begin(), Offsets.end());
for (int i = 0, e = VT->getElementCount().getFixedValue(); i != e; ++i) {
Value *ElementContent = ConstantExpr::getExtractElement(
ConstContent, ConstantInt::get(Int32Ty, i));
// Add the element access.
Changed = Changed | addAccess(A, {ElementOffsets, ElementSize}, I,
ElementContent, Kind, ElementType);
// Advance the offsets for the next element.
for (auto &ElementOffset : ElementOffsets)
ElementOffset += ElementSize;
}
}
return true;
};
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
/// If the indices to \p GEP can be traced to constants, incorporate all
/// of these into \p UsrOI.
///
/// \return true iff \p UsrOI is updated.
bool collectConstantsForGEP(Attributor &A, const DataLayout &DL,
OffsetInfo &UsrOI, const OffsetInfo &PtrOI,
const GEPOperator *GEP);
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
}
};
bool AAPointerInfoFloating::collectConstantsForGEP(Attributor &A,
const DataLayout &DL,
OffsetInfo &UsrOI,
const OffsetInfo &PtrOI,
const GEPOperator *GEP) {
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
MapVector<Value *, APInt> VariableOffsets;
APInt ConstantOffset(BitWidth, 0);
assert(!UsrOI.isUnknown() && !PtrOI.isUnknown() &&
"Don't look for constant values if the offset has already been "
"determined to be unknown.");
if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) {
UsrOI.setUnknown();
return true;
}
LLVM_DEBUG(dbgs() << "[AAPointerInfo] GEP offset is "
<< (VariableOffsets.empty() ? "" : "not") << " constant "
<< *GEP << "\n");
auto Union = PtrOI;
Union.addToAll(ConstantOffset.getSExtValue());
// Each VI in VariableOffsets has a set of potential constant values. Every
// combination of elements, picked one each from these sets, is separately
// added to the original set of offsets, thus resulting in more offsets.
for (const auto &VI : VariableOffsets) {
auto &PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>(
*this, IRPosition::value(*VI.first), DepClassTy::OPTIONAL);
if (!PotentialConstantsAA.isValidState()) {
UsrOI.setUnknown();
return true;
}
// UndefValue is treated as a zero, which leaves Union as is.
if (PotentialConstantsAA.undefIsContained())
continue;
// We need at least one constant in every set to compute an actual offset.
// Otherwise, we end up pessimizing AAPointerInfo by respecting offsets that
// don't actually exist. In other words, the absence of constant values
// implies that the operation can be assumed dead for now.
auto &AssumedSet = PotentialConstantsAA.getAssumedSet();
if (AssumedSet.empty())
return false;
OffsetInfo Product;
for (const auto &ConstOffset : AssumedSet) {
auto CopyPerOffset = Union;
CopyPerOffset.addToAll(ConstOffset.getSExtValue() *
VI.second.getZExtValue());
Product.merge(CopyPerOffset);
}
Union = Product;
}
UsrOI = std::move(Union);
return true;
}
ChangeStatus AAPointerInfoFloating::updateImpl(Attributor &A) {
using namespace AA::PointerInfo;
ChangeStatus Changed = ChangeStatus::UNCHANGED;
const DataLayout &DL = A.getDataLayout();
Value &AssociatedValue = getAssociatedValue();
DenseMap<Value *, OffsetInfo> OffsetInfoMap;
OffsetInfoMap[&AssociatedValue].insert(0);
auto HandlePassthroughUser = [&](Value *Usr, Value *CurPtr, bool &Follow) {
// One does not simply walk into a map and assign a reference to a possibly
// new location. That can cause an invalidation before the assignment
// happens, like so:
//
// OffsetInfoMap[Usr] = OffsetInfoMap[CurPtr]; /* bad idea! */
//
// The RHS is a reference that may be invalidated by an insertion caused by
// the LHS. So we ensure that the side-effect of the LHS happens first.
auto &UsrOI = OffsetInfoMap[Usr];
auto &PtrOI = OffsetInfoMap[CurPtr];
assert(!PtrOI.isUnassigned() &&
"Cannot pass through if the input Ptr was not visited!");
UsrOI = PtrOI;
Follow = true;
return true;
};
const auto *F = getAnchorScope();
const auto *CI =
F ? A.getInfoCache().getAnalysisResultForFunction<CycleAnalysis>(*F)
: nullptr;
const auto *TLI =
F ? A.getInfoCache().getTargetLibraryInfoForFunction(*F) : nullptr;
auto UsePred = [&](const Use &U, bool &Follow) -> bool {
Value *CurPtr = U.get();
User *Usr = U.getUser();
LLVM_DEBUG(dbgs() << "[AAPointerInfo] Analyze " << *CurPtr << " in " << *Usr
<< "\n");
assert(OffsetInfoMap.count(CurPtr) &&
"The current pointer offset should have been seeded!");
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
if (CE->isCast())
return HandlePassthroughUser(Usr, CurPtr, Follow);
if (CE->isCompare())
return true;
if (!isa<GEPOperator>(CE)) {
LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled constant user " << *CE
<< "\n");
return false;
}
}
if (auto *GEP = dyn_cast<GEPOperator>(Usr)) {
// Note the order here, the Usr access might change the map, CurPtr is
// already in it though.
auto &UsrOI = OffsetInfoMap[Usr];
auto &PtrOI = OffsetInfoMap[CurPtr];
if (UsrOI.isUnknown())
return true;
if (PtrOI.isUnknown()) {
Follow = true;
UsrOI.setUnknown();
return true;
}
Follow = collectConstantsForGEP(A, DL, UsrOI, PtrOI, GEP);
return true;
}
if (isa<PtrToIntInst>(Usr))
return false;
if (isa<CastInst>(Usr) || isa<SelectInst>(Usr) || isa<ReturnInst>(Usr))
return HandlePassthroughUser(Usr, CurPtr, Follow);
// For PHIs we need to take care of the recurrence explicitly as the value
// might change while we iterate through a loop. For now, we give up if
// the PHI is not invariant.
if (isa<PHINode>(Usr)) {
// Note the order here, the Usr access might change the map, CurPtr is
// already in it though.
bool IsFirstPHIUser = !OffsetInfoMap.count(Usr);
auto &UsrOI = OffsetInfoMap[Usr];
auto &PtrOI = OffsetInfoMap[CurPtr];
// Check if the PHI operand has already an unknown offset as we can't
// improve on that anymore.
if (PtrOI.isUnknown()) {
LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand offset unknown "
<< *CurPtr << " in " << *Usr << "\n");
Follow = !UsrOI.isUnknown();
UsrOI.setUnknown();
return true;
}
// Check if the PHI is invariant (so far).
if (UsrOI == PtrOI) {
assert(!PtrOI.isUnassigned() &&
"Cannot assign if the current Ptr was not visited!");
LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI is invariant (so far)");
return true;
}
// Check if the PHI operand can be traced back to AssociatedValue.
APInt Offset(
DL.getIndexSizeInBits(CurPtr->getType()->getPointerAddressSpace()),
0);
Value *CurPtrBase = CurPtr->stripAndAccumulateConstantOffsets(
DL, Offset, /* AllowNonInbounds */ true);
auto It = OffsetInfoMap.find(CurPtrBase);
if (It == OffsetInfoMap.end()) {
LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI operand is too complex "
<< *CurPtr << " in " << *Usr << "\n");
UsrOI.setUnknown();
Follow = true;
return true;
}
auto mayBeInCycleHeader = [](const CycleInfo *CI, const Instruction *I) {
if (!CI)
return true;
auto *BB = I->getParent();
auto *C = CI->getCycle(BB);
if (!C)
return false;
return BB == C->getHeader();
};
// Check if the PHI operand is not dependent on the PHI itself. Every
// recurrence is a cyclic net of PHIs in the data flow, and has an
// equivalent Cycle in the control flow. One of those PHIs must be in the
// header of that control flow Cycle. This is independent of the choice of
// Cycles reported by CycleInfo. It is sufficient to check the PHIs in
// every Cycle header; if such a node is marked unknown, this will
// eventually propagate through the whole net of PHIs in the recurrence.
if (mayBeInCycleHeader(CI, cast<Instruction>(Usr))) {
auto BaseOI = It->getSecond();
BaseOI.addToAll(Offset.getZExtValue());
if (IsFirstPHIUser || BaseOI == UsrOI) {
LLVM_DEBUG(dbgs() << "[AAPointerInfo] PHI is invariant " << *CurPtr
<< " in " << *Usr << "\n");
return HandlePassthroughUser(Usr, CurPtr, Follow);
}
LLVM_DEBUG(
dbgs() << "[AAPointerInfo] PHI operand pointer offset mismatch "
<< *CurPtr << " in " << *Usr << "\n");
UsrOI.setUnknown();
Follow = true;
return true;
}
UsrOI.merge(PtrOI);
Follow = true;
return true;
}
if (auto *LoadI = dyn_cast<LoadInst>(Usr)) {
// If the access is to a pointer that may or may not be the associated
// value, e.g. due to a PHI, we cannot assume it will be read.
AccessKind AK = AccessKind::AK_R;
if (getUnderlyingObject(CurPtr) == &AssociatedValue)
AK = AccessKind(AK | AccessKind::AK_MUST);
else
AK = AccessKind(AK | AccessKind::AK_MAY);
if (!handleAccess(A, *LoadI, /* Content */ nullptr, AK,
OffsetInfoMap[CurPtr].Offsets, Changed,
*LoadI->getType()))
return false;
auto IsAssumption = [](Instruction &I) {
if (auto *II = dyn_cast<IntrinsicInst>(&I))
return II->isAssumeLikeIntrinsic();
return false;
};
auto IsImpactedInRange = [&](Instruction *FromI, Instruction *ToI) {
// Check if the assumption and the load are executed together without
// memory modification.
do {
if (FromI->mayWriteToMemory() && !IsAssumption(*FromI))
return true;
FromI = FromI->getNextNonDebugInstruction();
} while (FromI && FromI != ToI);
return false;
};
BasicBlock *BB = LoadI->getParent();
auto IsValidAssume = [&](IntrinsicInst &IntrI) {
if (IntrI.getIntrinsicID() != Intrinsic::assume)
return false;
BasicBlock *IntrBB = IntrI.getParent();
if (IntrI.getParent() == BB) {
if (IsImpactedInRange(LoadI->getNextNonDebugInstruction(), &IntrI))
return false;
} else {
auto PredIt = pred_begin(IntrBB);
if ((*PredIt) != BB)
return false;
if (++PredIt != pred_end(IntrBB))
return false;
for (auto *SuccBB : successors(BB)) {
if (SuccBB == IntrBB)
continue;
if (isa<UnreachableInst>(SuccBB->getTerminator()))
continue;
return false;
}
if (IsImpactedInRange(LoadI->getNextNonDebugInstruction(),
BB->getTerminator()))
return false;
if (IsImpactedInRange(&IntrBB->front(), &IntrI))
return false;
}
return true;
};
std::pair<Value *, IntrinsicInst *> Assumption;
for (const Use &LoadU : LoadI->uses()) {
if (auto *CmpI = dyn_cast<CmpInst>(LoadU.getUser())) {
if (!CmpI->isEquality() || !CmpI->isTrueWhenEqual())
continue;
for (const Use &CmpU : CmpI->uses()) {
if (auto *IntrI = dyn_cast<IntrinsicInst>(CmpU.getUser())) {
if (!IsValidAssume(*IntrI))
continue;
int Idx = CmpI->getOperandUse(0) == LoadU;
Assumption = {CmpI->getOperand(Idx), IntrI};
break;
}
}
}
if (Assumption.first)
break;
}
// Check if we found an assumption associated with this load.
if (!Assumption.first || !Assumption.second)
return true;
LLVM_DEBUG(dbgs() << "[AAPointerInfo] Assumption found "
<< *Assumption.second << ": " << *LoadI
<< " == " << *Assumption.first << "\n");
return handleAccess(
A, *Assumption.second, Assumption.first, AccessKind::AK_ASSUMPTION,
OffsetInfoMap[CurPtr].Offsets, Changed, *LoadI->getType());
}
auto HandleStoreLike = [&](Instruction &I, Value *ValueOp, Type &ValueTy,
ArrayRef<Value *> OtherOps, AccessKind AK) {
for (auto *OtherOp : OtherOps) {
if (OtherOp == CurPtr) {
LLVM_DEBUG(
dbgs()
<< "[AAPointerInfo] Escaping use in store like instruction " << I
<< "\n");
return false;
}
}
// If the access is to a pointer that may or may not be the associated
// value, e.g. due to a PHI, we cannot assume it will be written.
if (getUnderlyingObject(CurPtr) == &AssociatedValue)
AK = AccessKind(AK | AccessKind::AK_MUST);
else
AK = AccessKind(AK | AccessKind::AK_MAY);
bool UsedAssumedInformation = false;
std::optional<Value *> Content = nullptr;
if (ValueOp)
Content = A.getAssumedSimplified(
*ValueOp, *this, UsedAssumedInformation, AA::Interprocedural);
return handleAccess(A, I, Content, AK, OffsetInfoMap[CurPtr].Offsets,
Changed, ValueTy);
};
if (auto *StoreI = dyn_cast<StoreInst>(Usr))
return HandleStoreLike(*StoreI, StoreI->getValueOperand(),
*StoreI->getValueOperand()->getType(),
{StoreI->getValueOperand()}, AccessKind::AK_W);
if (auto *RMWI = dyn_cast<AtomicRMWInst>(Usr))
return HandleStoreLike(*RMWI, nullptr, *RMWI->getValOperand()->getType(),
{RMWI->getValOperand()}, AccessKind::AK_RW);
if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(Usr))
return HandleStoreLike(
*CXI, nullptr, *CXI->getNewValOperand()->getType(),
{CXI->getCompareOperand(), CXI->getNewValOperand()},
AccessKind::AK_RW);
if (auto *CB = dyn_cast<CallBase>(Usr)) {
if (CB->isLifetimeStartOrEnd())
return true;
if (getFreedOperand(CB, TLI) == U)
return true;
if (CB->isArgOperand(&U)) {
unsigned ArgNo = CB->getArgOperandNo(&U);
const auto &CSArgPI = A.getAAFor<AAPointerInfo>(
*this, IRPosition::callsite_argument(*CB, ArgNo),
DepClassTy::REQUIRED);
Changed = translateAndAddState(A, CSArgPI, OffsetInfoMap[CurPtr], *CB) |
Changed;
return isValidState();
}
LLVM_DEBUG(dbgs() << "[AAPointerInfo] Call user not handled " << *CB
<< "\n");
// TODO: Allow some call uses
return false;
}
LLVM_DEBUG(dbgs() << "[AAPointerInfo] User not handled " << *Usr << "\n");
return false;
};
auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
assert(OffsetInfoMap.count(OldU) && "Old use should be known already!");
if (OffsetInfoMap.count(NewU)) {
LLVM_DEBUG({
if (!(OffsetInfoMap[NewU] == OffsetInfoMap[OldU])) {
dbgs() << "[AAPointerInfo] Equivalent use callback failed: "
<< OffsetInfoMap[NewU] << " vs " << OffsetInfoMap[OldU]
<< "\n";
}
});
return OffsetInfoMap[NewU] == OffsetInfoMap[OldU];
}
OffsetInfoMap[NewU] = OffsetInfoMap[OldU];
return true;
};
if (!A.checkForAllUses(UsePred, *this, AssociatedValue,
/* CheckBBLivenessOnly */ true, DepClassTy::OPTIONAL,
/* IgnoreDroppableUses */ true, EquivalentUseCB)) {
LLVM_DEBUG(dbgs() << "[AAPointerInfo] Check for all uses failed, abort!\n");
return indicatePessimisticFixpoint();
}
LLVM_DEBUG({
dbgs() << "Accesses by bin after update:\n";
dumpState(dbgs());
});
return Changed;
}
struct AAPointerInfoReturned final : AAPointerInfoImpl {
AAPointerInfoReturned(const IRPosition &IRP, Attributor &A)
: AAPointerInfoImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
return indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
}
};
struct AAPointerInfoArgument final : AAPointerInfoFloating {
AAPointerInfoArgument(const IRPosition &IRP, Attributor &A)
: AAPointerInfoFloating(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAPointerInfoFloating::initialize(A);
if (getAnchorScope()->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
}
};
struct AAPointerInfoCallSiteArgument final : AAPointerInfoFloating {
AAPointerInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AAPointerInfoFloating(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
using namespace AA::PointerInfo;
// We handle memory intrinsics explicitly, at least the first (=
// destination) and second (=source) arguments as we know how they are
// accessed.
if (auto *MI = dyn_cast_or_null<MemIntrinsic>(getCtxI())) {
ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
int64_t LengthVal = AA::RangeTy::Unknown;
if (Length)
LengthVal = Length->getSExtValue();
unsigned ArgNo = getIRPosition().getCallSiteArgNo();
ChangeStatus Changed = ChangeStatus::UNCHANGED;
if (ArgNo > 1) {
LLVM_DEBUG(dbgs() << "[AAPointerInfo] Unhandled memory intrinsic "
<< *MI << "\n");
return indicatePessimisticFixpoint();
} else {
auto Kind =
ArgNo == 0 ? AccessKind::AK_MUST_WRITE : AccessKind::AK_MUST_READ;
Changed =
Changed | addAccess(A, {0, LengthVal}, *MI, nullptr, Kind, nullptr);
}
LLVM_DEBUG({
dbgs() << "Accesses by bin after update:\n";
dumpState(dbgs());
});
return Changed;
}
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Argument *Arg = getAssociatedArgument();
if (Arg) {
const IRPosition &ArgPos = IRPosition::argument(*Arg);
auto &ArgAA =
A.getAAFor<AAPointerInfo>(*this, ArgPos, DepClassTy::REQUIRED);
if (ArgAA.getState().isValidState())
return translateAndAddStateFromCallee(A, ArgAA,
*cast<CallBase>(getCtxI()));
if (!Arg->getParent()->isDeclaration())
return indicatePessimisticFixpoint();
}
const auto &NoCaptureAA =
A.getAAFor<AANoCapture>(*this, getIRPosition(), DepClassTy::OPTIONAL);
if (!NoCaptureAA.isAssumedNoCapture())
return indicatePessimisticFixpoint();
bool IsKnown = false;
if (AA::isAssumedReadNone(A, getIRPosition(), *this, IsKnown))
return ChangeStatus::UNCHANGED;
bool ReadOnly = AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown);
auto Kind =
ReadOnly ? AccessKind::AK_MAY_READ : AccessKind::AK_MAY_READ_WRITE;
return addAccess(A, AA::RangeTy::getUnknown(), *getCtxI(), nullptr, Kind,
nullptr);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
}
};
struct AAPointerInfoCallSiteReturned final : AAPointerInfoFloating {
AAPointerInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AAPointerInfoFloating(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
AAPointerInfoImpl::trackPointerInfoStatistics(getIRPosition());
}
};
} // namespace
/// -----------------------NoUnwind Function Attribute--------------------------
namespace {
struct AANoUnwindImpl : AANoUnwind {
AANoUnwindImpl(const IRPosition &IRP, Attributor &A) : AANoUnwind(IRP, A) {}
const std::string getAsStr() const override {
return getAssumed() ? "nounwind" : "may-unwind";
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto Opcodes = {
(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
(unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet,
(unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
auto CheckForNoUnwind = [&](Instruction &I) {
if (!I.mayThrow())
return true;
if (const auto *CB = dyn_cast<CallBase>(&I)) {
const auto &NoUnwindAA = A.getAAFor<AANoUnwind>(
*this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
return NoUnwindAA.isAssumedNoUnwind();
}
return false;
};
bool UsedAssumedInformation = false;
if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
};
struct AANoUnwindFunction final : public AANoUnwindImpl {
AANoUnwindFunction(const IRPosition &IRP, Attributor &A)
: AANoUnwindImpl(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
};
/// NoUnwind attribute deduction for a call sites.
struct AANoUnwindCallSite final : AANoUnwindImpl {
AANoUnwindCallSite(const IRPosition &IRP, Attributor &A)
: AANoUnwindImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AANoUnwindImpl::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Function *F = getAssociatedFunction();
const IRPosition &FnPos = IRPosition::function(*F);
auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), FnAA.getState());
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
};
} // namespace
/// --------------------- Function Return Values -------------------------------
namespace {
/// "Attribute" that collects all potential returned values and the return
/// instructions that they arise from.
///
/// If there is a unique returned value R, the manifest method will:
/// - mark R with the "returned" attribute, if R is an argument.
class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
/// Mapping of values potentially returned by the associated function to the
/// return instructions that might return them.
MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
/// State flags
///
///{
bool IsFixed = false;
bool IsValidState = true;
///}
public:
AAReturnedValuesImpl(const IRPosition &IRP, Attributor &A)
: AAReturnedValues(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// Reset the state.
IsFixed = false;
IsValidState = true;
ReturnedValues.clear();
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration()) {
indicatePessimisticFixpoint();
return;
}
assert(!F->getReturnType()->isVoidTy() &&
"Did not expect a void return type!");
// The map from instruction opcodes to those instructions in the function.
auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
// Look through all arguments, if one is marked as returned we are done.
for (Argument &Arg : F->args()) {
if (Arg.hasReturnedAttr()) {
auto &ReturnInstSet = ReturnedValues[&Arg];
if (auto *Insts = OpcodeInstMap.lookup(Instruction::Ret))
for (Instruction *RI : *Insts)
ReturnInstSet.insert(cast<ReturnInst>(RI));
indicateOptimisticFixpoint();
return;
}
}
if (!A.isFunctionIPOAmendable(*F))
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override;
/// See AbstractAttribute::getState(...).
AbstractState &getState() override { return *this; }
/// See AbstractAttribute::getState(...).
const AbstractState &getState() const override { return *this; }
/// See AbstractAttribute::updateImpl(Attributor &A).
ChangeStatus updateImpl(Attributor &A) override;
llvm::iterator_range<iterator> returned_values() override {
return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
}
llvm::iterator_range<const_iterator> returned_values() const override {
return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
}
/// Return the number of potential return values, -1 if unknown.
size_t getNumReturnValues() const override {
return isValidState() ? ReturnedValues.size() : -1;
}
/// Return an assumed unique return value if a single candidate is found. If
/// there cannot be one, return a nullptr. If it is not clear yet, return
/// std::nullopt.
std::optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
/// See AbstractState::checkForAllReturnedValues(...).
bool checkForAllReturnedValuesAndReturnInsts(
function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
const override;
/// Pretty print the attribute similar to the IR representation.
const std::string getAsStr() const override;
/// See AbstractState::isAtFixpoint().
bool isAtFixpoint() const override { return IsFixed; }
/// See AbstractState::isValidState().
bool isValidState() const override { return IsValidState; }
/// See AbstractState::indicateOptimisticFixpoint(...).
ChangeStatus indicateOptimisticFixpoint() override {
IsFixed = true;
return ChangeStatus::UNCHANGED;
}
ChangeStatus indicatePessimisticFixpoint() override {
IsFixed = true;
IsValidState = false;
return ChangeStatus::CHANGED;
}
};
ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
// Bookkeeping.
assert(isValidState());
STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
"Number of function with known return values");
// Check if we have an assumed unique return value that we could manifest.
std::optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
if (!UniqueRV || !*UniqueRV)
return Changed;
// Bookkeeping.
STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
"Number of function with unique return");
// If the assumed unique return value is an argument, annotate it.
if (auto *UniqueRVArg = dyn_cast<Argument>(*UniqueRV)) {
if (UniqueRVArg->getType()->canLosslesslyBitCastTo(
getAssociatedFunction()->getReturnType())) {
getIRPosition() = IRPosition::argument(*UniqueRVArg);
Changed = IRAttribute::manifest(A);
}
}
return Changed;
}
const std::string AAReturnedValuesImpl::getAsStr() const {
return (isAtFixpoint() ? "returns(#" : "may-return(#") +
(isValidState() ? std::to_string(getNumReturnValues()) : "?") + ")";
}
std::optional<Value *>
AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
// If checkForAllReturnedValues provides a unique value, ignoring potential
// undef values that can also be present, it is assumed to be the actual
// return value and forwarded to the caller of this method. If there are
// multiple, a nullptr is returned indicating there cannot be a unique
// returned value.
std::optional<Value *> UniqueRV;
Type *Ty = getAssociatedFunction()->getReturnType();
auto Pred = [&](Value &RV) -> bool {
UniqueRV = AA::combineOptionalValuesInAAValueLatice(UniqueRV, &RV, Ty);
return UniqueRV != std::optional<Value *>(nullptr);
};
if (!A.checkForAllReturnedValues(Pred, *this))
UniqueRV = nullptr;
return UniqueRV;
}
bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred)
const {
if (!isValidState())
return false;
// Check all returned values but ignore call sites as long as we have not
// encountered an overdefined one during an update.
for (const auto &It : ReturnedValues) {
Value *RV = It.first;
if (!Pred(*RV, It.second))
return false;
}
return true;
}
ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
SmallVector<AA::ValueAndContext> Values;
bool UsedAssumedInformation = false;
auto ReturnInstCB = [&](Instruction &I) {
ReturnInst &Ret = cast<ReturnInst>(I);
Values.clear();
if (!A.getAssumedSimplifiedValues(IRPosition::value(*Ret.getReturnValue()),
*this, Values, AA::Intraprocedural,
UsedAssumedInformation))
Values.push_back({*Ret.getReturnValue(), Ret});
for (auto &VAC : Values) {
assert(AA::isValidInScope(*VAC.getValue(), Ret.getFunction()) &&
"Assumed returned value should be valid in function scope!");
if (ReturnedValues[VAC.getValue()].insert(&Ret))
Changed = ChangeStatus::CHANGED;
}
return true;
};
// Discover returned values from all live returned instructions in the
// associated function.
if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
UsedAssumedInformation))
return indicatePessimisticFixpoint();
return Changed;
}
struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
AAReturnedValuesFunction(const IRPosition &IRP, Attributor &A)
: AAReturnedValuesImpl(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
};
/// Returned values information for a call sites.
struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
AAReturnedValuesCallSite(const IRPosition &IRP, Attributor &A)
: AAReturnedValuesImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites instead of
// redirecting requests to the callee.
llvm_unreachable("Abstract attributes for returned values are not "
"supported for call sites yet!");
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
return indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {}
};
} // namespace
/// ------------------------ NoSync Function Attribute -------------------------
bool AANoSync::isAlignedBarrier(const CallBase &CB, bool ExecutedAligned) {
switch (CB.getIntrinsicID()) {
case Intrinsic::nvvm_barrier0:
case Intrinsic::nvvm_barrier0_and:
case Intrinsic::nvvm_barrier0_or:
case Intrinsic::nvvm_barrier0_popc:
return true;
case Intrinsic::amdgcn_s_barrier:
if (ExecutedAligned)
return true;
break;
default:
break;
}
return hasAssumption(CB, KnownAssumptionString("ompx_aligned_barrier"));
}
bool AANoSync::isNonRelaxedAtomic(const Instruction *I) {
if (!I->isAtomic())
return false;
if (auto *FI = dyn_cast<FenceInst>(I))
// All legal orderings for fence are stronger than monotonic.
return FI->getSyncScopeID() != SyncScope::SingleThread;
if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) {
// Unordered is not a legal ordering for cmpxchg.
return (AI->getSuccessOrdering() != AtomicOrdering::Monotonic ||
AI->getFailureOrdering() != AtomicOrdering::Monotonic);
}
AtomicOrdering Ordering;
switch (I->getOpcode()) {
case Instruction::AtomicRMW:
Ordering = cast<AtomicRMWInst>(I)->getOrdering();
break;
case Instruction::Store:
Ordering = cast<StoreInst>(I)->getOrdering();
break;
case Instruction::Load:
Ordering = cast<LoadInst>(I)->getOrdering();
break;
default:
llvm_unreachable(
"New atomic operations need to be known in the attributor.");
}
return (Ordering != AtomicOrdering::Unordered &&
Ordering != AtomicOrdering::Monotonic);
}
/// Return true if this intrinsic is nosync. This is only used for intrinsics
/// which would be nosync except that they have a volatile flag. All other
/// intrinsics are simply annotated with the nosync attribute in Intrinsics.td.
bool AANoSync::isNoSyncIntrinsic(const Instruction *I) {
if (auto *MI = dyn_cast<MemIntrinsic>(I))
return !MI->isVolatile();
return false;
}
namespace {
struct AANoSyncImpl : AANoSync {
AANoSyncImpl(const IRPosition &IRP, Attributor &A) : AANoSync(IRP, A) {}
const std::string getAsStr() const override {
return getAssumed() ? "nosync" : "may-sync";
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
};
ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
auto CheckRWInstForNoSync = [&](Instruction &I) {
return AA::isNoSyncInst(A, I, *this);
};
auto CheckForNoSync = [&](Instruction &I) {
// At this point we handled all read/write effects and they are all
// nosync, so they can be skipped.
if (I.mayReadOrWriteMemory())
return true;
// non-convergent and readnone imply nosync.
return !cast<CallBase>(I).isConvergent();
};
bool UsedAssumedInformation = false;
if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this,
UsedAssumedInformation) ||
!A.checkForAllCallLikeInstructions(CheckForNoSync, *this,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
struct AANoSyncFunction final : public AANoSyncImpl {
AANoSyncFunction(const IRPosition &IRP, Attributor &A)
: AANoSyncImpl(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
};
/// NoSync attribute deduction for a call sites.
struct AANoSyncCallSite final : AANoSyncImpl {
AANoSyncCallSite(const IRPosition &IRP, Attributor &A)
: AANoSyncImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AANoSyncImpl::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Function *F = getAssociatedFunction();
const IRPosition &FnPos = IRPosition::function(*F);
auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), FnAA.getState());
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
};
} // namespace
/// ------------------------ No-Free Attributes ----------------------------
namespace {
struct AANoFreeImpl : public AANoFree {
AANoFreeImpl(const IRPosition &IRP, Attributor &A) : AANoFree(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto CheckForNoFree = [&](Instruction &I) {
const auto &CB = cast<CallBase>(I);
if (CB.hasFnAttr(Attribute::NoFree))
return true;
const auto &NoFreeAA = A.getAAFor<AANoFree>(
*this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
return NoFreeAA.isAssumedNoFree();
};
bool UsedAssumedInformation = false;
if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumed() ? "nofree" : "may-free";
}
};
struct AANoFreeFunction final : public AANoFreeImpl {
AANoFreeFunction(const IRPosition &IRP, Attributor &A)
: AANoFreeImpl(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
};
/// NoFree attribute deduction for a call sites.
struct AANoFreeCallSite final : AANoFreeImpl {
AANoFreeCallSite(const IRPosition &IRP, Attributor &A)
: AANoFreeImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AANoFreeImpl::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Function *F = getAssociatedFunction();
const IRPosition &FnPos = IRPosition::function(*F);
auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), FnAA.getState());
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
};
/// NoFree attribute for floating values.
struct AANoFreeFloating : AANoFreeImpl {
AANoFreeFloating(const IRPosition &IRP, Attributor &A)
: AANoFreeImpl(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override{STATS_DECLTRACK_FLOATING_ATTR(nofree)}
/// See Abstract Attribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
const IRPosition &IRP = getIRPosition();
const auto &NoFreeAA = A.getAAFor<AANoFree>(
*this, IRPosition::function_scope(IRP), DepClassTy::OPTIONAL);
if (NoFreeAA.isAssumedNoFree())
return ChangeStatus::UNCHANGED;
Value &AssociatedValue = getIRPosition().getAssociatedValue();
auto Pred = [&](const Use &U, bool &Follow) -> bool {
Instruction *UserI = cast<Instruction>(U.getUser());
if (auto *CB = dyn_cast<CallBase>(UserI)) {
if (CB->isBundleOperand(&U))
return false;
if (!CB->isArgOperand(&U))
return true;
unsigned ArgNo = CB->getArgOperandNo(&U);
const auto &NoFreeArg = A.getAAFor<AANoFree>(
*this, IRPosition::callsite_argument(*CB, ArgNo),
DepClassTy::REQUIRED);
return NoFreeArg.isAssumedNoFree();
}
if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
Follow = true;
return true;
}
if (isa<StoreInst>(UserI) || isa<LoadInst>(UserI) ||
isa<ReturnInst>(UserI))
return true;
// Unknown user.
return false;
};
if (!A.checkForAllUses(Pred, *this, AssociatedValue))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
};
/// NoFree attribute for a call site argument.
struct AANoFreeArgument final : AANoFreeFloating {
AANoFreeArgument(const IRPosition &IRP, Attributor &A)
: AANoFreeFloating(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nofree) }
};
/// NoFree attribute for call site arguments.
struct AANoFreeCallSiteArgument final : AANoFreeFloating {
AANoFreeCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AANoFreeFloating(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Argument *Arg = getAssociatedArgument();
if (!Arg)
return indicatePessimisticFixpoint();
const IRPosition &ArgPos = IRPosition::argument(*Arg);
auto &ArgAA = A.getAAFor<AANoFree>(*this, ArgPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), ArgAA.getState());
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nofree)};
};
/// NoFree attribute for function return value.
struct AANoFreeReturned final : AANoFreeFloating {
AANoFreeReturned(const IRPosition &IRP, Attributor &A)
: AANoFreeFloating(IRP, A) {
llvm_unreachable("NoFree is not applicable to function returns!");
}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
llvm_unreachable("NoFree is not applicable to function returns!");
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
llvm_unreachable("NoFree is not applicable to function returns!");
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {}
};
/// NoFree attribute deduction for a call site return value.
struct AANoFreeCallSiteReturned final : AANoFreeFloating {
AANoFreeCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AANoFreeFloating(IRP, A) {}
ChangeStatus manifest(Attributor &A) override {
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nofree) }
};
} // namespace
/// ------------------------ NonNull Argument Attribute ------------------------
namespace {
static int64_t getKnownNonNullAndDerefBytesForUse(
Attributor &A, const AbstractAttribute &QueryingAA, Value &AssociatedValue,
const Use *U, const Instruction *I, bool &IsNonNull, bool &TrackUse) {
TrackUse = false;
const Value *UseV = U->get();
if (!UseV->getType()->isPointerTy())
return 0;
// We need to follow common pointer manipulation uses to the accesses they
// feed into. We can try to be smart to avoid looking through things we do not
// like for now, e.g., non-inbounds GEPs.
if (isa<CastInst>(I)) {
TrackUse = true;
return 0;
}
if (isa<GetElementPtrInst>(I)) {
TrackUse = true;
return 0;
}
Type *PtrTy = UseV->getType();
const Function *F = I->getFunction();
bool NullPointerIsDefined =
F ? llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()) : true;
const DataLayout &DL = A.getInfoCache().getDL();
if (const auto *CB = dyn_cast<CallBase>(I)) {
if (CB->isBundleOperand(U)) {
if (RetainedKnowledge RK = getKnowledgeFromUse(
U, {Attribute::NonNull, Attribute::Dereferenceable})) {
IsNonNull |=
(RK.AttrKind == Attribute::NonNull || !NullPointerIsDefined);
return RK.ArgValue;
}
return 0;
}
if (CB->isCallee(U)) {
IsNonNull |= !NullPointerIsDefined;
return 0;
}
unsigned ArgNo = CB->getArgOperandNo(U);
IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
// As long as we only use known information there is no need to track
// dependences here.
auto &DerefAA =
A.getAAFor<AADereferenceable>(QueryingAA, IRP, DepClassTy::NONE);
IsNonNull |= DerefAA.isKnownNonNull();
return DerefAA.getKnownDereferenceableBytes();
}
std::optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
return 0;
int64_t Offset;
const Value *Base =
getMinimalBaseOfPointer(A, QueryingAA, Loc->Ptr, Offset, DL);
if (Base && Base == &AssociatedValue) {
int64_t DerefBytes = Loc->Size.getValue() + Offset;
IsNonNull |= !NullPointerIsDefined;
return std::max(int64_t(0), DerefBytes);
}
/// Corner case when an offset is 0.
Base = GetPointerBaseWithConstantOffset(Loc->Ptr, Offset, DL,
/*AllowNonInbounds*/ true);
if (Base && Base == &AssociatedValue && Offset == 0) {
int64_t DerefBytes = Loc->Size.getValue();
IsNonNull |= !NullPointerIsDefined;
return std::max(int64_t(0), DerefBytes);
}
return 0;
}
struct AANonNullImpl : AANonNull {
AANonNullImpl(const IRPosition &IRP, Attributor &A)
: AANonNull(IRP, A),
NullIsDefined(NullPointerIsDefined(
getAnchorScope(),
getAssociatedValue().getType()->getPointerAddressSpace())) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
Value &V = *getAssociatedValue().stripPointerCasts();
if (!NullIsDefined &&
hasAttr({Attribute::NonNull, Attribute::Dereferenceable},
/* IgnoreSubsumingPositions */ false, &A)) {
indicateOptimisticFixpoint();
return;
}
if (isa<ConstantPointerNull>(V)) {
indicatePessimisticFixpoint();
return;
}
AANonNull::initialize(A);
bool CanBeNull, CanBeFreed;
if (V.getPointerDereferenceableBytes(A.getDataLayout(), CanBeNull,
CanBeFreed)) {
if (!CanBeNull) {
indicateOptimisticFixpoint();
return;
}
}
if (isa<GlobalValue>(V)) {
indicatePessimisticFixpoint();
return;
}
if (Instruction *CtxI = getCtxI())
followUsesInMBEC(*this, A, getState(), *CtxI);
}
/// See followUsesInMBEC
bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
AANonNull::StateType &State) {
bool IsNonNull = false;
bool TrackUse = false;
getKnownNonNullAndDerefBytesForUse(A, *this, getAssociatedValue(), U, I,
IsNonNull, TrackUse);
State.setKnown(IsNonNull);
return TrackUse;
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumed() ? "nonnull" : "may-null";
}
/// Flag to determine if the underlying value can be null and still allow
/// valid accesses.
const bool NullIsDefined;
};
/// NonNull attribute for a floating value.
struct AANonNullFloating : public AANonNullImpl {
AANonNullFloating(const IRPosition &IRP, Attributor &A)
: AANonNullImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
const DataLayout &DL = A.getDataLayout();
bool Stripped;
bool UsedAssumedInformation = false;
SmallVector<AA::ValueAndContext> Values;
if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
AA::AnyScope, UsedAssumedInformation)) {
Values.push_back({getAssociatedValue(), getCtxI()});
Stripped = false;
} else {
Stripped = Values.size() != 1 ||
Values.front().getValue() != &getAssociatedValue();
}
DominatorTree *DT = nullptr;
AssumptionCache *AC = nullptr;
InformationCache &InfoCache = A.getInfoCache();
if (const Function *Fn = getAnchorScope()) {
DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Fn);
AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*Fn);
}
AANonNull::StateType T;
auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V),
DepClassTy::REQUIRED);
if (!Stripped && this == &AA) {
if (!isKnownNonZero(&V, DL, 0, AC, CtxI, DT))
T.indicatePessimisticFixpoint();
} else {
// Use abstract attribute information.
const AANonNull::StateType &NS = AA.getState();
T ^= NS;
}
return T.isValidState();
};
for (const auto &VAC : Values)
if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI()))
return indicatePessimisticFixpoint();
return clampStateAndIndicateChange(getState(), T);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
};
/// NonNull attribute for function return value.
struct AANonNullReturned final
: AAReturnedFromReturnedValues<AANonNull, AANonNull> {
AANonNullReturned(const IRPosition &IRP, Attributor &A)
: AAReturnedFromReturnedValues<AANonNull, AANonNull>(IRP, A) {}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumed() ? "nonnull" : "may-null";
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
};
/// NonNull attribute for function argument.
struct AANonNullArgument final
: AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
AANonNullArgument(const IRPosition &IRP, Attributor &A)
: AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
};
struct AANonNullCallSiteArgument final : AANonNullFloating {
AANonNullCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AANonNullFloating(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
};
/// NonNull attribute for a call site return position.
struct AANonNullCallSiteReturned final
: AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
AANonNullCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
};
} // namespace
/// ------------------------ No-Recurse Attributes ----------------------------
namespace {
struct AANoRecurseImpl : public AANoRecurse {
AANoRecurseImpl(const IRPosition &IRP, Attributor &A) : AANoRecurse(IRP, A) {}
/// See AbstractAttribute::getAsStr()
const std::string getAsStr() const override {
return getAssumed() ? "norecurse" : "may-recurse";
}
};
struct AANoRecurseFunction final : AANoRecurseImpl {
AANoRecurseFunction(const IRPosition &IRP, Attributor &A)
: AANoRecurseImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// If all live call sites are known to be no-recurse, we are as well.
auto CallSitePred = [&](AbstractCallSite ACS) {
const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
*this, IRPosition::function(*ACS.getInstruction()->getFunction()),
DepClassTy::NONE);
return NoRecurseAA.isKnownNoRecurse();
};
bool UsedAssumedInformation = false;
if (A.checkForAllCallSites(CallSitePred, *this, true,
UsedAssumedInformation)) {
// If we know all call sites and all are known no-recurse, we are done.
// If all known call sites, which might not be all that exist, are known
// to be no-recurse, we are not done but we can continue to assume
// no-recurse. If one of the call sites we have not visited will become
// live, another update is triggered.
if (!UsedAssumedInformation)
indicateOptimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
const AAInterFnReachability &EdgeReachability =
A.getAAFor<AAInterFnReachability>(*this, getIRPosition(),
DepClassTy::REQUIRED);
if (EdgeReachability.canReach(A, *getAnchorScope()))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
};
/// NoRecurse attribute deduction for a call sites.
struct AANoRecurseCallSite final : AANoRecurseImpl {
AANoRecurseCallSite(const IRPosition &IRP, Attributor &A)
: AANoRecurseImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AANoRecurseImpl::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Function *F = getAssociatedFunction();
const IRPosition &FnPos = IRPosition::function(*F);
auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), FnAA.getState());
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
};
} // namespace
/// -------------------- Undefined-Behavior Attributes ------------------------
namespace {
struct AAUndefinedBehaviorImpl : public AAUndefinedBehavior {
AAUndefinedBehaviorImpl(const IRPosition &IRP, Attributor &A)
: AAUndefinedBehavior(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
// through a pointer (i.e. also branches etc.)
ChangeStatus updateImpl(Attributor &A) override {
const size_t UBPrevSize = KnownUBInsts.size();
const size_t NoUBPrevSize = AssumedNoUBInsts.size();
auto InspectMemAccessInstForUB = [&](Instruction &I) {
// Lang ref now states volatile store is not UB, let's skip them.
if (I.isVolatile() && I.mayWriteToMemory())
return true;
// Skip instructions that are already saved.
if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
return true;
// If we reach here, we know we have an instruction
// that accesses memory through a pointer operand,
// for which getPointerOperand() should give it to us.
Value *PtrOp =
const_cast<Value *>(getPointerOperand(&I, /* AllowVolatile */ true));
assert(PtrOp &&
"Expected pointer operand of memory accessing instruction");
// Either we stopped and the appropriate action was taken,
// or we got back a simplified value to continue.
std::optional<Value *> SimplifiedPtrOp =
stopOnUndefOrAssumed(A, PtrOp, &I);
if (!SimplifiedPtrOp || !*SimplifiedPtrOp)
return true;
const Value *PtrOpVal = *SimplifiedPtrOp;
// A memory access through a pointer is considered UB
// only if the pointer has constant null value.
// TODO: Expand it to not only check constant values.
if (!isa<ConstantPointerNull>(PtrOpVal)) {
AssumedNoUBInsts.insert(&I);
return true;
}
const Type *PtrTy = PtrOpVal->getType();
// Because we only consider instructions inside functions,
// assume that a parent function exists.
const Function *F = I.getFunction();
// A memory access using constant null pointer is only considered UB
// if null pointer is _not_ defined for the target platform.
if (llvm::NullPointerIsDefined(F, PtrTy->getPointerAddressSpace()))
AssumedNoUBInsts.insert(&I);
else
KnownUBInsts.insert(&I);
return true;
};
auto InspectBrInstForUB = [&](Instruction &I) {
// A conditional branch instruction is considered UB if it has `undef`
// condition.
// Skip instructions that are already saved.
if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
return true;
// We know we have a branch instruction.
auto *BrInst = cast<BranchInst>(&I);
// Unconditional branches are never considered UB.
if (BrInst->isUnconditional())
return true;
// Either we stopped and the appropriate action was taken,
// or we got back a simplified value to continue.
std::optional<Value *> SimplifiedCond =
stopOnUndefOrAssumed(A, BrInst->getCondition(), BrInst);
if (!SimplifiedCond || !*SimplifiedCond)
return true;
AssumedNoUBInsts.insert(&I);
return true;
};
auto InspectCallSiteForUB = [&](Instruction &I) {
// Check whether a callsite always cause UB or not
// Skip instructions that are already saved.
if (AssumedNoUBInsts.count(&I) || KnownUBInsts.count(&I))
return true;
// Check nonnull and noundef argument attribute violation for each
// callsite.
CallBase &CB = cast<CallBase>(I);
Function *Callee = CB.getCalledFunction();
if (!Callee)
return true;
for (unsigned idx = 0; idx < CB.arg_size(); idx++) {
// If current argument is known to be simplified to null pointer and the
// corresponding argument position is known to have nonnull attribute,
// the argument is poison. Furthermore, if the argument is poison and
// the position is known to have noundef attriubte, this callsite is
// considered UB.
if (idx >= Callee->arg_size())
break;
Value *ArgVal = CB.getArgOperand(idx);
if (!ArgVal)
continue;
// Here, we handle three cases.
// (1) Not having a value means it is dead. (we can replace the value
// with undef)
// (2) Simplified to undef. The argument violate noundef attriubte.
// (3) Simplified to null pointer where known to be nonnull.
// The argument is a poison value and violate noundef attribute.
IRPosition CalleeArgumentIRP = IRPosition::callsite_argument(CB, idx);
auto &NoUndefAA =
A.getAAFor<AANoUndef>(*this, CalleeArgumentIRP, DepClassTy::NONE);
if (!NoUndefAA.isKnownNoUndef())
continue;
bool UsedAssumedInformation = false;
std::optional<Value *> SimplifiedVal =
A.getAssumedSimplified(IRPosition::value(*ArgVal), *this,
UsedAssumedInformation, AA::Interprocedural);
if (UsedAssumedInformation)
continue;
if (SimplifiedVal && !*SimplifiedVal)
return true;
if (!SimplifiedVal || isa<UndefValue>(**SimplifiedVal)) {
KnownUBInsts.insert(&I);
continue;
}
if (!ArgVal->getType()->isPointerTy() ||
!isa<ConstantPointerNull>(**SimplifiedVal))
continue;
auto &NonNullAA =
A.getAAFor<AANonNull>(*this, CalleeArgumentIRP, DepClassTy::NONE);
if (NonNullAA.isKnownNonNull())
KnownUBInsts.insert(&I);
}
return true;
};
auto InspectReturnInstForUB = [&](Instruction &I) {
auto &RI = cast<ReturnInst>(I);
// Either we stopped and the appropriate action was taken,
// or we got back a simplified return value to continue.
std::optional<Value *> SimplifiedRetValue =
stopOnUndefOrAssumed(A, RI.getReturnValue(), &I);
if (!SimplifiedRetValue || !*SimplifiedRetValue)
return true;
// Check if a return instruction always cause UB or not
// Note: It is guaranteed that the returned position of the anchor
// scope has noundef attribute when this is called.
// We also ensure the return position is not "assumed dead"
// because the returned value was then potentially simplified to
// `undef` in AAReturnedValues without removing the `noundef`
// attribute yet.
// When the returned position has noundef attriubte, UB occurs in the
// following cases.
// (1) Returned value is known to be undef.
// (2) The value is known to be a null pointer and the returned
// position has nonnull attribute (because the returned value is
// poison).
if (isa<ConstantPointerNull>(*SimplifiedRetValue)) {
auto &NonNullAA = A.getAAFor<AANonNull>(
*this, IRPosition::returned(*getAnchorScope()), DepClassTy::NONE);
if (NonNullAA.isKnownNonNull())
KnownUBInsts.insert(&I);
}
return true;
};
bool UsedAssumedInformation = false;
A.checkForAllInstructions(InspectMemAccessInstForUB, *this,
{Instruction::Load, Instruction::Store,
Instruction::AtomicCmpXchg,
Instruction::AtomicRMW},
UsedAssumedInformation,
/* CheckBBLivenessOnly */ true);
A.checkForAllInstructions(InspectBrInstForUB, *this, {Instruction::Br},
UsedAssumedInformation,
/* CheckBBLivenessOnly */ true);
A.checkForAllCallLikeInstructions(InspectCallSiteForUB, *this,
UsedAssumedInformation);
// If the returned position of the anchor scope has noundef attriubte, check
// all returned instructions.
if (!getAnchorScope()->getReturnType()->isVoidTy()) {
const IRPosition &ReturnIRP = IRPosition::returned(*getAnchorScope());
if (!A.isAssumedDead(ReturnIRP, this, nullptr, UsedAssumedInformation)) {
auto &RetPosNoUndefAA =
A.getAAFor<AANoUndef>(*this, ReturnIRP, DepClassTy::NONE);
if (RetPosNoUndefAA.isKnownNoUndef())
A.checkForAllInstructions(InspectReturnInstForUB, *this,
{Instruction::Ret}, UsedAssumedInformation,
/* CheckBBLivenessOnly */ true);
}
}
if (NoUBPrevSize != AssumedNoUBInsts.size() ||
UBPrevSize != KnownUBInsts.size())
return ChangeStatus::CHANGED;
return ChangeStatus::UNCHANGED;
}
bool isKnownToCauseUB(Instruction *I) const override {
return KnownUBInsts.count(I);
}
bool isAssumedToCauseUB(Instruction *I) const override {
// In simple words, if an instruction is not in the assumed to _not_
// cause UB, then it is assumed UB (that includes those
// in the KnownUBInsts set). The rest is boilerplate
// is to ensure that it is one of the instructions we test
// for UB.
switch (I->getOpcode()) {
case Instruction::Load:
case Instruction::Store:
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
return !AssumedNoUBInsts.count(I);
case Instruction::Br: {
auto *BrInst = cast<BranchInst>(I);
if (BrInst->isUnconditional())
return false;
return !AssumedNoUBInsts.count(I);
} break;
default:
return false;
}
return false;
}
ChangeStatus manifest(Attributor &A) override {
if (KnownUBInsts.empty())
return ChangeStatus::UNCHANGED;
for (Instruction *I : KnownUBInsts)
A.changeToUnreachableAfterManifest(I);
return ChangeStatus::CHANGED;
}
/// See AbstractAttribute::getAsStr()
const std::string getAsStr() const override {
return getAssumed() ? "undefined-behavior" : "no-ub";
}
/// Note: The correctness of this analysis depends on the fact that the
/// following 2 sets will stop changing after some point.
/// "Change" here means that their size changes.
/// The size of each set is monotonically increasing
/// (we only add items to them) and it is upper bounded by the number of
/// instructions in the processed function (we can never save more
/// elements in either set than this number). Hence, at some point,
/// they will stop increasing.
/// Consequently, at some point, both sets will have stopped
/// changing, effectively making the analysis reach a fixpoint.
/// Note: These 2 sets are disjoint and an instruction can be considered
/// one of 3 things:
/// 1) Known to cause UB (AAUndefinedBehavior could prove it) and put it in
/// the KnownUBInsts set.
/// 2) Assumed to cause UB (in every updateImpl, AAUndefinedBehavior
/// has a reason to assume it).
/// 3) Assumed to not cause UB. very other instruction - AAUndefinedBehavior
/// could not find a reason to assume or prove that it can cause UB,
/// hence it assumes it doesn't. We have a set for these instructions
/// so that we don't reprocess them in every update.
/// Note however that instructions in this set may cause UB.
protected:
/// A set of all live instructions _known_ to cause UB.
SmallPtrSet<Instruction *, 8> KnownUBInsts;
private:
/// A set of all the (live) instructions that are assumed to _not_ cause UB.
SmallPtrSet<Instruction *, 8> AssumedNoUBInsts;
// Should be called on updates in which if we're processing an instruction
// \p I that depends on a value \p V, one of the following has to happen:
// - If the value is assumed, then stop.
// - If the value is known but undef, then consider it UB.
// - Otherwise, do specific processing with the simplified value.
// We return std::nullopt in the first 2 cases to signify that an appropriate
// action was taken and the caller should stop.
// Otherwise, we return the simplified value that the caller should
// use for specific processing.
std::optional<Value *> stopOnUndefOrAssumed(Attributor &A, Value *V,
Instruction *I) {
bool UsedAssumedInformation = false;
std::optional<Value *> SimplifiedV =
A.getAssumedSimplified(IRPosition::value(*V), *this,
UsedAssumedInformation, AA::Interprocedural);
if (!UsedAssumedInformation) {
// Don't depend on assumed values.
if (!SimplifiedV) {
// If it is known (which we tested above) but it doesn't have a value,
// then we can assume `undef` and hence the instruction is UB.
KnownUBInsts.insert(I);
return std::nullopt;
}
if (!*SimplifiedV)
return nullptr;
V = *SimplifiedV;
}
if (isa<UndefValue>(V)) {
KnownUBInsts.insert(I);
return std::nullopt;
}
return V;
}
};
struct AAUndefinedBehaviorFunction final : AAUndefinedBehaviorImpl {
AAUndefinedBehaviorFunction(const IRPosition &IRP, Attributor &A)
: AAUndefinedBehaviorImpl(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECL(UndefinedBehaviorInstruction, Instruction,
"Number of instructions known to have UB");
BUILD_STAT_NAME(UndefinedBehaviorInstruction, Instruction) +=
KnownUBInsts.size();
}
};
} // namespace
/// ------------------------ Will-Return Attributes ----------------------------
namespace {
// Helper function that checks whether a function has any cycle which we don't
// know if it is bounded or not.
// Loops with maximum trip count are considered bounded, any other cycle not.
static bool mayContainUnboundedCycle(Function &F, Attributor &A) {
ScalarEvolution *SE =
A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(F);
LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(F);
// If either SCEV or LoopInfo is not available for the function then we assume
// any cycle to be unbounded cycle.
// We use scc_iterator which uses Tarjan algorithm to find all the maximal
// SCCs.To detect if there's a cycle, we only need to find the maximal ones.
if (!SE || !LI) {
for (scc_iterator<Function *> SCCI = scc_begin(&F); !SCCI.isAtEnd(); ++SCCI)
if (SCCI.hasCycle())
return true;
return false;
}
// If there's irreducible control, the function may contain non-loop cycles.
if (mayContainIrreducibleControl(F, LI))
return true;
// Any loop that does not have a max trip count is considered unbounded cycle.
for (auto *L : LI->getLoopsInPreorder()) {
if (!SE->getSmallConstantMaxTripCount(L))
return true;
}
return false;
}
struct AAWillReturnImpl : public AAWillReturn {
AAWillReturnImpl(const IRPosition &IRP, Attributor &A)
: AAWillReturn(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAWillReturn::initialize(A);
if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ true)) {
indicateOptimisticFixpoint();
return;
}
}
/// Check for `mustprogress` and `readonly` as they imply `willreturn`.
bool isImpliedByMustprogressAndReadonly(Attributor &A, bool KnownOnly) {
// Check for `mustprogress` in the scope and the associated function which
// might be different if this is a call site.
if ((!getAnchorScope() || !getAnchorScope()->mustProgress()) &&
(!getAssociatedFunction() || !getAssociatedFunction()->mustProgress()))
return false;
bool IsKnown;
if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
return IsKnown || !KnownOnly;
return false;
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
return ChangeStatus::UNCHANGED;
auto CheckForWillReturn = [&](Instruction &I) {
IRPosition IPos = IRPosition::callsite_function(cast<CallBase>(I));
const auto &WillReturnAA =
A.getAAFor<AAWillReturn>(*this, IPos, DepClassTy::REQUIRED);
if (WillReturnAA.isKnownWillReturn())
return true;
if (!WillReturnAA.isAssumedWillReturn())
return false;
const auto &NoRecurseAA =
A.getAAFor<AANoRecurse>(*this, IPos, DepClassTy::REQUIRED);
return NoRecurseAA.isAssumedNoRecurse();
};
bool UsedAssumedInformation = false;
if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::getAsStr()
const std::string getAsStr() const override {
return getAssumed() ? "willreturn" : "may-noreturn";
}
};
struct AAWillReturnFunction final : AAWillReturnImpl {
AAWillReturnFunction(const IRPosition &IRP, Attributor &A)
: AAWillReturnImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAWillReturnImpl::initialize(A);
Function *F = getAnchorScope();
if (!F || F->isDeclaration() || mayContainUnboundedCycle(*F, A))
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
};
/// WillReturn attribute deduction for a call sites.
struct AAWillReturnCallSite final : AAWillReturnImpl {
AAWillReturnCallSite(const IRPosition &IRP, Attributor &A)
: AAWillReturnImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAWillReturnImpl::initialize(A);
Function *F = getAssociatedFunction();
if (!F || !A.isFunctionIPOAmendable(*F))
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
if (isImpliedByMustprogressAndReadonly(A, /* KnownOnly */ false))
return ChangeStatus::UNCHANGED;
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Function *F = getAssociatedFunction();
const IRPosition &FnPos = IRPosition::function(*F);
auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), FnAA.getState());
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
};
} // namespace
/// -------------------AAIntraFnReachability Attribute--------------------------
/// All information associated with a reachability query. This boilerplate code
/// is used by both AAIntraFnReachability and AAInterFnReachability, with
/// different \p ToTy values.
template <typename ToTy> struct ReachabilityQueryInfo {
enum class Reachable {
No,
Yes,
};
/// Start here,
const Instruction *From = nullptr;
/// reach this place,
const ToTy *To = nullptr;
/// without going through any of these instructions,
const AA::InstExclusionSetTy *ExclusionSet = nullptr;
/// and remember if it worked:
Reachable Result = Reachable::No;
ReachabilityQueryInfo(const Instruction *From, const ToTy *To)
: From(From), To(To) {}
/// Constructor replacement to ensure unique and stable sets are used for the
/// cache.
ReachabilityQueryInfo(Attributor &A, const Instruction &From, const ToTy &To,
const AA::InstExclusionSetTy *ES)
: From(&From), To(&To), ExclusionSet(ES) {
if (ExclusionSet && !ExclusionSet->empty()) {
ExclusionSet =
A.getInfoCache().getOrCreateUniqueBlockExecutionSet(ExclusionSet);
} else {
ExclusionSet = nullptr;
}
}
ReachabilityQueryInfo(const ReachabilityQueryInfo &RQI)
: From(RQI.From), To(RQI.To), ExclusionSet(RQI.ExclusionSet) {
assert(RQI.Result == Reachable::No &&
"Didn't expect to copy an explored RQI!");
}
};
namespace llvm {
template <typename ToTy> struct DenseMapInfo<ReachabilityQueryInfo<ToTy> *> {
using InstSetDMI = DenseMapInfo<const AA::InstExclusionSetTy *>;
using PairDMI = DenseMapInfo<std::pair<const Instruction *, const ToTy *>>;
static ReachabilityQueryInfo<ToTy> EmptyKey;
static ReachabilityQueryInfo<ToTy> TombstoneKey;
static inline ReachabilityQueryInfo<ToTy> *getEmptyKey() { return &EmptyKey; }
static inline ReachabilityQueryInfo<ToTy> *getTombstoneKey() {
return &TombstoneKey;
}
static unsigned getHashValue(const ReachabilityQueryInfo<ToTy> *RQI) {
unsigned H = PairDMI ::getHashValue({RQI->From, RQI->To});
H += InstSetDMI::getHashValue(RQI->ExclusionSet);
return H;
}
static bool isEqual(const ReachabilityQueryInfo<ToTy> *LHS,
const ReachabilityQueryInfo<ToTy> *RHS) {
if (!PairDMI::isEqual({LHS->From, LHS->To}, {RHS->From, RHS->To}))
return false;
return InstSetDMI::isEqual(LHS->ExclusionSet, RHS->ExclusionSet);
}
};
#define DefineKeys(ToTy) \
template <> \
ReachabilityQueryInfo<ToTy> \
DenseMapInfo<ReachabilityQueryInfo<ToTy> *>::EmptyKey = \
ReachabilityQueryInfo<ToTy>( \
DenseMapInfo<const Instruction *>::getEmptyKey(), \
DenseMapInfo<const ToTy *>::getEmptyKey()); \
template <> \
ReachabilityQueryInfo<ToTy> \
DenseMapInfo<ReachabilityQueryInfo<ToTy> *>::TombstoneKey = \
ReachabilityQueryInfo<ToTy>( \
DenseMapInfo<const Instruction *>::getTombstoneKey(), \
DenseMapInfo<const ToTy *>::getTombstoneKey());
DefineKeys(Instruction) DefineKeys(Function)
#undef DefineKeys
} // namespace llvm
namespace {
template <typename BaseTy, typename ToTy>
struct CachedReachabilityAA : public BaseTy {
using RQITy = ReachabilityQueryInfo<ToTy>;
CachedReachabilityAA<BaseTy, ToTy>(const IRPosition &IRP, Attributor &A)
: BaseTy(IRP, A) {}
/// See AbstractAttribute::isQueryAA.
bool isQueryAA() const override { return true; }
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
InUpdate = true;
for (RQITy *RQI : QueryVector) {
if (RQI->Result == RQITy::Reachable::No && isReachableImpl(A, *RQI))
Changed = ChangeStatus::CHANGED;
}
InUpdate = false;
return Changed;
}
virtual bool isReachableImpl(Attributor &A, RQITy &RQI) = 0;
bool rememberResult(Attributor &A, typename RQITy::Reachable Result,
RQITy &RQI) {
if (Result == RQITy::Reachable::No) {
if (!InUpdate)
A.registerForUpdate(*this);
return false;
}
assert(RQI.Result == RQITy::Reachable::No && "Already reachable?");
RQI.Result = Result;
return true;
}
const std::string getAsStr() const override {
// TODO: Return the number of reachable queries.
return "#queries(" + std::to_string(QueryVector.size()) + ")";
}
RQITy *checkQueryCache(Attributor &A, RQITy &StackRQI,
typename RQITy::Reachable &Result) {
if (!this->getState().isValidState()) {
Result = RQITy::Reachable::Yes;
return nullptr;
}
auto It = QueryCache.find(&StackRQI);
if (It != QueryCache.end()) {
Result = (*It)->Result;
return nullptr;
}
RQITy *RQIPtr = new (A.Allocator) RQITy(StackRQI);
QueryVector.push_back(RQIPtr);
QueryCache.insert(RQIPtr);
return RQIPtr;
}
private:
bool InUpdate = false;
SmallVector<RQITy *> QueryVector;
DenseSet<RQITy *> QueryCache;
};
struct AAIntraFnReachabilityFunction final
: public CachedReachabilityAA<AAIntraFnReachability, Instruction> {
AAIntraFnReachabilityFunction(const IRPosition &IRP, Attributor &A)
: CachedReachabilityAA<AAIntraFnReachability, Instruction>(IRP, A) {}
bool isAssumedReachable(
Attributor &A, const Instruction &From, const Instruction &To,
const AA::InstExclusionSetTy *ExclusionSet) const override {
auto *NonConstThis = const_cast<AAIntraFnReachabilityFunction *>(this);
if (&From == &To)
return true;
RQITy StackRQI(A, From, To, ExclusionSet);
typename RQITy::Reachable Result;
if (RQITy *RQIPtr = NonConstThis->checkQueryCache(A, StackRQI, Result)) {
return NonConstThis->isReachableImpl(A, *RQIPtr);
}
return Result == RQITy::Reachable::Yes;
}
bool isReachableImpl(Attributor &A, RQITy &RQI) override {
const Instruction *Origin = RQI.From;
auto WillReachInBlock = [=](const Instruction &From, const Instruction &To,
const AA::InstExclusionSetTy *ExclusionSet) {
const Instruction *IP = &From;
while (IP && IP != &To) {
if (ExclusionSet && IP != Origin && ExclusionSet->count(IP))
break;
IP = IP->getNextNode();
}
return IP == &To;
};
const BasicBlock *FromBB = RQI.From->getParent();
const BasicBlock *ToBB = RQI.To->getParent();
assert(FromBB->getParent() == ToBB->getParent() &&
"Not an intra-procedural query!");
// Check intra-block reachability, however, other reaching paths are still
// possible.
if (FromBB == ToBB &&
WillReachInBlock(*RQI.From, *RQI.To, RQI.ExclusionSet))
return rememberResult(A, RQITy::Reachable::Yes, RQI);
SmallPtrSet<const BasicBlock *, 16> ExclusionBlocks;
if (RQI.ExclusionSet)
for (auto *I : *RQI.ExclusionSet)
ExclusionBlocks.insert(I->getParent());
// Check if we make it out of the FromBB block at all.
if (ExclusionBlocks.count(FromBB) &&
!WillReachInBlock(*RQI.From, *FromBB->getTerminator(),
RQI.ExclusionSet))
return rememberResult(A, RQITy::Reachable::No, RQI);
SmallPtrSet<const BasicBlock *, 16> Visited;
SmallVector<const BasicBlock *, 16> Worklist;
Worklist.push_back(FromBB);
auto &LivenessAA =
A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
while (!Worklist.empty()) {
const BasicBlock *BB = Worklist.pop_back_val();
if (!Visited.insert(BB).second)
continue;
for (const BasicBlock *SuccBB : successors(BB)) {
if (LivenessAA.isEdgeDead(BB, SuccBB))
continue;
if (SuccBB == ToBB &&
WillReachInBlock(SuccBB->front(), *RQI.To, RQI.ExclusionSet))
return rememberResult(A, RQITy::Reachable::Yes, RQI);
if (ExclusionBlocks.count(SuccBB))
continue;
Worklist.push_back(SuccBB);
}
}
return rememberResult(A, RQITy::Reachable::No, RQI);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {}
};
} // namespace
/// ------------------------ NoAlias Argument Attribute ------------------------
namespace {
struct AANoAliasImpl : AANoAlias {
AANoAliasImpl(const IRPosition &IRP, Attributor &A) : AANoAlias(IRP, A) {
assert(getAssociatedType()->isPointerTy() &&
"Noalias is a pointer attribute");
}
const std::string getAsStr() const override {
return getAssumed() ? "noalias" : "may-alias";
}
};
/// NoAlias attribute for a floating value.
struct AANoAliasFloating final : AANoAliasImpl {
AANoAliasFloating(const IRPosition &IRP, Attributor &A)
: AANoAliasImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AANoAliasImpl::initialize(A);
Value *Val = &getAssociatedValue();
do {
CastInst *CI = dyn_cast<CastInst>(Val);
if (!CI)
break;
Value *Base = CI->getOperand(0);
if (!Base->hasOneUse())
break;
Val = Base;
} while (true);
if (!Val->getType()->isPointerTy()) {
indicatePessimisticFixpoint();
return;
}
if (isa<AllocaInst>(Val))
indicateOptimisticFixpoint();
else if (isa<ConstantPointerNull>(Val) &&
!NullPointerIsDefined(getAnchorScope(),
Val->getType()->getPointerAddressSpace()))
indicateOptimisticFixpoint();
else if (Val != &getAssociatedValue()) {
const auto &ValNoAliasAA = A.getAAFor<AANoAlias>(
*this, IRPosition::value(*Val), DepClassTy::OPTIONAL);
if (ValNoAliasAA.isKnownNoAlias())
indicateOptimisticFixpoint();
}
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Implement this.
return indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FLOATING_ATTR(noalias)
}
};
/// NoAlias attribute for an argument.
struct AANoAliasArgument final
: AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
using Base = AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>;
AANoAliasArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
Base::initialize(A);
// See callsite argument attribute and callee argument attribute.
if (hasAttr({Attribute::ByVal}))
indicateOptimisticFixpoint();
}
/// See AbstractAttribute::update(...).
ChangeStatus updateImpl(Attributor &A) override {
// We have to make sure no-alias on the argument does not break
// synchronization when this is a callback argument, see also [1] below.
// If synchronization cannot be affected, we delegate to the base updateImpl
// function, otherwise we give up for now.
// If the function is no-sync, no-alias cannot break synchronization.
const auto &NoSyncAA =
A.getAAFor<AANoSync>(*this, IRPosition::function_scope(getIRPosition()),
DepClassTy::OPTIONAL);
if (NoSyncAA.isAssumedNoSync())
return Base::updateImpl(A);
// If the argument is read-only, no-alias cannot break synchronization.
bool IsKnown;
if (AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
return Base::updateImpl(A);
// If the argument is never passed through callbacks, no-alias cannot break
// synchronization.
bool UsedAssumedInformation = false;
if (A.checkForAllCallSites(
[](AbstractCallSite ACS) { return !ACS.isCallbackCall(); }, *this,
true, UsedAssumedInformation))
return Base::updateImpl(A);
// TODO: add no-alias but make sure it doesn't break synchronization by
// introducing fake uses. See:
// [1] Compiler Optimizations for OpenMP, J. Doerfert and H. Finkel,
// International Workshop on OpenMP 2018,
// http://compilers.cs.uni-saarland.de/people/doerfert/par_opt18.pdf
return indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
};
struct AANoAliasCallSiteArgument final : AANoAliasImpl {
AANoAliasCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AANoAliasImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// See callsite argument attribute and callee argument attribute.
const auto &CB = cast<CallBase>(getAnchorValue());
if (CB.paramHasAttr(getCallSiteArgNo(), Attribute::NoAlias))
indicateOptimisticFixpoint();
Value &Val = getAssociatedValue();
if (isa<ConstantPointerNull>(Val) &&
!NullPointerIsDefined(getAnchorScope(),
Val.getType()->getPointerAddressSpace()))
indicateOptimisticFixpoint();
}
/// Determine if the underlying value may alias with the call site argument
/// \p OtherArgNo of \p ICS (= the underlying call site).
bool mayAliasWithArgument(Attributor &A, AAResults *&AAR,
const AAMemoryBehavior &MemBehaviorAA,
const CallBase &CB, unsigned OtherArgNo) {
// We do not need to worry about aliasing with the underlying IRP.
if (this->getCalleeArgNo() == (int)OtherArgNo)
return false;
// If it is not a pointer or pointer vector we do not alias.
const Value *ArgOp = CB.getArgOperand(OtherArgNo);
if (!ArgOp->getType()->isPtrOrPtrVectorTy())
return false;
auto &CBArgMemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
*this, IRPosition::callsite_argument(CB, OtherArgNo), DepClassTy::NONE);
// If the argument is readnone, there is no read-write aliasing.
if (CBArgMemBehaviorAA.isAssumedReadNone()) {
A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
return false;
}
// If the argument is readonly and the underlying value is readonly, there
// is no read-write aliasing.
bool IsReadOnly = MemBehaviorAA.isAssumedReadOnly();
if (CBArgMemBehaviorAA.isAssumedReadOnly() && IsReadOnly) {
A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
A.recordDependence(CBArgMemBehaviorAA, *this, DepClassTy::OPTIONAL);
return false;
}
// We have to utilize actual alias analysis queries so we need the object.
if (!AAR)
AAR = A.getInfoCache().getAAResultsForFunction(*getAnchorScope());
// Try to rule it out at the call site.
bool IsAliasing = !AAR || !AAR->isNoAlias(&getAssociatedValue(), ArgOp);
LLVM_DEBUG(dbgs() << "[NoAliasCSArg] Check alias between "
"callsite arguments: "
<< getAssociatedValue() << " " << *ArgOp << " => "
<< (IsAliasing ? "" : "no-") << "alias \n");
return IsAliasing;
}
bool
isKnownNoAliasDueToNoAliasPreservation(Attributor &A, AAResults *&AAR,
const AAMemoryBehavior &MemBehaviorAA,
const AANoAlias &NoAliasAA) {
// We can deduce "noalias" if the following conditions hold.
// (i) Associated value is assumed to be noalias in the definition.
// (ii) Associated value is assumed to be no-capture in all the uses
// possibly executed before this callsite.
// (iii) There is no other pointer argument which could alias with the
// value.
bool AssociatedValueIsNoAliasAtDef = NoAliasAA.isAssumedNoAlias();
if (!AssociatedValueIsNoAliasAtDef) {
LLVM_DEBUG(dbgs() << "[AANoAlias] " << getAssociatedValue()
<< " is not no-alias at the definition\n");
return false;
}
auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
const auto &DerefAA = A.getAAFor<AADereferenceable>(
*this, IRPosition::value(*O), DepClassTy::OPTIONAL);
return DerefAA.getAssumedDereferenceableBytes();
};
A.recordDependence(NoAliasAA, *this, DepClassTy::OPTIONAL);
const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
const Function *ScopeFn = VIRP.getAnchorScope();
auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, VIRP, DepClassTy::NONE);
// Check whether the value is captured in the scope using AANoCapture.
// Look at CFG and check only uses possibly executed before this
// callsite.
auto UsePred = [&](const Use &U, bool &Follow) -> bool {
Instruction *UserI = cast<Instruction>(U.getUser());
// If UserI is the curr instruction and there is a single potential use of
// the value in UserI we allow the use.
// TODO: We should inspect the operands and allow those that cannot alias
// with the value.
if (UserI == getCtxI() && UserI->getNumOperands() == 1)
return true;
if (ScopeFn) {
if (auto *CB = dyn_cast<CallBase>(UserI)) {
if (CB->isArgOperand(&U)) {
unsigned ArgNo = CB->getArgOperandNo(&U);
const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
*this, IRPosition::callsite_argument(*CB, ArgNo),
DepClassTy::OPTIONAL);
if (NoCaptureAA.isAssumedNoCapture())
return true;
}
}
if (!AA::isPotentiallyReachable(
A, *UserI, *getCtxI(), *this, /* ExclusionSet */ nullptr,
[ScopeFn](const Function &Fn) { return &Fn != ScopeFn; }))
return true;
}
// TODO: We should track the capturing uses in AANoCapture but the problem
// is CGSCC runs. For those we would need to "allow" AANoCapture for
// a value in the module slice.
switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
case UseCaptureKind::NO_CAPTURE:
return true;
case UseCaptureKind::MAY_CAPTURE:
LLVM_DEBUG(dbgs() << "[AANoAliasCSArg] Unknown user: " << *UserI
<< "\n");
return false;
case UseCaptureKind::PASSTHROUGH:
Follow = true;
return true;
}
llvm_unreachable("unknown UseCaptureKind");
};
if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
if (!A.checkForAllUses(UsePred, *this, getAssociatedValue())) {
LLVM_DEBUG(
dbgs() << "[AANoAliasCSArg] " << getAssociatedValue()
<< " cannot be noalias as it is potentially captured\n");
return false;
}
}
A.recordDependence(NoCaptureAA, *this, DepClassTy::OPTIONAL);
// Check there is no other pointer argument which could alias with the
// value passed at this call site.
// TODO: AbstractCallSite
const auto &CB = cast<CallBase>(getAnchorValue());
for (unsigned OtherArgNo = 0; OtherArgNo < CB.arg_size(); OtherArgNo++)
if (mayAliasWithArgument(A, AAR, MemBehaviorAA, CB, OtherArgNo))
return false;
return true;
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// If the argument is readnone we are done as there are no accesses via the
// argument.
auto &MemBehaviorAA =
A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
if (MemBehaviorAA.isAssumedReadNone()) {
A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
return ChangeStatus::UNCHANGED;
}
const IRPosition &VIRP = IRPosition::value(getAssociatedValue());
const auto &NoAliasAA =
A.getAAFor<AANoAlias>(*this, VIRP, DepClassTy::NONE);
AAResults *AAR = nullptr;
if (isKnownNoAliasDueToNoAliasPreservation(A, AAR, MemBehaviorAA,
NoAliasAA)) {
LLVM_DEBUG(
dbgs() << "[AANoAlias] No-Alias deduced via no-alias preservation\n");
return ChangeStatus::UNCHANGED;
}
return indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
};
/// NoAlias attribute for function return value.
struct AANoAliasReturned final : AANoAliasImpl {
AANoAliasReturned(const IRPosition &IRP, Attributor &A)
: AANoAliasImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AANoAliasImpl::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto CheckReturnValue = [&](Value &RV) -> bool {
if (Constant *C = dyn_cast<Constant>(&RV))
if (C->isNullValue() || isa<UndefValue>(C))
return true;
/// For now, we can only deduce noalias if we have call sites.
/// FIXME: add more support.
if (!isa<CallBase>(&RV))
return false;
const IRPosition &RVPos = IRPosition::value(RV);
const auto &NoAliasAA =
A.getAAFor<AANoAlias>(*this, RVPos, DepClassTy::REQUIRED);
if (!NoAliasAA.isAssumedNoAlias())
return false;
const auto &NoCaptureAA =
A.getAAFor<AANoCapture>(*this, RVPos, DepClassTy::REQUIRED);
return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
};
if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
};
/// NoAlias attribute deduction for a call site return value.
struct AANoAliasCallSiteReturned final : AANoAliasImpl {
AANoAliasCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AANoAliasImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AANoAliasImpl::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Function *F = getAssociatedFunction();
const IRPosition &FnPos = IRPosition::returned(*F);
auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), FnAA.getState());
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
};
} // namespace
/// -------------------AAIsDead Function Attribute-----------------------
namespace {
struct AAIsDeadValueImpl : public AAIsDead {
AAIsDeadValueImpl(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (auto *Scope = getAnchorScope())
if (!A.isRunOn(*Scope))
indicatePessimisticFixpoint();
}
/// See AAIsDead::isAssumedDead().
bool isAssumedDead() const override { return isAssumed(IS_DEAD); }
/// See AAIsDead::isKnownDead().
bool isKnownDead() const override { return isKnown(IS_DEAD); }
/// See AAIsDead::isAssumedDead(BasicBlock *).
bool isAssumedDead(const BasicBlock *BB) const override { return false; }
/// See AAIsDead::isKnownDead(BasicBlock *).
bool isKnownDead(const BasicBlock *BB) const override { return false; }
/// See AAIsDead::isAssumedDead(Instruction *I).
bool isAssumedDead(const Instruction *I) const override {
return I == getCtxI() && isAssumedDead();
}
/// See AAIsDead::isKnownDead(Instruction *I).
bool isKnownDead(const Instruction *I) const override {
return isAssumedDead(I) && isKnownDead();
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return isAssumedDead() ? "assumed-dead" : "assumed-live";
}
/// Check if all uses are assumed dead.
bool areAllUsesAssumedDead(Attributor &A, Value &V) {
// Callers might not check the type, void has no uses.
if (V.getType()->isVoidTy() || V.use_empty())
return true;
// If we replace a value with a constant there are no uses left afterwards.
if (!isa<Constant>(V)) {
if (auto *I = dyn_cast<Instruction>(&V))
if (!A.isRunOn(*I->getFunction()))
return false;
bool UsedAssumedInformation = false;
std::optional<Constant *> C =
A.getAssumedConstant(V, *this, UsedAssumedInformation);
if (!C || *C)
return true;
}
auto UsePred = [&](const Use &U, bool &Follow) { return false; };
// Explicitly set the dependence class to required because we want a long
// chain of N dependent instructions to be considered live as soon as one is
// without going through N update cycles. This is not required for
// correctness.
return A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ false,
DepClassTy::REQUIRED,
/* IgnoreDroppableUses */ false);
}
/// Determine if \p I is assumed to be side-effect free.
bool isAssumedSideEffectFree(Attributor &A, Instruction *I) {
if (!I || wouldInstructionBeTriviallyDead(I))
return true;
auto *CB = dyn_cast<CallBase>(I);
if (!CB || isa<IntrinsicInst>(CB))
return false;
const IRPosition &CallIRP = IRPosition::callsite_function(*CB);
const auto &NoUnwindAA =
A.getAndUpdateAAFor<AANoUnwind>(*this, CallIRP, DepClassTy::NONE);
if (!NoUnwindAA.isAssumedNoUnwind())
return false;
if (!NoUnwindAA.isKnownNoUnwind())
A.recordDependence(NoUnwindAA, *this, DepClassTy::OPTIONAL);
bool IsKnown;
return AA::isAssumedReadOnly(A, CallIRP, *this, IsKnown);
}
};
struct AAIsDeadFloating : public AAIsDeadValueImpl {
AAIsDeadFloating(const IRPosition &IRP, Attributor &A)
: AAIsDeadValueImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAIsDeadValueImpl::initialize(A);
if (isa<UndefValue>(getAssociatedValue())) {
indicatePessimisticFixpoint();
return;
}
Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
if (!isAssumedSideEffectFree(A, I)) {
if (!isa_and_nonnull<StoreInst>(I))
indicatePessimisticFixpoint();
else
removeAssumedBits(HAS_NO_EFFECT);
}
}
bool isDeadStore(Attributor &A, StoreInst &SI,
SmallSetVector<Instruction *, 8> *AssumeOnlyInst = nullptr) {
// Lang ref now states volatile store is not UB/dead, let's skip them.
if (SI.isVolatile())
return false;
// If we are collecting assumes to be deleted we are in the manifest stage.
// It's problematic to collect the potential copies again now so we use the
// cached ones.
bool UsedAssumedInformation = false;
if (!AssumeOnlyInst) {
PotentialCopies.clear();
if (!AA::getPotentialCopiesOfStoredValue(A, SI, PotentialCopies, *this,
UsedAssumedInformation)) {
LLVM_DEBUG(
dbgs()
<< "[AAIsDead] Could not determine potential copies of store!\n");
return false;
}
}
LLVM_DEBUG(dbgs() << "[AAIsDead] Store has " << PotentialCopies.size()
<< " potential copies.\n");
InformationCache &InfoCache = A.getInfoCache();
return llvm::all_of(PotentialCopies, [&](Value *V) {
if (A.isAssumedDead(IRPosition::value(*V), this, nullptr,
UsedAssumedInformation))
return true;
if (auto *LI = dyn_cast<LoadInst>(V)) {
if (llvm::all_of(LI->uses(), [&](const Use &U) {
auto &UserI = cast<Instruction>(*U.getUser());
if (InfoCache.isOnlyUsedByAssume(UserI)) {
if (AssumeOnlyInst)
AssumeOnlyInst->insert(&UserI);
return true;
}
return A.isAssumedDead(U, this, nullptr, UsedAssumedInformation);
})) {
return true;
}
}
LLVM_DEBUG(dbgs() << "[AAIsDead] Potential copy " << *V
<< " is assumed live!\n");
return false;
});
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
if (isa_and_nonnull<StoreInst>(I))
if (isValidState())
return "assumed-dead-store";
return AAIsDeadValueImpl::getAsStr();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
if (!isDeadStore(A, *SI))
return indicatePessimisticFixpoint();
} else {
if (!isAssumedSideEffectFree(A, I))
return indicatePessimisticFixpoint();
if (!areAllUsesAssumedDead(A, getAssociatedValue()))
return indicatePessimisticFixpoint();
}
return ChangeStatus::UNCHANGED;
}
bool isRemovableStore() const override {
return isAssumed(IS_REMOVABLE) && isa<StoreInst>(&getAssociatedValue());
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
Value &V = getAssociatedValue();
if (auto *I = dyn_cast<Instruction>(&V)) {
// If we get here we basically know the users are all dead. We check if
// isAssumedSideEffectFree returns true here again because it might not be
// the case and only the users are dead but the instruction (=call) is
// still needed.
if (auto *SI = dyn_cast<StoreInst>(I)) {
SmallSetVector<Instruction *, 8> AssumeOnlyInst;
bool IsDead = isDeadStore(A, *SI, &AssumeOnlyInst);
(void)IsDead;
assert(IsDead && "Store was assumed to be dead!");
A.deleteAfterManifest(*I);
for (size_t i = 0; i < AssumeOnlyInst.size(); ++i) {
Instruction *AOI = AssumeOnlyInst[i];
for (auto *Usr : AOI->users())
AssumeOnlyInst.insert(cast<Instruction>(Usr));
A.deleteAfterManifest(*AOI);
}
return ChangeStatus::CHANGED;
}
if (isAssumedSideEffectFree(A, I) && !isa<InvokeInst>(I)) {
A.deleteAfterManifest(*I);
return ChangeStatus::CHANGED;
}
}
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FLOATING_ATTR(IsDead)
}
private:
// The potential copies of a dead store, used for deletion during manifest.
SmallSetVector<Value *, 4> PotentialCopies;
};
struct AAIsDeadArgument : public AAIsDeadFloating {
AAIsDeadArgument(const IRPosition &IRP, Attributor &A)
: AAIsDeadFloating(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAIsDeadFloating::initialize(A);
if (!A.isFunctionIPOAmendable(*getAnchorScope()))
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
Argument &Arg = *getAssociatedArgument();
if (A.isValidFunctionSignatureRewrite(Arg, /* ReplacementTypes */ {}))
if (A.registerFunctionSignatureRewrite(
Arg, /* ReplacementTypes */ {},
Attributor::ArgumentReplacementInfo::CalleeRepairCBTy{},
Attributor::ArgumentReplacementInfo::ACSRepairCBTy{})) {
return ChangeStatus::CHANGED;
}
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(IsDead) }
};
struct AAIsDeadCallSiteArgument : public AAIsDeadValueImpl {
AAIsDeadCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AAIsDeadValueImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAIsDeadValueImpl::initialize(A);
if (isa<UndefValue>(getAssociatedValue()))
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Argument *Arg = getAssociatedArgument();
if (!Arg)
return indicatePessimisticFixpoint();
const IRPosition &ArgPos = IRPosition::argument(*Arg);
auto &ArgAA = A.getAAFor<AAIsDead>(*this, ArgPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), ArgAA.getState());
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
CallBase &CB = cast<CallBase>(getAnchorValue());
Use &U = CB.getArgOperandUse(getCallSiteArgNo());
assert(!isa<UndefValue>(U.get()) &&
"Expected undef values to be filtered out!");
UndefValue &UV = *UndefValue::get(U->getType());
if (A.changeUseAfterManifest(U, UV))
return ChangeStatus::CHANGED;
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(IsDead) }
};
struct AAIsDeadCallSiteReturned : public AAIsDeadFloating {
AAIsDeadCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AAIsDeadFloating(IRP, A) {}
/// See AAIsDead::isAssumedDead().
bool isAssumedDead() const override {
return AAIsDeadFloating::isAssumedDead() && IsAssumedSideEffectFree;
}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAIsDeadFloating::initialize(A);
if (isa<UndefValue>(getAssociatedValue())) {
indicatePessimisticFixpoint();
return;
}
// We track this separately as a secondary state.
IsAssumedSideEffectFree = isAssumedSideEffectFree(A, getCtxI());
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
if (IsAssumedSideEffectFree && !isAssumedSideEffectFree(A, getCtxI())) {
IsAssumedSideEffectFree = false;
Changed = ChangeStatus::CHANGED;
}
if (!areAllUsesAssumedDead(A, getAssociatedValue()))
return indicatePessimisticFixpoint();
return Changed;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
if (IsAssumedSideEffectFree)
STATS_DECLTRACK_CSRET_ATTR(IsDead)
else
STATS_DECLTRACK_CSRET_ATTR(UnusedResult)
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return isAssumedDead()
? "assumed-dead"
: (getAssumed() ? "assumed-dead-users" : "assumed-live");
}
private:
bool IsAssumedSideEffectFree = true;
};
struct AAIsDeadReturned : public AAIsDeadValueImpl {
AAIsDeadReturned(const IRPosition &IRP, Attributor &A)
: AAIsDeadValueImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
bool UsedAssumedInformation = false;
A.checkForAllInstructions([](Instruction &) { return true; }, *this,
{Instruction::Ret}, UsedAssumedInformation);
auto PredForCallSite = [&](AbstractCallSite ACS) {
if (ACS.isCallbackCall() || !ACS.getInstruction())
return false;
return areAllUsesAssumedDead(A, *ACS.getInstruction());
};
if (!A.checkForAllCallSites(PredForCallSite, *this, true,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
// TODO: Rewrite the signature to return void?
bool AnyChange = false;
UndefValue &UV = *UndefValue::get(getAssociatedFunction()->getReturnType());
auto RetInstPred = [&](Instruction &I) {
ReturnInst &RI = cast<ReturnInst>(I);
if (!isa<UndefValue>(RI.getReturnValue()))
AnyChange |= A.changeUseAfterManifest(RI.getOperandUse(0), UV);
return true;
};
bool UsedAssumedInformation = false;
A.checkForAllInstructions(RetInstPred, *this, {Instruction::Ret},
UsedAssumedInformation);
return AnyChange ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(IsDead) }
};
struct AAIsDeadFunction : public AAIsDead {
AAIsDeadFunction(const IRPosition &IRP, Attributor &A) : AAIsDead(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
Function *F = getAnchorScope();
if (!F || F->isDeclaration() || !A.isRunOn(*F)) {
indicatePessimisticFixpoint();
return;
}
if (!isAssumedDeadInternalFunction(A)) {
ToBeExploredFrom.insert(&F->getEntryBlock().front());
assumeLive(A, F->getEntryBlock());
}
}
bool isAssumedDeadInternalFunction(Attributor &A) {
if (!getAnchorScope()->hasLocalLinkage())
return false;
bool UsedAssumedInformation = false;
return A.checkForAllCallSites([](AbstractCallSite) { return false; }, *this,
true, UsedAssumedInformation);
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
std::to_string(getAnchorScope()->size()) + "][#TBEP " +
std::to_string(ToBeExploredFrom.size()) + "][#KDE " +
std::to_string(KnownDeadEnds.size()) + "]";
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
assert(getState().isValidState() &&
"Attempted to manifest an invalid state!");
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
Function &F = *getAnchorScope();
if (AssumedLiveBlocks.empty()) {
A.deleteAfterManifest(F);
return ChangeStatus::CHANGED;
}
// Flag to determine if we can change an invoke to a call assuming the
// callee is nounwind. This is not possible if the personality of the
// function allows to catch asynchronous exceptions.
bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
KnownDeadEnds.set_union(ToBeExploredFrom);
for (const Instruction *DeadEndI : KnownDeadEnds) {
auto *CB = dyn_cast<CallBase>(DeadEndI);
if (!CB)
continue;
const auto &NoReturnAA = A.getAndUpdateAAFor<AANoReturn>(
*this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
bool MayReturn = !NoReturnAA.isAssumedNoReturn();
if (MayReturn && (!Invoke2CallAllowed || !isa<InvokeInst>(CB)))
continue;
if (auto *II = dyn_cast<InvokeInst>(DeadEndI))
A.registerInvokeWithDeadSuccessor(const_cast<InvokeInst &>(*II));
else
A.changeToUnreachableAfterManifest(
const_cast<Instruction *>(DeadEndI->getNextNode()));
HasChanged = ChangeStatus::CHANGED;
}
STATS_DECL(AAIsDead, BasicBlock, "Number of dead basic blocks deleted.");
for (BasicBlock &BB : F)
if (!AssumedLiveBlocks.count(&BB)) {
A.deleteAfterManifest(BB);
++BUILD_STAT_NAME(AAIsDead, BasicBlock);
HasChanged = ChangeStatus::CHANGED;
}
return HasChanged;
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const override {
assert(From->getParent() == getAnchorScope() &&
To->getParent() == getAnchorScope() &&
"Used AAIsDead of the wrong function");
return isValidState() && !AssumedLiveEdges.count(std::make_pair(From, To));
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {}
/// Returns true if the function is assumed dead.
bool isAssumedDead() const override { return false; }
/// See AAIsDead::isKnownDead().
bool isKnownDead() const override { return false; }
/// See AAIsDead::isAssumedDead(BasicBlock *).
bool isAssumedDead(const BasicBlock *BB) const override {
assert(BB->getParent() == getAnchorScope() &&
"BB must be in the same anchor scope function.");
if (!getAssumed())
return false;
return !AssumedLiveBlocks.count(BB);
}
/// See AAIsDead::isKnownDead(BasicBlock *).
bool isKnownDead(const BasicBlock *BB) const override {
return getKnown() && isAssumedDead(BB);
}
/// See AAIsDead::isAssumed(Instruction *I).
bool isAssumedDead(const Instruction *I) const override {
assert(I->getParent()->getParent() == getAnchorScope() &&
"Instruction must be in the same anchor scope function.");
if (!getAssumed())
return false;
// If it is not in AssumedLiveBlocks then it for sure dead.
// Otherwise, it can still be after noreturn call in a live block.
if (!AssumedLiveBlocks.count(I->getParent()))
return true;
// If it is not after a liveness barrier it is live.
const Instruction *PrevI = I->getPrevNode();
while (PrevI) {
if (KnownDeadEnds.count(PrevI) || ToBeExploredFrom.count(PrevI))
return true;
PrevI = PrevI->getPrevNode();
}
return false;
}
/// See AAIsDead::isKnownDead(Instruction *I).
bool isKnownDead(const Instruction *I) const override {
return getKnown() && isAssumedDead(I);
}
/// Assume \p BB is (partially) live now and indicate to the Attributor \p A
/// that internal function called from \p BB should now be looked at.
bool assumeLive(Attributor &A, const BasicBlock &BB) {
if (!AssumedLiveBlocks.insert(&BB).second)
return false;
// We assume that all of BB is (probably) live now and if there are calls to
// internal functions we will assume that those are now live as well. This
// is a performance optimization for blocks with calls to a lot of internal
// functions. It can however cause dead functions to be treated as live.
for (const Instruction &I : BB)
if (const auto *CB = dyn_cast<CallBase>(&I))
if (const Function *F = CB->getCalledFunction())
if (F->hasLocalLinkage())
A.markLiveInternalFunction(*F);
return true;
}
/// Collection of instructions that need to be explored again, e.g., we
/// did assume they do not transfer control to (one of their) successors.
SmallSetVector<const Instruction *, 8> ToBeExploredFrom;
/// Collection of instructions that are known to not transfer control.
SmallSetVector<const Instruction *, 8> KnownDeadEnds;
/// Collection of all assumed live edges
DenseSet<std::pair<const BasicBlock *, const BasicBlock *>> AssumedLiveEdges;
/// Collection of all assumed live BasicBlocks.
DenseSet<const BasicBlock *> AssumedLiveBlocks;
};
static bool
identifyAliveSuccessors(Attributor &A, const CallBase &CB,
AbstractAttribute &AA,
SmallVectorImpl<const Instruction *> &AliveSuccessors) {
const IRPosition &IPos = IRPosition::callsite_function(CB);
const auto &NoReturnAA =
A.getAndUpdateAAFor<AANoReturn>(AA, IPos, DepClassTy::OPTIONAL);
if (NoReturnAA.isAssumedNoReturn())
return !NoReturnAA.isKnownNoReturn();
if (CB.isTerminator())
AliveSuccessors.push_back(&CB.getSuccessor(0)->front());
else
AliveSuccessors.push_back(CB.getNextNode());
return false;
}
static bool
identifyAliveSuccessors(Attributor &A, const InvokeInst &II,
AbstractAttribute &AA,
SmallVectorImpl<const Instruction *> &AliveSuccessors) {
bool UsedAssumedInformation =
identifyAliveSuccessors(A, cast<CallBase>(II), AA, AliveSuccessors);
// First, determine if we can change an invoke to a call assuming the
// callee is nounwind. This is not possible if the personality of the
// function allows to catch asynchronous exceptions.
if (AAIsDeadFunction::mayCatchAsynchronousExceptions(*II.getFunction())) {
AliveSuccessors.push_back(&II.getUnwindDest()->front());
} else {
const IRPosition &IPos = IRPosition::callsite_function(II);
const auto &AANoUnw =
A.getAndUpdateAAFor<AANoUnwind>(AA, IPos, DepClassTy::OPTIONAL);
if (AANoUnw.isAssumedNoUnwind()) {
UsedAssumedInformation |= !AANoUnw.isKnownNoUnwind();
} else {
AliveSuccessors.push_back(&II.getUnwindDest()->front());
}
}
return UsedAssumedInformation;
}
static bool
identifyAliveSuccessors(Attributor &A, const BranchInst &BI,
AbstractAttribute &AA,
SmallVectorImpl<const Instruction *> &AliveSuccessors) {
bool UsedAssumedInformation = false;
if (BI.getNumSuccessors() == 1) {
AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
} else {
std::optional<Constant *> C =
A.getAssumedConstant(*BI.getCondition(), AA, UsedAssumedInformation);
if (!C || isa_and_nonnull<UndefValue>(*C)) {
// No value yet, assume both edges are dead.
} else if (isa_and_nonnull<ConstantInt>(*C)) {
const BasicBlock *SuccBB =
BI.getSuccessor(1 - cast<ConstantInt>(*C)->getValue().getZExtValue());
AliveSuccessors.push_back(&SuccBB->front());
} else {
AliveSuccessors.push_back(&BI.getSuccessor(0)->front());
AliveSuccessors.push_back(&BI.getSuccessor(1)->front());
UsedAssumedInformation = false;
}
}
return UsedAssumedInformation;
}
static bool
identifyAliveSuccessors(Attributor &A, const SwitchInst &SI,
AbstractAttribute &AA,
SmallVectorImpl<const Instruction *> &AliveSuccessors) {
bool UsedAssumedInformation = false;
std::optional<Constant *> C =
A.getAssumedConstant(*SI.getCondition(), AA, UsedAssumedInformation);
if (!C || isa_and_nonnull<UndefValue>(*C)) {
// No value yet, assume all edges are dead.
} else if (isa_and_nonnull<ConstantInt>(*C)) {
for (const auto &CaseIt : SI.cases()) {
if (CaseIt.getCaseValue() == *C) {
AliveSuccessors.push_back(&CaseIt.getCaseSuccessor()->front());
return UsedAssumedInformation;
}
}
AliveSuccessors.push_back(&SI.getDefaultDest()->front());
return UsedAssumedInformation;
} else {
for (const BasicBlock *SuccBB : successors(SI.getParent()))
AliveSuccessors.push_back(&SuccBB->front());
}
return UsedAssumedInformation;
}
ChangeStatus AAIsDeadFunction::updateImpl(Attributor &A) {
ChangeStatus Change = ChangeStatus::UNCHANGED;
if (AssumedLiveBlocks.empty()) {
if (isAssumedDeadInternalFunction(A))
return ChangeStatus::UNCHANGED;
Function *F = getAnchorScope();
ToBeExploredFrom.insert(&F->getEntryBlock().front());
assumeLive(A, F->getEntryBlock());
Change = ChangeStatus::CHANGED;
}
LLVM_DEBUG(dbgs() << "[AAIsDead] Live [" << AssumedLiveBlocks.size() << "/"
<< getAnchorScope()->size() << "] BBs and "
<< ToBeExploredFrom.size() << " exploration points and "
<< KnownDeadEnds.size() << " known dead ends\n");
// Copy and clear the list of instructions we need to explore from. It is
// refilled with instructions the next update has to look at.
SmallVector<const Instruction *, 8> Worklist(ToBeExploredFrom.begin(),
ToBeExploredFrom.end());
decltype(ToBeExploredFrom) NewToBeExploredFrom;
SmallVector<const Instruction *, 8> AliveSuccessors;
while (!Worklist.empty()) {
const Instruction *I = Worklist.pop_back_val();
LLVM_DEBUG(dbgs() << "[AAIsDead] Exploration inst: " << *I << "\n");
// Fast forward for uninteresting instructions. We could look for UB here
// though.
while (!I->isTerminator() && !isa<CallBase>(I))
I = I->getNextNode();
AliveSuccessors.clear();
bool UsedAssumedInformation = false;
switch (I->getOpcode()) {
// TODO: look for (assumed) UB to backwards propagate "deadness".
default:
assert(I->isTerminator() &&
"Expected non-terminators to be handled already!");
for (const BasicBlock *SuccBB : successors(I->getParent()))
AliveSuccessors.push_back(&SuccBB->front());
break;
case Instruction::Call:
UsedAssumedInformation = identifyAliveSuccessors(A, cast<CallInst>(*I),
*this, AliveSuccessors);
break;
case Instruction::Invoke:
UsedAssumedInformation = identifyAliveSuccessors(A, cast<InvokeInst>(*I),
*this, AliveSuccessors);
break;
case Instruction::Br:
UsedAssumedInformation = identifyAliveSuccessors(A, cast<BranchInst>(*I),
*this, AliveSuccessors);
break;
case Instruction::Switch:
UsedAssumedInformation = identifyAliveSuccessors(A, cast<SwitchInst>(*I),
*this, AliveSuccessors);
break;
}
if (UsedAssumedInformation) {
NewToBeExploredFrom.insert(I);
} else if (AliveSuccessors.empty() ||
(I->isTerminator() &&
AliveSuccessors.size() < I->getNumSuccessors())) {
if (KnownDeadEnds.insert(I))
Change = ChangeStatus::CHANGED;
}
LLVM_DEBUG(dbgs() << "[AAIsDead] #AliveSuccessors: "
<< AliveSuccessors.size() << " UsedAssumedInformation: "
<< UsedAssumedInformation << "\n");
for (const Instruction *AliveSuccessor : AliveSuccessors) {
if (!I->isTerminator()) {
assert(AliveSuccessors.size() == 1 &&
"Non-terminator expected to have a single successor!");
Worklist.push_back(AliveSuccessor);
} else {
// record the assumed live edge
auto Edge = std::make_pair(I->getParent(), AliveSuccessor->getParent());
if (AssumedLiveEdges.insert(Edge).second)
Change = ChangeStatus::CHANGED;
if (assumeLive(A, *AliveSuccessor->getParent()))
Worklist.push_back(AliveSuccessor);
}
}
}
// Check if the content of ToBeExploredFrom changed, ignore the order.
if (NewToBeExploredFrom.size() != ToBeExploredFrom.size() ||
llvm::any_of(NewToBeExploredFrom, [&](const Instruction *I) {
return !ToBeExploredFrom.count(I);
})) {
Change = ChangeStatus::CHANGED;
ToBeExploredFrom = std::move(NewToBeExploredFrom);
}
// If we know everything is live there is no need to query for liveness.
// Instead, indicating a pessimistic fixpoint will cause the state to be
// "invalid" and all queries to be answered conservatively without lookups.
// To be in this state we have to (1) finished the exploration and (3) not
// discovered any non-trivial dead end and (2) not ruled unreachable code
// dead.
if (ToBeExploredFrom.empty() &&
getAnchorScope()->size() == AssumedLiveBlocks.size() &&
llvm::all_of(KnownDeadEnds, [](const Instruction *DeadEndI) {
return DeadEndI->isTerminator() && DeadEndI->getNumSuccessors() == 0;
}))
return indicatePessimisticFixpoint();
return Change;
}
/// Liveness information for a call sites.
struct AAIsDeadCallSite final : AAIsDeadFunction {
AAIsDeadCallSite(const IRPosition &IRP, Attributor &A)
: AAIsDeadFunction(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites instead of
// redirecting requests to the callee.
llvm_unreachable("Abstract attributes for liveness are not "
"supported for call sites yet!");
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
return indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {}
};
} // namespace
/// -------------------- Dereferenceable Argument Attribute --------------------
namespace {
struct AADereferenceableImpl : AADereferenceable {
AADereferenceableImpl(const IRPosition &IRP, Attributor &A)
: AADereferenceable(IRP, A) {}
using StateType = DerefState;
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
Value &V = *getAssociatedValue().stripPointerCasts();
SmallVector<Attribute, 4> Attrs;
getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
Attrs, /* IgnoreSubsumingPositions */ false, &A);
for (const Attribute &Attr : Attrs)
takeKnownDerefBytesMaximum(Attr.getValueAsInt());
const IRPosition &IRP = this->getIRPosition();
NonNullAA = &A.getAAFor<AANonNull>(*this, IRP, DepClassTy::NONE);
bool CanBeNull, CanBeFreed;
takeKnownDerefBytesMaximum(V.getPointerDereferenceableBytes(
A.getDataLayout(), CanBeNull, CanBeFreed));
bool IsFnInterface = IRP.isFnInterfaceKind();
Function *FnScope = IRP.getAnchorScope();
if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) {
indicatePessimisticFixpoint();
return;
}
if (Instruction *CtxI = getCtxI())
followUsesInMBEC(*this, A, getState(), *CtxI);
}
/// See AbstractAttribute::getState()
/// {
StateType &getState() override { return *this; }
const StateType &getState() const override { return *this; }
/// }
/// Helper function for collecting accessed bytes in must-be-executed-context
void addAccessedBytesForUse(Attributor &A, const Use *U, const Instruction *I,
DerefState &State) {
const Value *UseV = U->get();
if (!UseV->getType()->isPointerTy())
return;
std::optional<MemoryLocation> Loc = MemoryLocation::getOrNone(I);
if (!Loc || Loc->Ptr != UseV || !Loc->Size.isPrecise() || I->isVolatile())
return;
int64_t Offset;
const Value *Base = GetPointerBaseWithConstantOffset(
Loc->Ptr, Offset, A.getDataLayout(), /*AllowNonInbounds*/ true);
if (Base && Base == &getAssociatedValue())
State.addAccessedBytes(Offset, Loc->Size.getValue());
}
/// See followUsesInMBEC
bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
AADereferenceable::StateType &State) {
bool IsNonNull = false;
bool TrackUse = false;
int64_t DerefBytes = getKnownNonNullAndDerefBytesForUse(
A, *this, getAssociatedValue(), U, I, IsNonNull, TrackUse);
LLVM_DEBUG(dbgs() << "[AADereferenceable] Deref bytes: " << DerefBytes
<< " for instruction " << *I << "\n");
addAccessedBytesForUse(A, U, I, State);
State.takeKnownDerefBytesMaximum(DerefBytes);
return TrackUse;
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
ChangeStatus Change = AADereferenceable::manifest(A);
if (isAssumedNonNull() && hasAttr(Attribute::DereferenceableOrNull)) {
removeAttrs({Attribute::DereferenceableOrNull});
return ChangeStatus::CHANGED;
}
return Change;
}
void getDeducedAttributes(LLVMContext &Ctx,
SmallVectorImpl<Attribute> &Attrs) const override {
// TODO: Add *_globally support
if (isAssumedNonNull())
Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
Ctx, getAssumedDereferenceableBytes()));
else
Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
Ctx, getAssumedDereferenceableBytes()));
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
if (!getAssumedDereferenceableBytes())
return "unknown-dereferenceable";
return std::string("dereferenceable") +
(isAssumedNonNull() ? "" : "_or_null") +
(isAssumedGlobal() ? "_globally" : "") + "<" +
std::to_string(getKnownDereferenceableBytes()) + "-" +
std::to_string(getAssumedDereferenceableBytes()) + ">";
}
};
/// Dereferenceable attribute for a floating value.
struct AADereferenceableFloating : AADereferenceableImpl {
AADereferenceableFloating(const IRPosition &IRP, Attributor &A)
: AADereferenceableImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
bool Stripped;
bool UsedAssumedInformation = false;
SmallVector<AA::ValueAndContext> Values;
if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
AA::AnyScope, UsedAssumedInformation)) {
Values.push_back({getAssociatedValue(), getCtxI()});
Stripped = false;
} else {
Stripped = Values.size() != 1 ||
Values.front().getValue() != &getAssociatedValue();
}
const DataLayout &DL = A.getDataLayout();
DerefState T;
auto VisitValueCB = [&](const Value &V) -> bool {
unsigned IdxWidth =
DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
APInt Offset(IdxWidth, 0);
const Value *Base = stripAndAccumulateOffsets(
A, *this, &V, DL, Offset, /* GetMinOffset */ false,
/* AllowNonInbounds */ true);
const auto &AA = A.getAAFor<AADereferenceable>(
*this, IRPosition::value(*Base), DepClassTy::REQUIRED);
int64_t DerefBytes = 0;
if (!Stripped && this == &AA) {
// Use IR information if we did not strip anything.
// TODO: track globally.
bool CanBeNull, CanBeFreed;
DerefBytes =
Base->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
T.GlobalState.indicatePessimisticFixpoint();
} else {
const DerefState &DS = AA.getState();
DerefBytes = DS.DerefBytesState.getAssumed();
T.GlobalState &= DS.GlobalState;
}
// For now we do not try to "increase" dereferenceability due to negative
// indices as we first have to come up with code to deal with loops and
// for overflows of the dereferenceable bytes.
int64_t OffsetSExt = Offset.getSExtValue();
if (OffsetSExt < 0)
OffsetSExt = 0;
T.takeAssumedDerefBytesMinimum(
std::max(int64_t(0), DerefBytes - OffsetSExt));
if (this == &AA) {
if (!Stripped) {
// If nothing was stripped IR information is all we got.
T.takeKnownDerefBytesMaximum(
std::max(int64_t(0), DerefBytes - OffsetSExt));
T.indicatePessimisticFixpoint();
} else if (OffsetSExt > 0) {
// If something was stripped but there is circular reasoning we look
// for the offset. If it is positive we basically decrease the
// dereferenceable bytes in a circular loop now, which will simply
// drive them down to the known value in a very slow way which we
// can accelerate.
T.indicatePessimisticFixpoint();
}
}
return T.isValidState();
};
for (const auto &VAC : Values)
if (!VisitValueCB(*VAC.getValue()))
return indicatePessimisticFixpoint();
return clampStateAndIndicateChange(getState(), T);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
}
};
/// Dereferenceable attribute for a return value.
struct AADereferenceableReturned final
: AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl> {
AADereferenceableReturned(const IRPosition &IRP, Attributor &A)
: AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl>(
IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
}
};
/// Dereferenceable attribute for an argument
struct AADereferenceableArgument final
: AAArgumentFromCallSiteArguments<AADereferenceable,
AADereferenceableImpl> {
using Base =
AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl>;
AADereferenceableArgument(const IRPosition &IRP, Attributor &A)
: Base(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_ARG_ATTR(dereferenceable)
}
};
/// Dereferenceable attribute for a call site argument.
struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
AADereferenceableCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AADereferenceableFloating(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
}
};
/// Dereferenceable attribute deduction for a call site return value.
struct AADereferenceableCallSiteReturned final
: AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl> {
using Base =
AACallSiteReturnedFromReturned<AADereferenceable, AADereferenceableImpl>;
AADereferenceableCallSiteReturned(const IRPosition &IRP, Attributor &A)
: Base(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CS_ATTR(dereferenceable);
}
};
} // namespace
// ------------------------ Align Argument Attribute ------------------------
namespace {
static unsigned getKnownAlignForUse(Attributor &A, AAAlign &QueryingAA,
Value &AssociatedValue, const Use *U,
const Instruction *I, bool &TrackUse) {
// We need to follow common pointer manipulation uses to the accesses they
// feed into.
if (isa<CastInst>(I)) {
// Follow all but ptr2int casts.
TrackUse = !isa<PtrToIntInst>(I);
return 0;
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
if (GEP->hasAllConstantIndices())
TrackUse = true;
return 0;
}
MaybeAlign MA;
if (const auto *CB = dyn_cast<CallBase>(I)) {
if (CB->isBundleOperand(U) || CB->isCallee(U))
return 0;
unsigned ArgNo = CB->getArgOperandNo(U);
IRPosition IRP = IRPosition::callsite_argument(*CB, ArgNo);
// As long as we only use known information there is no need to track
// dependences here.
auto &AlignAA = A.getAAFor<AAAlign>(QueryingAA, IRP, DepClassTy::NONE);
MA = MaybeAlign(AlignAA.getKnownAlign());
}
const DataLayout &DL = A.getDataLayout();
const Value *UseV = U->get();
if (auto *SI = dyn_cast<StoreInst>(I)) {
if (SI->getPointerOperand() == UseV)
MA = SI->getAlign();
} else if (auto *LI = dyn_cast<LoadInst>(I)) {
if (LI->getPointerOperand() == UseV)
MA = LI->getAlign();
}
if (!MA || *MA <= QueryingAA.getKnownAlign())
return 0;
unsigned Alignment = MA->value();
int64_t Offset;
if (const Value *Base = GetPointerBaseWithConstantOffset(UseV, Offset, DL)) {
if (Base == &AssociatedValue) {
// BasePointerAddr + Offset = Alignment * Q for some integer Q.
// So we can say that the maximum power of two which is a divisor of
// gcd(Offset, Alignment) is an alignment.
uint32_t gcd = std::gcd(uint32_t(abs((int32_t)Offset)), Alignment);
Alignment = llvm::PowerOf2Floor(gcd);
}
}
return Alignment;
}
struct AAAlignImpl : AAAlign {
AAAlignImpl(const IRPosition &IRP, Attributor &A) : AAAlign(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
SmallVector<Attribute, 4> Attrs;
getAttrs({Attribute::Alignment}, Attrs);
for (const Attribute &Attr : Attrs)
takeKnownMaximum(Attr.getValueAsInt());
Value &V = *getAssociatedValue().stripPointerCasts();
takeKnownMaximum(V.getPointerAlignment(A.getDataLayout()).value());
if (getIRPosition().isFnInterfaceKind() &&
(!getAnchorScope() ||
!A.isFunctionIPOAmendable(*getAssociatedFunction()))) {
indicatePessimisticFixpoint();
return;
}
if (Instruction *CtxI = getCtxI())
followUsesInMBEC(*this, A, getState(), *CtxI);
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
ChangeStatus LoadStoreChanged = ChangeStatus::UNCHANGED;
// Check for users that allow alignment annotations.
Value &AssociatedValue = getAssociatedValue();
for (const Use &U : AssociatedValue.uses()) {
if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
if (SI->getPointerOperand() == &AssociatedValue)
if (SI->getAlign() < getAssumedAlign()) {
STATS_DECLTRACK(AAAlign, Store,
"Number of times alignment added to a store");
SI->setAlignment(getAssumedAlign());
LoadStoreChanged = ChangeStatus::CHANGED;
}
} else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
if (LI->getPointerOperand() == &AssociatedValue)
if (LI->getAlign() < getAssumedAlign()) {
LI->setAlignment(getAssumedAlign());
STATS_DECLTRACK(AAAlign, Load,
"Number of times alignment added to a load");
LoadStoreChanged = ChangeStatus::CHANGED;
}
}
}
ChangeStatus Changed = AAAlign::manifest(A);
Align InheritAlign =
getAssociatedValue().getPointerAlignment(A.getDataLayout());
if (InheritAlign >= getAssumedAlign())
return LoadStoreChanged;
return Changed | LoadStoreChanged;
}
// TODO: Provide a helper to determine the implied ABI alignment and check in
// the existing manifest method and a new one for AAAlignImpl that value
// to avoid making the alignment explicit if it did not improve.
/// See AbstractAttribute::getDeducedAttributes
void getDeducedAttributes(LLVMContext &Ctx,
SmallVectorImpl<Attribute> &Attrs) const override {
if (getAssumedAlign() > 1)
Attrs.emplace_back(
Attribute::getWithAlignment(Ctx, Align(getAssumedAlign())));
}
/// See followUsesInMBEC
bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
AAAlign::StateType &State) {
bool TrackUse = false;
unsigned int KnownAlign =
getKnownAlignForUse(A, *this, getAssociatedValue(), U, I, TrackUse);
State.takeKnownMaximum(KnownAlign);
return TrackUse;
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return "align<" + std::to_string(getKnownAlign().value()) + "-" +
std::to_string(getAssumedAlign().value()) + ">";
}
};
/// Align attribute for a floating value.
struct AAAlignFloating : AAAlignImpl {
AAAlignFloating(const IRPosition &IRP, Attributor &A) : AAAlignImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
const DataLayout &DL = A.getDataLayout();
bool Stripped;
bool UsedAssumedInformation = false;
SmallVector<AA::ValueAndContext> Values;
if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
AA::AnyScope, UsedAssumedInformation)) {
Values.push_back({getAssociatedValue(), getCtxI()});
Stripped = false;
} else {
Stripped = Values.size() != 1 ||
Values.front().getValue() != &getAssociatedValue();
}
StateType T;
auto VisitValueCB = [&](Value &V) -> bool {
if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
return true;
const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V),
DepClassTy::REQUIRED);
if (!Stripped && this == &AA) {
int64_t Offset;
unsigned Alignment = 1;
if (const Value *Base =
GetPointerBaseWithConstantOffset(&V, Offset, DL)) {
// TODO: Use AAAlign for the base too.
Align PA = Base->getPointerAlignment(DL);
// BasePointerAddr + Offset = Alignment * Q for some integer Q.
// So we can say that the maximum power of two which is a divisor of
// gcd(Offset, Alignment) is an alignment.
uint32_t gcd =
std::gcd(uint32_t(abs((int32_t)Offset)), uint32_t(PA.value()));
Alignment = llvm::PowerOf2Floor(gcd);
} else {
Alignment = V.getPointerAlignment(DL).value();
}
// Use only IR information if we did not strip anything.
T.takeKnownMaximum(Alignment);
T.indicatePessimisticFixpoint();
} else {
// Use abstract attribute information.
const AAAlign::StateType &DS = AA.getState();
T ^= DS;
}
return T.isValidState();
};
for (const auto &VAC : Values) {
if (!VisitValueCB(*VAC.getValue()))
return indicatePessimisticFixpoint();
}
// TODO: If we know we visited all incoming values, thus no are assumed
// dead, we can take the known information from the state T.
return clampStateAndIndicateChange(getState(), T);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
};
/// Align attribute for function return value.
struct AAAlignReturned final
: AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
using Base = AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>;
AAAlignReturned(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
Base::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
};
/// Align attribute for function argument.
struct AAAlignArgument final
: AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
using Base = AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>;
AAAlignArgument(const IRPosition &IRP, Attributor &A) : Base(IRP, A) {}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
// If the associated argument is involved in a must-tail call we give up
// because we would need to keep the argument alignments of caller and
// callee in-sync. Just does not seem worth the trouble right now.
if (A.getInfoCache().isInvolvedInMustTailCall(*getAssociatedArgument()))
return ChangeStatus::UNCHANGED;
return Base::manifest(A);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
};
struct AAAlignCallSiteArgument final : AAAlignFloating {
AAAlignCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AAAlignFloating(IRP, A) {}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
// If the associated argument is involved in a must-tail call we give up
// because we would need to keep the argument alignments of caller and
// callee in-sync. Just does not seem worth the trouble right now.
if (Argument *Arg = getAssociatedArgument())
if (A.getInfoCache().isInvolvedInMustTailCall(*Arg))
return ChangeStatus::UNCHANGED;
ChangeStatus Changed = AAAlignImpl::manifest(A);
Align InheritAlign =
getAssociatedValue().getPointerAlignment(A.getDataLayout());
if (InheritAlign >= getAssumedAlign())
Changed = ChangeStatus::UNCHANGED;
return Changed;
}
/// See AbstractAttribute::updateImpl(Attributor &A).
ChangeStatus updateImpl(Attributor &A) override {
ChangeStatus Changed = AAAlignFloating::updateImpl(A);
if (Argument *Arg = getAssociatedArgument()) {
// We only take known information from the argument
// so we do not need to track a dependence.
const auto &ArgAlignAA = A.getAAFor<AAAlign>(
*this, IRPosition::argument(*Arg), DepClassTy::NONE);
takeKnownMaximum(ArgAlignAA.getKnownAlign().value());
}
return Changed;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
};
/// Align attribute deduction for a call site return value.
struct AAAlignCallSiteReturned final
: AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl> {
using Base = AACallSiteReturnedFromReturned<AAAlign, AAAlignImpl>;
AAAlignCallSiteReturned(const IRPosition &IRP, Attributor &A)
: Base(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
Base::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
};
} // namespace
/// ------------------ Function No-Return Attribute ----------------------------
namespace {
struct AANoReturnImpl : public AANoReturn {
AANoReturnImpl(const IRPosition &IRP, Attributor &A) : AANoReturn(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AANoReturn::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumed() ? "noreturn" : "may-return";
}
/// See AbstractAttribute::updateImpl(Attributor &A).
ChangeStatus updateImpl(Attributor &A) override {
auto CheckForNoReturn = [](Instruction &) { return false; };
bool UsedAssumedInformation = false;
if (!A.checkForAllInstructions(CheckForNoReturn, *this,
{(unsigned)Instruction::Ret},
UsedAssumedInformation))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
};
struct AANoReturnFunction final : AANoReturnImpl {
AANoReturnFunction(const IRPosition &IRP, Attributor &A)
: AANoReturnImpl(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
};
/// NoReturn attribute deduction for a call sites.
struct AANoReturnCallSite final : AANoReturnImpl {
AANoReturnCallSite(const IRPosition &IRP, Attributor &A)
: AANoReturnImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AANoReturnImpl::initialize(A);
if (Function *F = getAssociatedFunction()) {
const IRPosition &FnPos = IRPosition::function(*F);
auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
if (!FnAA.isAssumedNoReturn())
indicatePessimisticFixpoint();
}
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Function *F = getAssociatedFunction();
const IRPosition &FnPos = IRPosition::function(*F);
auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), FnAA.getState());
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
};
} // namespace
/// ----------------------- Instance Info ---------------------------------
namespace {
/// A class to hold the state of for no-capture attributes.
struct AAInstanceInfoImpl : public AAInstanceInfo {
AAInstanceInfoImpl(const IRPosition &IRP, Attributor &A)
: AAInstanceInfo(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
Value &V = getAssociatedValue();
if (auto *C = dyn_cast<Constant>(&V)) {
if (C->isThreadDependent())
indicatePessimisticFixpoint();
else
indicateOptimisticFixpoint();
return;
}
if (auto *CB = dyn_cast<CallBase>(&V))
if (CB->arg_size() == 0 && !CB->mayHaveSideEffects() &&
!CB->mayReadFromMemory()) {
indicateOptimisticFixpoint();
return;
}
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
Value &V = getAssociatedValue();
const Function *Scope = nullptr;
if (auto *I = dyn_cast<Instruction>(&V))
Scope = I->getFunction();
if (auto *A = dyn_cast<Argument>(&V)) {
Scope = A->getParent();
if (!Scope->hasLocalLinkage())
return Changed;
}
if (!Scope)
return indicateOptimisticFixpoint();
auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
*this, IRPosition::function(*Scope), DepClassTy::OPTIONAL);
if (NoRecurseAA.isAssumedNoRecurse())
return Changed;
auto UsePred = [&](const Use &U, bool &Follow) {
const Instruction *UserI = dyn_cast<Instruction>(U.getUser());
if (!UserI || isa<GetElementPtrInst>(UserI) || isa<CastInst>(UserI) ||
isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
Follow = true;
return true;
}
if (isa<LoadInst>(UserI) || isa<CmpInst>(UserI) ||
(isa<StoreInst>(UserI) &&
cast<StoreInst>(UserI)->getValueOperand() != U.get()))
return true;
if (auto *CB = dyn_cast<CallBase>(UserI)) {
// This check is not guaranteeing uniqueness but for now that we cannot
// end up with two versions of \p U thinking it was one.
if (!CB->getCalledFunction() ||
!CB->getCalledFunction()->hasLocalLinkage())
return true;
if (!CB->isArgOperand(&U))
return false;
const auto &ArgInstanceInfoAA = A.getAAFor<AAInstanceInfo>(
*this, IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U)),
DepClassTy::OPTIONAL);
if (!ArgInstanceInfoAA.isAssumedUniqueForAnalysis())
return false;
// If this call base might reach the scope again we might forward the
// argument back here. This is very conservative.
if (AA::isPotentiallyReachable(
A, *CB, *Scope, *this, /* ExclusionSet */ nullptr,
[Scope](const Function &Fn) { return &Fn != Scope; }))
return false;
return true;
}
return false;
};
auto EquivalentUseCB = [&](const Use &OldU, const Use &NewU) {
if (auto *SI = dyn_cast<StoreInst>(OldU.getUser())) {
auto *Ptr = SI->getPointerOperand()->stripPointerCasts();
if ((isa<AllocaInst>(Ptr) || isNoAliasCall(Ptr)) &&
AA::isDynamicallyUnique(A, *this, *Ptr))
return true;
}
return false;
};
if (!A.checkForAllUses(UsePred, *this, V, /* CheckBBLivenessOnly */ true,
DepClassTy::OPTIONAL,
/* IgnoreDroppableUses */ true, EquivalentUseCB))
return indicatePessimisticFixpoint();
return Changed;
}
/// See AbstractState::getAsStr().
const std::string getAsStr() const override {
return isAssumedUniqueForAnalysis() ? "<unique [fAa]>" : "<unknown>";
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {}
};
/// InstanceInfo attribute for floating values.
struct AAInstanceInfoFloating : AAInstanceInfoImpl {
AAInstanceInfoFloating(const IRPosition &IRP, Attributor &A)
: AAInstanceInfoImpl(IRP, A) {}
};
/// NoCapture attribute for function arguments.
struct AAInstanceInfoArgument final : AAInstanceInfoFloating {
AAInstanceInfoArgument(const IRPosition &IRP, Attributor &A)
: AAInstanceInfoFloating(IRP, A) {}
};
/// InstanceInfo attribute for call site arguments.
struct AAInstanceInfoCallSiteArgument final : AAInstanceInfoImpl {
AAInstanceInfoCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AAInstanceInfoImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Argument *Arg = getAssociatedArgument();
if (!Arg)
return indicatePessimisticFixpoint();
const IRPosition &ArgPos = IRPosition::argument(*Arg);
auto &ArgAA =
A.getAAFor<AAInstanceInfo>(*this, ArgPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), ArgAA.getState());
}
};
/// InstanceInfo attribute for function return value.
struct AAInstanceInfoReturned final : AAInstanceInfoImpl {
AAInstanceInfoReturned(const IRPosition &IRP, Attributor &A)
: AAInstanceInfoImpl(IRP, A) {
llvm_unreachable("InstanceInfo is not applicable to function returns!");
}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
llvm_unreachable("InstanceInfo is not applicable to function returns!");
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
llvm_unreachable("InstanceInfo is not applicable to function returns!");
}
};
/// InstanceInfo attribute deduction for a call site return value.
struct AAInstanceInfoCallSiteReturned final : AAInstanceInfoFloating {
AAInstanceInfoCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AAInstanceInfoFloating(IRP, A) {}
};
} // namespace
/// ----------------------- Variable Capturing ---------------------------------
namespace {
/// A class to hold the state of for no-capture attributes.
struct AANoCaptureImpl : public AANoCapture {
AANoCaptureImpl(const IRPosition &IRP, Attributor &A) : AANoCapture(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ true)) {
indicateOptimisticFixpoint();
return;
}
Function *AnchorScope = getAnchorScope();
if (isFnInterfaceKind() &&
(!AnchorScope || !A.isFunctionIPOAmendable(*AnchorScope))) {
indicatePessimisticFixpoint();
return;
}
// You cannot "capture" null in the default address space.
if (isa<ConstantPointerNull>(getAssociatedValue()) &&
getAssociatedValue().getType()->getPointerAddressSpace() == 0) {
indicateOptimisticFixpoint();
return;
}
const Function *F =
isArgumentPosition() ? getAssociatedFunction() : AnchorScope;
// Check what state the associated function can actually capture.
if (F)
determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
else
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
/// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
void getDeducedAttributes(LLVMContext &Ctx,
SmallVectorImpl<Attribute> &Attrs) const override {
if (!isAssumedNoCaptureMaybeReturned())
return;
if (isArgumentPosition()) {
if (isAssumedNoCapture())
Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
else if (ManifestInternal)
Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
}
}
/// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
/// depending on the ability of the function associated with \p IRP to capture
/// state in memory and through "returning/throwing", respectively.
static void determineFunctionCaptureCapabilities(const IRPosition &IRP,
const Function &F,
BitIntegerState &State) {
// TODO: Once we have memory behavior attributes we should use them here.
// If we know we cannot communicate or write to memory, we do not care about
// ptr2int anymore.
if (F.onlyReadsMemory() && F.doesNotThrow() &&
F.getReturnType()->isVoidTy()) {
State.addKnownBits(NO_CAPTURE);
return;
}
// A function cannot capture state in memory if it only reads memory, it can
// however return/throw state and the state might be influenced by the
// pointer value, e.g., loading from a returned pointer might reveal a bit.
if (F.onlyReadsMemory())
State.addKnownBits(NOT_CAPTURED_IN_MEM);
// A function cannot communicate state back if it does not through
// exceptions and doesn not return values.
if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
State.addKnownBits(NOT_CAPTURED_IN_RET);
// Check existing "returned" attributes.
int ArgNo = IRP.getCalleeArgNo();
if (F.doesNotThrow() && ArgNo >= 0) {
for (unsigned u = 0, e = F.arg_size(); u < e; ++u)
if (F.hasParamAttribute(u, Attribute::Returned)) {
if (u == unsigned(ArgNo))
State.removeAssumedBits(NOT_CAPTURED_IN_RET);
else if (F.onlyReadsMemory())
State.addKnownBits(NO_CAPTURE);
else
State.addKnownBits(NOT_CAPTURED_IN_RET);
break;
}
}
}
/// See AbstractState::getAsStr().
const std::string getAsStr() const override {
if (isKnownNoCapture())
return "known not-captured";
if (isAssumedNoCapture())
return "assumed not-captured";
if (isKnownNoCaptureMaybeReturned())
return "known not-captured-maybe-returned";
if (isAssumedNoCaptureMaybeReturned())
return "assumed not-captured-maybe-returned";
return "assumed-captured";
}
/// Check the use \p U and update \p State accordingly. Return true if we
/// should continue to update the state.
bool checkUse(Attributor &A, AANoCapture::StateType &State, const Use &U,
bool &Follow) {
Instruction *UInst = cast<Instruction>(U.getUser());
LLVM_DEBUG(dbgs() << "[AANoCapture] Check use: " << *U.get() << " in "
<< *UInst << "\n");
// Deal with ptr2int by following uses.
if (isa<PtrToIntInst>(UInst)) {
LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
/* Return */ true);
}
// For stores we already checked if we can follow them, if they make it
// here we give up.
if (isa<StoreInst>(UInst))
return isCapturedIn(State, /* Memory */ true, /* Integer */ false,
/* Return */ false);
// Explicitly catch return instructions.
if (isa<ReturnInst>(UInst)) {
if (UInst->getFunction() == getAnchorScope())
return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
/* Return */ true);
return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
/* Return */ true);
}
// For now we only use special logic for call sites. However, the tracker
// itself knows about a lot of other non-capturing cases already.
auto *CB = dyn_cast<CallBase>(UInst);
if (!CB || !CB->isArgOperand(&U))
return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
/* Return */ true);
unsigned ArgNo = CB->getArgOperandNo(&U);
const IRPosition &CSArgPos = IRPosition::callsite_argument(*CB, ArgNo);
// If we have a abstract no-capture attribute for the argument we can use
// it to justify a non-capture attribute here. This allows recursion!
auto &ArgNoCaptureAA =
A.getAAFor<AANoCapture>(*this, CSArgPos, DepClassTy::REQUIRED);
if (ArgNoCaptureAA.isAssumedNoCapture())
return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
/* Return */ false);
if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
Follow = true;
return isCapturedIn(State, /* Memory */ false, /* Integer */ false,
/* Return */ false);
}
// Lastly, we could not find a reason no-capture can be assumed so we don't.
return isCapturedIn(State, /* Memory */ true, /* Integer */ true,
/* Return */ true);
}
/// Update \p State according to \p CapturedInMem, \p CapturedInInt, and
/// \p CapturedInRet, then return true if we should continue updating the
/// state.
static bool isCapturedIn(AANoCapture::StateType &State, bool CapturedInMem,
bool CapturedInInt, bool CapturedInRet) {
LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
<< CapturedInInt << "|Ret " << CapturedInRet << "]\n");
if (CapturedInMem)
State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
if (CapturedInInt)
State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
if (CapturedInRet)
State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
}
};
ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
const IRPosition &IRP = getIRPosition();
Value *V = isArgumentPosition() ? IRP.getAssociatedArgument()
: &IRP.getAssociatedValue();
if (!V)
return indicatePessimisticFixpoint();
const Function *F =
isArgumentPosition() ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
assert(F && "Expected a function!");
const IRPosition &FnPos = IRPosition::function(*F);
AANoCapture::StateType T;
// Readonly means we cannot capture through memory.
bool IsKnown;
if (AA::isAssumedReadOnly(A, FnPos, *this, IsKnown)) {
T.addKnownBits(NOT_CAPTURED_IN_MEM);
if (IsKnown)
addKnownBits(NOT_CAPTURED_IN_MEM);
}
// Make sure all returned values are different than the underlying value.
// TODO: we could do this in a more sophisticated way inside
// AAReturnedValues, e.g., track all values that escape through returns
// directly somehow.
auto CheckReturnedArgs = [&](const AAReturnedValues &RVAA) {
if (!RVAA.getState().isValidState())
return false;
bool SeenConstant = false;
for (const auto &It : RVAA.returned_values()) {
if (isa<Constant>(It.first)) {
if (SeenConstant)
return false;
SeenConstant = true;
} else if (!isa<Argument>(It.first) ||
It.first == getAssociatedArgument())
return false;
}
return true;
};
const auto &NoUnwindAA =
A.getAAFor<AANoUnwind>(*this, FnPos, DepClassTy::OPTIONAL);
if (NoUnwindAA.isAssumedNoUnwind()) {
bool IsVoidTy = F->getReturnType()->isVoidTy();
const AAReturnedValues *RVAA =
IsVoidTy ? nullptr
: &A.getAAFor<AAReturnedValues>(*this, FnPos,
DepClassTy::OPTIONAL);
if (IsVoidTy || CheckReturnedArgs(*RVAA)) {
T.addKnownBits(NOT_CAPTURED_IN_RET);
if (T.isKnown(NOT_CAPTURED_IN_MEM))
return ChangeStatus::UNCHANGED;
if (NoUnwindAA.isKnownNoUnwind() &&
(IsVoidTy || RVAA->getState().isAtFixpoint())) {
addKnownBits(NOT_CAPTURED_IN_RET);
if (isKnown(NOT_CAPTURED_IN_MEM))
return indicateOptimisticFixpoint();
}
}
}
auto IsDereferenceableOrNull = [&](Value *O, const DataLayout &DL) {
const auto &DerefAA = A.getAAFor<AADereferenceable>(
*this, IRPosition::value(*O), DepClassTy::OPTIONAL);
return DerefAA.getAssumedDereferenceableBytes();
};
auto UseCheck = [&](const Use &U, bool &Follow) -> bool {
switch (DetermineUseCaptureKind(U, IsDereferenceableOrNull)) {
case UseCaptureKind::NO_CAPTURE:
return true;
case UseCaptureKind::MAY_CAPTURE:
return checkUse(A, T, U, Follow);
case UseCaptureKind::PASSTHROUGH:
Follow = true;
return true;
}
llvm_unreachable("Unexpected use capture kind!");
};
if (!A.checkForAllUses(UseCheck, *this, *V))
return indicatePessimisticFixpoint();
AANoCapture::StateType &S = getState();
auto Assumed = S.getAssumed();
S.intersectAssumedBits(T.getAssumed());
if (!isAssumedNoCaptureMaybeReturned())
return indicatePessimisticFixpoint();
return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
: ChangeStatus::CHANGED;
}
/// NoCapture attribute for function arguments.
struct AANoCaptureArgument final : AANoCaptureImpl {
AANoCaptureArgument(const IRPosition &IRP, Attributor &A)
: AANoCaptureImpl(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
};
/// NoCapture attribute for call site arguments.
struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
AANoCaptureCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AANoCaptureImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (Argument *Arg = getAssociatedArgument())
if (Arg->hasByValAttr())
indicateOptimisticFixpoint();
AANoCaptureImpl::initialize(A);
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Argument *Arg = getAssociatedArgument();
if (!Arg)
return indicatePessimisticFixpoint();
const IRPosition &ArgPos = IRPosition::argument(*Arg);
auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), ArgAA.getState());
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
};
/// NoCapture attribute for floating values.
struct AANoCaptureFloating final : AANoCaptureImpl {
AANoCaptureFloating(const IRPosition &IRP, Attributor &A)
: AANoCaptureImpl(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FLOATING_ATTR(nocapture)
}
};
/// NoCapture attribute for function return value.
struct AANoCaptureReturned final : AANoCaptureImpl {
AANoCaptureReturned(const IRPosition &IRP, Attributor &A)
: AANoCaptureImpl(IRP, A) {
llvm_unreachable("NoCapture is not applicable to function returns!");
}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
llvm_unreachable("NoCapture is not applicable to function returns!");
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
llvm_unreachable("NoCapture is not applicable to function returns!");
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {}
};
/// NoCapture attribute deduction for a call site return value.
struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
AANoCaptureCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AANoCaptureImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
const Function *F = getAnchorScope();
// Check what state the associated function can actually capture.
determineFunctionCaptureCapabilities(getIRPosition(), *F, *this);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CSRET_ATTR(nocapture)
}
};
} // namespace
/// ------------------ Value Simplify Attribute ----------------------------
bool ValueSimplifyStateType::unionAssumed(std::optional<Value *> Other) {
// FIXME: Add a typecast support.
SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
SimplifiedAssociatedValue, Other, Ty);
if (SimplifiedAssociatedValue == std::optional<Value *>(nullptr))
return false;
LLVM_DEBUG({
if (SimplifiedAssociatedValue)
dbgs() << "[ValueSimplify] is assumed to be "
<< **SimplifiedAssociatedValue << "\n";
else
dbgs() << "[ValueSimplify] is assumed to be <none>\n";
});
return true;
}
namespace {
struct AAValueSimplifyImpl : AAValueSimplify {
AAValueSimplifyImpl(const IRPosition &IRP, Attributor &A)
: AAValueSimplify(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (getAssociatedValue().getType()->isVoidTy())
indicatePessimisticFixpoint();
if (A.hasSimplificationCallback(getIRPosition()))
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
LLVM_DEBUG({
dbgs() << "SAV: " << (bool)SimplifiedAssociatedValue << " ";
if (SimplifiedAssociatedValue && *SimplifiedAssociatedValue)
dbgs() << "SAV: " << **SimplifiedAssociatedValue << " ";
});
return isValidState() ? (isAtFixpoint() ? "simplified" : "maybe-simple")
: "not-simple";
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {}
/// See AAValueSimplify::getAssumedSimplifiedValue()
std::optional<Value *>
getAssumedSimplifiedValue(Attributor &A) const override {
return SimplifiedAssociatedValue;
}
/// Ensure the return value is \p V with type \p Ty, if not possible return
/// nullptr. If \p Check is true we will only verify such an operation would
/// suceed and return a non-nullptr value if that is the case. No IR is
/// generated or modified.
static Value *ensureType(Attributor &A, Value &V, Type &Ty, Instruction *CtxI,
bool Check) {
if (auto *TypedV = AA::getWithType(V, Ty))
return TypedV;
if (CtxI && V.getType()->canLosslesslyBitCastTo(&Ty))
return Check ? &V
: BitCastInst::CreatePointerBitCastOrAddrSpaceCast(&V, &Ty,
"", CtxI);
return nullptr;
}
/// Reproduce \p I with type \p Ty or return nullptr if that is not posisble.
/// If \p Check is true we will only verify such an operation would suceed and
/// return a non-nullptr value if that is the case. No IR is generated or
/// modified.
static Value *reproduceInst(Attributor &A,
const AbstractAttribute &QueryingAA,
Instruction &I, Type &Ty, Instruction *CtxI,
bool Check, ValueToValueMapTy &VMap) {
assert(CtxI && "Cannot reproduce an instruction without context!");
if (Check && (I.mayReadFromMemory() ||
!isSafeToSpeculativelyExecute(&I, CtxI, /* DT */ nullptr,
/* TLI */ nullptr)))
return nullptr;
for (Value *Op : I.operands()) {
Value *NewOp = reproduceValue(A, QueryingAA, *Op, Ty, CtxI, Check, VMap);
if (!NewOp) {
assert(Check && "Manifest of new value unexpectedly failed!");
return nullptr;
}
if (!Check)
VMap[Op] = NewOp;
}
if (Check)
return &I;
Instruction *CloneI = I.clone();
// TODO: Try to salvage debug information here.
CloneI->setDebugLoc(DebugLoc());
VMap[&I] = CloneI;
CloneI->insertBefore(CtxI);
RemapInstruction(CloneI, VMap);
return CloneI;
}
/// Reproduce \p V with type \p Ty or return nullptr if that is not posisble.
/// If \p Check is true we will only verify such an operation would suceed and
/// return a non-nullptr value if that is the case. No IR is generated or
/// modified.
static Value *reproduceValue(Attributor &A,
const AbstractAttribute &QueryingAA, Value &V,
Type &Ty, Instruction *CtxI, bool Check,
ValueToValueMapTy &VMap) {
if (const auto &NewV = VMap.lookup(&V))
return NewV;
bool UsedAssumedInformation = false;
std::optional<Value *> SimpleV = A.getAssumedSimplified(
V, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
if (!SimpleV.has_value())
return PoisonValue::get(&Ty);
Value *EffectiveV = &V;
if (*SimpleV)
EffectiveV = *SimpleV;
if (auto *C = dyn_cast<Constant>(EffectiveV))
return C;
if (CtxI && AA::isValidAtPosition(AA::ValueAndContext(*EffectiveV, *CtxI),
A.getInfoCache()))
return ensureType(A, *EffectiveV, Ty, CtxI, Check);
if (auto *I = dyn_cast<Instruction>(EffectiveV))
if (Value *NewV = reproduceInst(A, QueryingAA, *I, Ty, CtxI, Check, VMap))
return ensureType(A, *NewV, Ty, CtxI, Check);
return nullptr;
}
/// Return a value we can use as replacement for the associated one, or
/// nullptr if we don't have one that makes sense.
Value *manifestReplacementValue(Attributor &A, Instruction *CtxI) const {
Value *NewV = SimplifiedAssociatedValue
? *SimplifiedAssociatedValue
: UndefValue::get(getAssociatedType());
if (NewV && NewV != &getAssociatedValue()) {
ValueToValueMapTy VMap;
// First verify we can reprduce the value with the required type at the
// context location before we actually start modifying the IR.
if (reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
/* CheckOnly */ true, VMap))
return reproduceValue(A, *this, *NewV, *getAssociatedType(), CtxI,
/* CheckOnly */ false, VMap);
}
return nullptr;
}
/// Helper function for querying AAValueSimplify and updating candidate.
/// \param IRP The value position we are trying to unify with SimplifiedValue
bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
const IRPosition &IRP, bool Simplify = true) {
bool UsedAssumedInformation = false;
std::optional<Value *> QueryingValueSimplified = &IRP.getAssociatedValue();
if (Simplify)
QueryingValueSimplified = A.getAssumedSimplified(
IRP, QueryingAA, UsedAssumedInformation, AA::Interprocedural);
return unionAssumed(QueryingValueSimplified);
}
/// Returns a candidate is found or not
template <typename AAType> bool askSimplifiedValueFor(Attributor &A) {
if (!getAssociatedValue().getType()->isIntegerTy())
return false;
// This will also pass the call base context.
const auto &AA =
A.getAAFor<AAType>(*this, getIRPosition(), DepClassTy::NONE);
std::optional<Constant *> COpt = AA.getAssumedConstant(A);
if (!COpt) {
SimplifiedAssociatedValue = std::nullopt;
A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
return true;
}
if (auto *C = *COpt) {
SimplifiedAssociatedValue = C;
A.recordDependence(AA, *this, DepClassTy::OPTIONAL);
return true;
}
return false;
}
bool askSimplifiedValueForOtherAAs(Attributor &A) {
if (askSimplifiedValueFor<AAValueConstantRange>(A))
return true;
if (askSimplifiedValueFor<AAPotentialConstantValues>(A))
return true;
return false;
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
for (auto &U : getAssociatedValue().uses()) {
// Check if we need to adjust the insertion point to make sure the IR is
// valid.
Instruction *IP = dyn_cast<Instruction>(U.getUser());
if (auto *PHI = dyn_cast_or_null<PHINode>(IP))
IP = PHI->getIncomingBlock(U)->getTerminator();
if (auto *NewV = manifestReplacementValue(A, IP)) {
LLVM_DEBUG(dbgs() << "[ValueSimplify] " << getAssociatedValue()
<< " -> " << *NewV << " :: " << *this << "\n");
if (A.changeUseAfterManifest(U, *NewV))
Changed = ChangeStatus::CHANGED;
}
}
return Changed | AAValueSimplify::manifest(A);
}
/// See AbstractState::indicatePessimisticFixpoint(...).
ChangeStatus indicatePessimisticFixpoint() override {
SimplifiedAssociatedValue = &getAssociatedValue();
return AAValueSimplify::indicatePessimisticFixpoint();
}
};
struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
AAValueSimplifyArgument(const IRPosition &IRP, Attributor &A)
: AAValueSimplifyImpl(IRP, A) {}
void initialize(Attributor &A) override {
AAValueSimplifyImpl::initialize(A);
if (!getAnchorScope() || getAnchorScope()->isDeclaration())
indicatePessimisticFixpoint();
if (hasAttr({Attribute::InAlloca, Attribute::Preallocated,
Attribute::StructRet, Attribute::Nest, Attribute::ByVal},
/* IgnoreSubsumingPositions */ true))
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// Byval is only replacable if it is readonly otherwise we would write into
// the replaced value and not the copy that byval creates implicitly.
Argument *Arg = getAssociatedArgument();
if (Arg->hasByValAttr()) {
// TODO: We probably need to verify synchronization is not an issue, e.g.,
// there is no race by not copying a constant byval.
bool IsKnown;
if (!AA::isAssumedReadOnly(A, getIRPosition(), *this, IsKnown))
return indicatePessimisticFixpoint();
}
auto Before = SimplifiedAssociatedValue;
auto PredForCallSite = [&](AbstractCallSite ACS) {
const IRPosition &ACSArgPos =
IRPosition::callsite_argument(ACS, getCallSiteArgNo());
// Check if a coresponding argument was found or if it is on not
// associated (which can happen for callback calls).
if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
return false;
// Simplify the argument operand explicitly and check if the result is
// valid in the current scope. This avoids refering to simplified values
// in other functions, e.g., we don't want to say a an argument in a
// static function is actually an argument in a different function.
bool UsedAssumedInformation = false;
std::optional<Constant *> SimpleArgOp =
A.getAssumedConstant(ACSArgPos, *this, UsedAssumedInformation);
if (!SimpleArgOp)
return true;
if (!*SimpleArgOp)
return false;
if (!AA::isDynamicallyUnique(A, *this, **SimpleArgOp))
return false;
return unionAssumed(*SimpleArgOp);
};
// Generate a answer specific to a call site context.
bool Success;
bool UsedAssumedInformation = false;
if (hasCallBaseContext() &&
getCallBaseContext()->getCalledFunction() == Arg->getParent())
Success = PredForCallSite(
AbstractCallSite(&getCallBaseContext()->getCalledOperandUse()));
else
Success = A.checkForAllCallSites(PredForCallSite, *this, true,
UsedAssumedInformation);
if (!Success)
if (!askSimplifiedValueForOtherAAs(A))
return indicatePessimisticFixpoint();
// If a candidate was found in this update, return CHANGED.
return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
: ChangeStatus ::CHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_ARG_ATTR(value_simplify)
}
};
struct AAValueSimplifyReturned : AAValueSimplifyImpl {
AAValueSimplifyReturned(const IRPosition &IRP, Attributor &A)
: AAValueSimplifyImpl(IRP, A) {}
/// See AAValueSimplify::getAssumedSimplifiedValue()
std::optional<Value *>
getAssumedSimplifiedValue(Attributor &A) const override {
if (!isValidState())
return nullptr;
return SimplifiedAssociatedValue;
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto Before = SimplifiedAssociatedValue;
auto ReturnInstCB = [&](Instruction &I) {
auto &RI = cast<ReturnInst>(I);
return checkAndUpdate(
A, *this,
IRPosition::value(*RI.getReturnValue(), getCallBaseContext()));
};
bool UsedAssumedInformation = false;
if (!A.checkForAllInstructions(ReturnInstCB, *this, {Instruction::Ret},
UsedAssumedInformation))
if (!askSimplifiedValueForOtherAAs(A))
return indicatePessimisticFixpoint();
// If a candidate was found in this update, return CHANGED.
return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
: ChangeStatus ::CHANGED;
}
ChangeStatus manifest(Attributor &A) override {
// We queried AAValueSimplify for the returned values so they will be
// replaced if a simplified form was found. Nothing to do here.
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FNRET_ATTR(value_simplify)
}
};
struct AAValueSimplifyFloating : AAValueSimplifyImpl {
AAValueSimplifyFloating(const IRPosition &IRP, Attributor &A)
: AAValueSimplifyImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAValueSimplifyImpl::initialize(A);
Value &V = getAnchorValue();
// TODO: add other stuffs
if (isa<Constant>(V))
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto Before = SimplifiedAssociatedValue;
if (!askSimplifiedValueForOtherAAs(A))
return indicatePessimisticFixpoint();
// If a candidate was found in this update, return CHANGED.
return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
: ChangeStatus ::CHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
}
};
struct AAValueSimplifyFunction : AAValueSimplifyImpl {
AAValueSimplifyFunction(const IRPosition &IRP, Attributor &A)
: AAValueSimplifyImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
SimplifiedAssociatedValue = nullptr;
indicateOptimisticFixpoint();
}
/// See AbstractAttribute::initialize(...).
ChangeStatus updateImpl(Attributor &A) override {
llvm_unreachable(
"AAValueSimplify(Function|CallSite)::updateImpl will not be called");
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FN_ATTR(value_simplify)
}
};
struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
AAValueSimplifyCallSite(const IRPosition &IRP, Attributor &A)
: AAValueSimplifyFunction(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CS_ATTR(value_simplify)
}
};
struct AAValueSimplifyCallSiteReturned : AAValueSimplifyImpl {
AAValueSimplifyCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AAValueSimplifyImpl(IRP, A) {}
void initialize(Attributor &A) override {
AAValueSimplifyImpl::initialize(A);
Function *Fn = getAssociatedFunction();
if (!Fn) {
indicatePessimisticFixpoint();
return;
}
for (Argument &Arg : Fn->args()) {
if (Arg.hasReturnedAttr()) {
auto IRP = IRPosition::callsite_argument(*cast<CallBase>(getCtxI()),
Arg.getArgNo());
if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT &&
checkAndUpdate(A, *this, IRP))
indicateOptimisticFixpoint();
else
indicatePessimisticFixpoint();
return;
}
}
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto Before = SimplifiedAssociatedValue;
auto &RetAA = A.getAAFor<AAReturnedValues>(
*this, IRPosition::function(*getAssociatedFunction()),
DepClassTy::REQUIRED);
auto PredForReturned =
[&](Value &RetVal, const SmallSetVector<ReturnInst *, 4> &RetInsts) {
bool UsedAssumedInformation = false;
std::optional<Value *> CSRetVal =
A.translateArgumentToCallSiteContent(
&RetVal, *cast<CallBase>(getCtxI()), *this,
UsedAssumedInformation);
SimplifiedAssociatedValue = AA::combineOptionalValuesInAAValueLatice(
SimplifiedAssociatedValue, CSRetVal, getAssociatedType());
return SimplifiedAssociatedValue != std::optional<Value *>(nullptr);
};
if (!RetAA.checkForAllReturnedValuesAndReturnInsts(PredForReturned))
if (!askSimplifiedValueForOtherAAs(A))
return indicatePessimisticFixpoint();
return Before == SimplifiedAssociatedValue ? ChangeStatus::UNCHANGED
: ChangeStatus ::CHANGED;
}
void trackStatistics() const override {
STATS_DECLTRACK_CSRET_ATTR(value_simplify)
}
};
struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
AAValueSimplifyCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AAValueSimplifyFloating(IRP, A) {}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
// TODO: We should avoid simplification duplication to begin with.
auto *FloatAA = A.lookupAAFor<AAValueSimplify>(
IRPosition::value(getAssociatedValue()), this, DepClassTy::NONE);
if (FloatAA && FloatAA->getState().isValidState())
return Changed;
if (auto *NewV = manifestReplacementValue(A, getCtxI())) {
Use &U = cast<CallBase>(&getAnchorValue())
->getArgOperandUse(getCallSiteArgNo());
if (A.changeUseAfterManifest(U, *NewV))
Changed = ChangeStatus::CHANGED;
}
return Changed | AAValueSimplify::manifest(A);
}
void trackStatistics() const override {
STATS_DECLTRACK_CSARG_ATTR(value_simplify)
}
};
} // namespace
/// ----------------------- Heap-To-Stack Conversion ---------------------------
namespace {
struct AAHeapToStackFunction final : public AAHeapToStack {
struct AllocationInfo {
/// The call that allocates the memory.
CallBase *const CB;
/// The library function id for the allocation.
LibFunc LibraryFunctionId = NotLibFunc;
/// The status wrt. a rewrite.
enum {
STACK_DUE_TO_USE,
STACK_DUE_TO_FREE,
INVALID,
} Status = STACK_DUE_TO_USE;
/// Flag to indicate if we encountered a use that might free this allocation
/// but which is not in the deallocation infos.
bool HasPotentiallyFreeingUnknownUses = false;
/// Flag to indicate that we should place the new alloca in the function
/// entry block rather than where the call site (CB) is.
bool MoveAllocaIntoEntry = true;
/// The set of free calls that use this allocation.
SmallSetVector<CallBase *, 1> PotentialFreeCalls{};
};
struct DeallocationInfo {
/// The call that deallocates the memory.
CallBase *const CB;
/// The value freed by the call.
Value *FreedOp;
/// Flag to indicate if we don't know all objects this deallocation might
/// free.
bool MightFreeUnknownObjects = false;
/// The set of allocation calls that are potentially freed.
SmallSetVector<CallBase *, 1> PotentialAllocationCalls{};
};
AAHeapToStackFunction(const IRPosition &IRP, Attributor &A)
: AAHeapToStack(IRP, A) {}
~AAHeapToStackFunction() {
// Ensure we call the destructor so we release any memory allocated in the
// sets.
for (auto &It : AllocationInfos)
It.second->~AllocationInfo();
for (auto &It : DeallocationInfos)
It.second->~DeallocationInfo();
}
void initialize(Attributor &A) override {
AAHeapToStack::initialize(A);
const Function *F = getAnchorScope();
const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
auto AllocationIdentifierCB = [&](Instruction &I) {
CallBase *CB = dyn_cast<CallBase>(&I);
if (!CB)
return true;
if (Value *FreedOp = getFreedOperand(CB, TLI)) {
DeallocationInfos[CB] = new (A.Allocator) DeallocationInfo{CB, FreedOp};
return true;
}
// To do heap to stack, we need to know that the allocation itself is
// removable once uses are rewritten, and that we can initialize the
// alloca to the same pattern as the original allocation result.
if (isRemovableAlloc(CB, TLI)) {
auto *I8Ty = Type::getInt8Ty(CB->getParent()->getContext());
if (nullptr != getInitialValueOfAllocation(CB, TLI, I8Ty)) {
AllocationInfo *AI = new (A.Allocator) AllocationInfo{CB};
AllocationInfos[CB] = AI;
if (TLI)
TLI->getLibFunc(*CB, AI->LibraryFunctionId);
}
}
return true;
};
bool UsedAssumedInformation = false;
bool Success = A.checkForAllCallLikeInstructions(
AllocationIdentifierCB, *this, UsedAssumedInformation,
/* CheckBBLivenessOnly */ false,
/* CheckPotentiallyDead */ true);
(void)Success;
assert(Success && "Did not expect the call base visit callback to fail!");
Attributor::SimplifictionCallbackTy SCB =
[](const IRPosition &, const AbstractAttribute *,
bool &) -> std::optional<Value *> { return nullptr; };
for (const auto &It : AllocationInfos)
A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
SCB);
for (const auto &It : DeallocationInfos)
A.registerSimplificationCallback(IRPosition::callsite_returned(*It.first),
SCB);
}
const std::string getAsStr() const override {
unsigned NumH2SMallocs = 0, NumInvalidMallocs = 0;
for (const auto &It : AllocationInfos) {
if (It.second->Status == AllocationInfo::INVALID)
++NumInvalidMallocs;
else
++NumH2SMallocs;
}
return "[H2S] Mallocs Good/Bad: " + std::to_string(NumH2SMallocs) + "/" +
std::to_string(NumInvalidMallocs);
}
/// See AbstractAttribute::trackStatistics().
void trackStatistics() const override {
STATS_DECL(
MallocCalls, Function,
"Number of malloc/calloc/aligned_alloc calls converted to allocas");
for (const auto &It : AllocationInfos)
if (It.second->Status != AllocationInfo::INVALID)
++BUILD_STAT_NAME(MallocCalls, Function);
}
bool isAssumedHeapToStack(const CallBase &CB) const override {
if (isValidState())
if (AllocationInfo *AI =
AllocationInfos.lookup(const_cast<CallBase *>(&CB)))
return AI->Status != AllocationInfo::INVALID;
return false;
}
bool isAssumedHeapToStackRemovedFree(CallBase &CB) const override {
if (!isValidState())
return false;
for (const auto &It : AllocationInfos) {
AllocationInfo &AI = *It.second;
if (AI.Status == AllocationInfo::INVALID)
continue;
if (AI.PotentialFreeCalls.count(&CB))
return true;
}
return false;
}
ChangeStatus manifest(Attributor &A) override {
assert(getState().isValidState() &&
"Attempted to manifest an invalid state!");
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
Function *F = getAnchorScope();
const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
for (auto &It : AllocationInfos) {
AllocationInfo &AI = *It.second;
if (AI.Status == AllocationInfo::INVALID)
continue;
for (CallBase *FreeCall : AI.PotentialFreeCalls) {
LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
A.deleteAfterManifest(*FreeCall);
HasChanged = ChangeStatus::CHANGED;
}
LLVM_DEBUG(dbgs() << "H2S: Removing malloc-like call: " << *AI.CB
<< "\n");
auto Remark = [&](OptimizationRemark OR) {
LibFunc IsAllocShared;
if (TLI->getLibFunc(*AI.CB, IsAllocShared))
if (IsAllocShared == LibFunc___kmpc_alloc_shared)
return OR << "Moving globalized variable to the stack.";
return OR << "Moving memory allocation from the heap to the stack.";
};
if (AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
A.emitRemark<OptimizationRemark>(AI.CB, "OMP110", Remark);
else
A.emitRemark<OptimizationRemark>(AI.CB, "HeapToStack", Remark);
const DataLayout &DL = A.getInfoCache().getDL();
Value *Size;
std::optional<APInt> SizeAPI = getSize(A, *this, AI);
if (SizeAPI) {
Size = ConstantInt::get(AI.CB->getContext(), *SizeAPI);
} else {
LLVMContext &Ctx = AI.CB->getContext();
ObjectSizeOpts Opts;
ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, Opts);
SizeOffsetEvalType SizeOffsetPair = Eval.compute(AI.CB);
assert(SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown() &&
cast<ConstantInt>(SizeOffsetPair.second)->isZero());
Size = SizeOffsetPair.first;
}
Instruction *IP =
AI.MoveAllocaIntoEntry ? &F->getEntryBlock().front() : AI.CB;
Align Alignment(1);
if (MaybeAlign RetAlign = AI.CB->getRetAlign())
Alignment = std::max(Alignment, *RetAlign);
if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
std::optional<APInt> AlignmentAPI = getAPInt(A, *this, *Align);
assert(AlignmentAPI && AlignmentAPI->getZExtValue() > 0 &&
"Expected an alignment during manifest!");
Alignment =
std::max(Alignment, assumeAligned(AlignmentAPI->getZExtValue()));
}
// TODO: Hoist the alloca towards the function entry.
unsigned AS = DL.getAllocaAddrSpace();
Instruction *Alloca =
new AllocaInst(Type::getInt8Ty(F->getContext()), AS, Size, Alignment,
AI.CB->getName() + ".h2s", IP);
if (Alloca->getType() != AI.CB->getType())
Alloca = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
Alloca, AI.CB->getType(), "malloc_cast", AI.CB);
auto *I8Ty = Type::getInt8Ty(F->getContext());
auto *InitVal = getInitialValueOfAllocation(AI.CB, TLI, I8Ty);
assert(InitVal &&
"Must be able to materialize initial memory state of allocation");
A.changeAfterManifest(IRPosition::inst(*AI.CB), *Alloca);
if (auto *II = dyn_cast<InvokeInst>(AI.CB)) {
auto *NBB = II->getNormalDest();
BranchInst::Create(NBB, AI.CB->getParent());
A.deleteAfterManifest(*AI.CB);
} else {
A.deleteAfterManifest(*AI.CB);
}
// Initialize the alloca with the same value as used by the allocation
// function. We can skip undef as the initial value of an alloc is
// undef, and the memset would simply end up being DSEd.
if (!isa<UndefValue>(InitVal)) {
IRBuilder<> Builder(Alloca->getNextNode());
// TODO: Use alignment above if align!=1
Builder.CreateMemSet(Alloca, InitVal, Size, std::nullopt);
}
HasChanged = ChangeStatus::CHANGED;
}
return HasChanged;
}
std::optional<APInt> getAPInt(Attributor &A, const AbstractAttribute &AA,
Value &V) {
bool UsedAssumedInformation = false;
std::optional<Constant *> SimpleV =
A.getAssumedConstant(V, AA, UsedAssumedInformation);
if (!SimpleV)
return APInt(64, 0);
if (auto *CI = dyn_cast_or_null<ConstantInt>(*SimpleV))
return CI->getValue();
return std::nullopt;
}
std::optional<APInt> getSize(Attributor &A, const AbstractAttribute &AA,
AllocationInfo &AI) {
auto Mapper = [&](const Value *V) -> const Value * {
bool UsedAssumedInformation = false;
if (std::optional<Constant *> SimpleV =
A.getAssumedConstant(*V, AA, UsedAssumedInformation))
if (*SimpleV)
return *SimpleV;
return V;
};
const Function *F = getAnchorScope();
const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
return getAllocSize(AI.CB, TLI, Mapper);
}
/// Collection of all malloc-like calls in a function with associated
/// information.
MapVector<CallBase *, AllocationInfo *> AllocationInfos;
/// Collection of all free-like calls in a function with associated
/// information.
MapVector<CallBase *, DeallocationInfo *> DeallocationInfos;
ChangeStatus updateImpl(Attributor &A) override;
};
ChangeStatus AAHeapToStackFunction::updateImpl(Attributor &A) {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
const Function *F = getAnchorScope();
const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
const auto &LivenessAA =
A.getAAFor<AAIsDead>(*this, IRPosition::function(*F), DepClassTy::NONE);
MustBeExecutedContextExplorer &Explorer =
A.getInfoCache().getMustBeExecutedContextExplorer();
bool StackIsAccessibleByOtherThreads =
A.getInfoCache().stackIsAccessibleByOtherThreads();
LoopInfo *LI =
A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(*F);
std::optional<bool> MayContainIrreducibleControl;
auto IsInLoop = [&](BasicBlock &BB) {
if (&F->getEntryBlock() == &BB)
return false;
if (!MayContainIrreducibleControl.has_value())
MayContainIrreducibleControl = mayContainIrreducibleControl(*F, LI);
if (*MayContainIrreducibleControl)
return true;
if (!LI)
return true;
return LI->getLoopFor(&BB) != nullptr;
};
// Flag to ensure we update our deallocation information at most once per
// updateImpl call and only if we use the free check reasoning.
bool HasUpdatedFrees = false;
auto UpdateFrees = [&]() {
HasUpdatedFrees = true;
for (auto &It : DeallocationInfos) {
DeallocationInfo &DI = *It.second;
// For now we cannot use deallocations that have unknown inputs, skip
// them.
if (DI.MightFreeUnknownObjects)
continue;
// No need to analyze dead calls, ignore them instead.
bool UsedAssumedInformation = false;
if (A.isAssumedDead(*DI.CB, this, &LivenessAA, UsedAssumedInformation,
/* CheckBBLivenessOnly */ true))
continue;
// Use the non-optimistic version to get the freed object.
Value *Obj = getUnderlyingObject(DI.FreedOp);
if (!Obj) {
LLVM_DEBUG(dbgs() << "[H2S] Unknown underlying object for free!\n");
DI.MightFreeUnknownObjects = true;
continue;
}
// Free of null and undef can be ignored as no-ops (or UB in the latter
// case).
if (isa<ConstantPointerNull>(Obj) || isa<UndefValue>(Obj))
continue;
CallBase *ObjCB = dyn_cast<CallBase>(Obj);
if (!ObjCB) {
LLVM_DEBUG(dbgs() << "[H2S] Free of a non-call object: " << *Obj
<< "\n");
DI.MightFreeUnknownObjects = true;
continue;
}
AllocationInfo *AI = AllocationInfos.lookup(ObjCB);
if (!AI) {
LLVM_DEBUG(dbgs() << "[H2S] Free of a non-allocation object: " << *Obj
<< "\n");
DI.MightFreeUnknownObjects = true;
continue;
}
DI.PotentialAllocationCalls.insert(ObjCB);
}
};
auto FreeCheck = [&](AllocationInfo &AI) {
// If the stack is not accessible by other threads, the "must-free" logic
// doesn't apply as the pointer could be shared and needs to be places in
// "shareable" memory.
if (!StackIsAccessibleByOtherThreads) {
auto &NoSyncAA =
A.getAAFor<AANoSync>(*this, getIRPosition(), DepClassTy::OPTIONAL);
if (!NoSyncAA.isAssumedNoSync()) {
LLVM_DEBUG(
dbgs() << "[H2S] found an escaping use, stack is not accessible by "
"other threads and function is not nosync:\n");
return false;
}
}
if (!HasUpdatedFrees)
UpdateFrees();
// TODO: Allow multi exit functions that have different free calls.
if (AI.PotentialFreeCalls.size() != 1) {
LLVM_DEBUG(dbgs() << "[H2S] did not find one free call but "
<< AI.PotentialFreeCalls.size() << "\n");
return false;
}
CallBase *UniqueFree = *AI.PotentialFreeCalls.begin();
DeallocationInfo *DI = DeallocationInfos.lookup(UniqueFree);
if (!DI) {
LLVM_DEBUG(
dbgs() << "[H2S] unique free call was not known as deallocation call "
<< *UniqueFree << "\n");
return false;
}
if (DI->MightFreeUnknownObjects) {
LLVM_DEBUG(
dbgs() << "[H2S] unique free call might free unknown allocations\n");
return false;
}
if (DI->PotentialAllocationCalls.empty())
return true;
if (DI->PotentialAllocationCalls.size() > 1) {
LLVM_DEBUG(dbgs() << "[H2S] unique free call might free "
<< DI->PotentialAllocationCalls.size()
<< " different allocations\n");
return false;
}
if (*DI->PotentialAllocationCalls.begin() != AI.CB) {
LLVM_DEBUG(
dbgs()
<< "[H2S] unique free call not known to free this allocation but "
<< **DI->PotentialAllocationCalls.begin() << "\n");
return false;
}
Instruction *CtxI = isa<InvokeInst>(AI.CB) ? AI.CB : AI.CB->getNextNode();
if (!Explorer.findInContextOf(UniqueFree, CtxI)) {
LLVM_DEBUG(
dbgs()
<< "[H2S] unique free call might not be executed with the allocation "
<< *UniqueFree << "\n");
return false;
}
return true;
};
auto UsesCheck = [&](AllocationInfo &AI) {
bool ValidUsesOnly = true;
auto Pred = [&](const Use &U, bool &Follow) -> bool {
Instruction *UserI = cast<Instruction>(U.getUser());
if (isa<LoadInst>(UserI))
return true;
if (auto *SI = dyn_cast<StoreInst>(UserI)) {
if (SI->getValueOperand() == U.get()) {
LLVM_DEBUG(dbgs()
<< "[H2S] escaping store to memory: " << *UserI << "\n");
ValidUsesOnly = false;
} else {
// A store into the malloc'ed memory is fine.
}
return true;
}
if (auto *CB = dyn_cast<CallBase>(UserI)) {
if (!CB->isArgOperand(&U) || CB->isLifetimeStartOrEnd())
return true;
if (DeallocationInfos.count(CB)) {
AI.PotentialFreeCalls.insert(CB);
return true;
}
unsigned ArgNo = CB->getArgOperandNo(&U);
const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
*this, IRPosition::callsite_argument(*CB, ArgNo),
DepClassTy::OPTIONAL);
// If a call site argument use is nofree, we are fine.
const auto &ArgNoFreeAA = A.getAAFor<AANoFree>(
*this, IRPosition::callsite_argument(*CB, ArgNo),
DepClassTy::OPTIONAL);
bool MaybeCaptured = !NoCaptureAA.isAssumedNoCapture();
bool MaybeFreed = !ArgNoFreeAA.isAssumedNoFree();
if (MaybeCaptured ||
(AI.LibraryFunctionId != LibFunc___kmpc_alloc_shared &&
MaybeFreed)) {
AI.HasPotentiallyFreeingUnknownUses |= MaybeFreed;
// Emit a missed remark if this is missed OpenMP globalization.
auto Remark = [&](OptimizationRemarkMissed ORM) {
return ORM
<< "Could not move globalized variable to the stack. "
"Variable is potentially captured in call. Mark "
"parameter as `__attribute__((noescape))` to override.";
};
if (ValidUsesOnly &&
AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared)
A.emitRemark<OptimizationRemarkMissed>(CB, "OMP113", Remark);
LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
ValidUsesOnly = false;
}
return true;
}
if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI) ||
isa<PHINode>(UserI) || isa<SelectInst>(UserI)) {
Follow = true;
return true;
}
// Unknown user for which we can not track uses further (in a way that
// makes sense).
LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
ValidUsesOnly = false;
return true;
};
if (!A.checkForAllUses(Pred, *this, *AI.CB))
return false;
return ValidUsesOnly;
};
// The actual update starts here. We look at all allocations and depending on
// their status perform the appropriate check(s).
for (auto &It : AllocationInfos) {
AllocationInfo &AI = *It.second;
if (AI.Status == AllocationInfo::INVALID)
continue;
if (Value *Align = getAllocAlignment(AI.CB, TLI)) {
std::optional<APInt> APAlign = getAPInt(A, *this, *Align);
if (!APAlign) {
// Can't generate an alloca which respects the required alignment
// on the allocation.
LLVM_DEBUG(dbgs() << "[H2S] Unknown allocation alignment: " << *AI.CB
<< "\n");
AI.Status = AllocationInfo::INVALID;
Changed = ChangeStatus::CHANGED;
continue;
}
if (APAlign->ugt(llvm::Value::MaximumAlignment) ||
!APAlign->isPowerOf2()) {
LLVM_DEBUG(dbgs() << "[H2S] Invalid allocation alignment: " << APAlign
<< "\n");
AI.Status = AllocationInfo::INVALID;
Changed = ChangeStatus::CHANGED;
continue;
}
}
std::optional<APInt> Size = getSize(A, *this, AI);
if (MaxHeapToStackSize != -1) {
if (!Size || Size->ugt(MaxHeapToStackSize)) {
LLVM_DEBUG({
if (!Size)
dbgs() << "[H2S] Unknown allocation size: " << *AI.CB << "\n";
else
dbgs() << "[H2S] Allocation size too large: " << *AI.CB << " vs. "
<< MaxHeapToStackSize << "\n";
});
AI.Status = AllocationInfo::INVALID;
Changed = ChangeStatus::CHANGED;
continue;
}
}
switch (AI.Status) {
case AllocationInfo::STACK_DUE_TO_USE:
if (UsesCheck(AI))
break;
AI.Status = AllocationInfo::STACK_DUE_TO_FREE;
[[fallthrough]];
case AllocationInfo::STACK_DUE_TO_FREE:
if (FreeCheck(AI))
break;
AI.Status = AllocationInfo::INVALID;
Changed = ChangeStatus::CHANGED;
break;
case AllocationInfo::INVALID:
llvm_unreachable("Invalid allocations should never reach this point!");
};
// Check if we still think we can move it into the entry block. If the
// alloca comes from a converted __kmpc_alloc_shared then we can usually
// ignore the potential compilations associated with loops.
bool IsGlobalizedLocal =
AI.LibraryFunctionId == LibFunc___kmpc_alloc_shared;
if (AI.MoveAllocaIntoEntry &&
(!Size.has_value() ||
(!IsGlobalizedLocal && IsInLoop(*AI.CB->getParent()))))
AI.MoveAllocaIntoEntry = false;
}
return Changed;
}
} // namespace
/// ----------------------- Privatizable Pointers ------------------------------
namespace {
struct AAPrivatizablePtrImpl : public AAPrivatizablePtr {
AAPrivatizablePtrImpl(const IRPosition &IRP, Attributor &A)
: AAPrivatizablePtr(IRP, A), PrivatizableType(std::nullopt) {}
ChangeStatus indicatePessimisticFixpoint() override {
AAPrivatizablePtr::indicatePessimisticFixpoint();
PrivatizableType = nullptr;
return ChangeStatus::CHANGED;
}
/// Identify the type we can chose for a private copy of the underlying
/// argument. None means it is not clear yet, nullptr means there is none.
virtual std::optional<Type *> identifyPrivatizableType(Attributor &A) = 0;
/// Return a privatizable type that encloses both T0 and T1.
/// TODO: This is merely a stub for now as we should manage a mapping as well.
std::optional<Type *> combineTypes(std::optional<Type *> T0,
std::optional<Type *> T1) {
if (!T0)
return T1;
if (!T1)
return T0;
if (T0 == T1)
return T0;
return nullptr;
}
std::optional<Type *> getPrivatizableType() const override {
return PrivatizableType;
}
const std::string getAsStr() const override {
return isAssumedPrivatizablePtr() ? "[priv]" : "[no-priv]";
}
protected:
std::optional<Type *> PrivatizableType;
};
// TODO: Do this for call site arguments (probably also other values) as well.
struct AAPrivatizablePtrArgument final : public AAPrivatizablePtrImpl {
AAPrivatizablePtrArgument(const IRPosition &IRP, Attributor &A)
: AAPrivatizablePtrImpl(IRP, A) {}
/// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
std::optional<Type *> identifyPrivatizableType(Attributor &A) override {
// If this is a byval argument and we know all the call sites (so we can
// rewrite them), there is no need to check them explicitly.
bool UsedAssumedInformation = false;
SmallVector<Attribute, 1> Attrs;
getAttrs({Attribute::ByVal}, Attrs, /* IgnoreSubsumingPositions */ true);
if (!Attrs.empty() &&
A.checkForAllCallSites([](AbstractCallSite ACS) { return true; }, *this,
true, UsedAssumedInformation))
return Attrs[0].getValueAsType();
std::optional<Type *> Ty;
unsigned ArgNo = getIRPosition().getCallSiteArgNo();
// Make sure the associated call site argument has the same type at all call
// sites and it is an allocation we know is safe to privatize, for now that
// means we only allow alloca instructions.
// TODO: We can additionally analyze the accesses in the callee to create
// the type from that information instead. That is a little more
// involved and will be done in a follow up patch.
auto CallSiteCheck = [&](AbstractCallSite ACS) {
IRPosition ACSArgPos = IRPosition::callsite_argument(ACS, ArgNo);
// Check if a coresponding argument was found or if it is one not
// associated (which can happen for callback calls).
if (ACSArgPos.getPositionKind() == IRPosition::IRP_INVALID)
return false;
// Check that all call sites agree on a type.
auto &PrivCSArgAA =
A.getAAFor<AAPrivatizablePtr>(*this, ACSArgPos, DepClassTy::REQUIRED);
std::optional<Type *> CSTy = PrivCSArgAA.getPrivatizableType();
LLVM_DEBUG({
dbgs() << "[AAPrivatizablePtr] ACSPos: " << ACSArgPos << ", CSTy: ";
if (CSTy && *CSTy)
(*CSTy)->print(dbgs());
else if (CSTy)
dbgs() << "<nullptr>";
else
dbgs() << "<none>";
});
Ty = combineTypes(Ty, CSTy);
LLVM_DEBUG({
dbgs() << " : New Type: ";
if (Ty && *Ty)
(*Ty)->print(dbgs());
else if (Ty)
dbgs() << "<nullptr>";
else
dbgs() << "<none>";
dbgs() << "\n";
});
return !Ty || *Ty;
};
if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
UsedAssumedInformation))
return nullptr;
return Ty;
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
PrivatizableType = identifyPrivatizableType(A);
if (!PrivatizableType)
return ChangeStatus::UNCHANGED;
if (!*PrivatizableType)
return indicatePessimisticFixpoint();
// The dependence is optional so we don't give up once we give up on the
// alignment.
A.getAAFor<AAAlign>(*this, IRPosition::value(getAssociatedValue()),
DepClassTy::OPTIONAL);
// Avoid arguments with padding for now.
if (!getIRPosition().hasAttr(Attribute::ByVal) &&
!isDenselyPacked(*PrivatizableType, A.getInfoCache().getDL())) {
LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Padding detected\n");
return indicatePessimisticFixpoint();
}
// Collect the types that will replace the privatizable type in the function
// signature.
SmallVector<Type *, 16> ReplacementTypes;
identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
// Verify callee and caller agree on how the promoted argument would be
// passed.
Function &Fn = *getIRPosition().getAnchorScope();
const auto *TTI =
A.getInfoCache().getAnalysisResultForFunction<TargetIRAnalysis>(Fn);
if (!TTI) {
LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Missing TTI for function "
<< Fn.getName() << "\n");
return indicatePessimisticFixpoint();
}
auto CallSiteCheck = [&](AbstractCallSite ACS) {
CallBase *CB = ACS.getInstruction();
return TTI->areTypesABICompatible(
CB->getCaller(), CB->getCalledFunction(), ReplacementTypes);
};
bool UsedAssumedInformation = false;
if (!A.checkForAllCallSites(CallSiteCheck, *this, true,
UsedAssumedInformation)) {
LLVM_DEBUG(
dbgs() << "[AAPrivatizablePtr] ABI incompatibility detected for "
<< Fn.getName() << "\n");
return indicatePessimisticFixpoint();
}
// Register a rewrite of the argument.
Argument *Arg = getAssociatedArgument();
if (!A.isValidFunctionSignatureRewrite(*Arg, ReplacementTypes)) {
LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Rewrite not valid\n");
return indicatePessimisticFixpoint();
}
unsigned ArgNo = Arg->getArgNo();
// Helper to check if for the given call site the associated argument is
// passed to a callback where the privatization would be different.
auto IsCompatiblePrivArgOfCallback = [&](CallBase &CB) {
SmallVector<const Use *, 4> CallbackUses;
AbstractCallSite::getCallbackUses(CB, CallbackUses);
for (const Use *U : CallbackUses) {
AbstractCallSite CBACS(U);
assert(CBACS && CBACS.isCallbackCall());
for (Argument &CBArg : CBACS.getCalledFunction()->args()) {
int CBArgNo = CBACS.getCallArgOperandNo(CBArg);
LLVM_DEBUG({
dbgs()
<< "[AAPrivatizablePtr] Argument " << *Arg
<< "check if can be privatized in the context of its parent ("
<< Arg->getParent()->getName()
<< ")\n[AAPrivatizablePtr] because it is an argument in a "
"callback ("
<< CBArgNo << "@" << CBACS.getCalledFunction()->getName()
<< ")\n[AAPrivatizablePtr] " << CBArg << " : "
<< CBACS.getCallArgOperand(CBArg) << " vs "
<< CB.getArgOperand(ArgNo) << "\n"
<< "[AAPrivatizablePtr] " << CBArg << " : "
<< CBACS.getCallArgOperandNo(CBArg) << " vs " << ArgNo << "\n";
});
if (CBArgNo != int(ArgNo))
continue;
const auto &CBArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
*this, IRPosition::argument(CBArg), DepClassTy::REQUIRED);
if (CBArgPrivAA.isValidState()) {
auto CBArgPrivTy = CBArgPrivAA.getPrivatizableType();
if (!CBArgPrivTy)
continue;
if (*CBArgPrivTy == PrivatizableType)
continue;
}
LLVM_DEBUG({
dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
<< " cannot be privatized in the context of its parent ("
<< Arg->getParent()->getName()
<< ")\n[AAPrivatizablePtr] because it is an argument in a "
"callback ("
<< CBArgNo << "@" << CBACS.getCalledFunction()->getName()
<< ").\n[AAPrivatizablePtr] for which the argument "
"privatization is not compatible.\n";
});
return false;
}
}
return true;
};
// Helper to check if for the given call site the associated argument is
// passed to a direct call where the privatization would be different.
auto IsCompatiblePrivArgOfDirectCS = [&](AbstractCallSite ACS) {
CallBase *DC = cast<CallBase>(ACS.getInstruction());
int DCArgNo = ACS.getCallArgOperandNo(ArgNo);
assert(DCArgNo >= 0 && unsigned(DCArgNo) < DC->arg_size() &&
"Expected a direct call operand for callback call operand");
LLVM_DEBUG({
dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
<< " check if be privatized in the context of its parent ("
<< Arg->getParent()->getName()
<< ")\n[AAPrivatizablePtr] because it is an argument in a "
"direct call of ("
<< DCArgNo << "@" << DC->getCalledFunction()->getName()
<< ").\n";
});
Function *DCCallee = DC->getCalledFunction();
if (unsigned(DCArgNo) < DCCallee->arg_size()) {
const auto &DCArgPrivAA = A.getAAFor<AAPrivatizablePtr>(
*this, IRPosition::argument(*DCCallee->getArg(DCArgNo)),
DepClassTy::REQUIRED);
if (DCArgPrivAA.isValidState()) {
auto DCArgPrivTy = DCArgPrivAA.getPrivatizableType();
if (!DCArgPrivTy)
return true;
if (*DCArgPrivTy == PrivatizableType)
return true;
}
}
LLVM_DEBUG({
dbgs() << "[AAPrivatizablePtr] Argument " << *Arg
<< " cannot be privatized in the context of its parent ("
<< Arg->getParent()->getName()
<< ")\n[AAPrivatizablePtr] because it is an argument in a "
"direct call of ("
<< ACS.getInstruction()->getCalledFunction()->getName()
<< ").\n[AAPrivatizablePtr] for which the argument "
"privatization is not compatible.\n";
});
return false;
};
// Helper to check if the associated argument is used at the given abstract
// call site in a way that is incompatible with the privatization assumed
// here.
auto IsCompatiblePrivArgOfOtherCallSite = [&](AbstractCallSite ACS) {
if (ACS.isDirectCall())
return IsCompatiblePrivArgOfCallback(*ACS.getInstruction());
if (ACS.isCallbackCall())
return IsCompatiblePrivArgOfDirectCS(ACS);
return false;
};
if (!A.checkForAllCallSites(IsCompatiblePrivArgOfOtherCallSite, *this, true,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
/// Given a type to private \p PrivType, collect the constituates (which are
/// used) in \p ReplacementTypes.
static void
identifyReplacementTypes(Type *PrivType,
SmallVectorImpl<Type *> &ReplacementTypes) {
// TODO: For now we expand the privatization type to the fullest which can
// lead to dead arguments that need to be removed later.
assert(PrivType && "Expected privatizable type!");
// Traverse the type, extract constituate types on the outermost level.
if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++)
ReplacementTypes.push_back(PrivStructType->getElementType(u));
} else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
ReplacementTypes.append(PrivArrayType->getNumElements(),
PrivArrayType->getElementType());
} else {
ReplacementTypes.push_back(PrivType);
}
}
/// Initialize \p Base according to the type \p PrivType at position \p IP.
/// The values needed are taken from the arguments of \p F starting at
/// position \p ArgNo.
static void createInitialization(Type *PrivType, Value &Base, Function &F,
unsigned ArgNo, Instruction &IP) {
assert(PrivType && "Expected privatizable type!");
IRBuilder<NoFolder> IRB(&IP);
const DataLayout &DL = F.getParent()->getDataLayout();
// Traverse the type, build GEPs and stores.
if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
Type *PointeeTy = PrivStructType->getElementType(u)->getPointerTo();
Value *Ptr =
constructPointer(PointeeTy, PrivType, &Base,
PrivStructLayout->getElementOffset(u), IRB, DL);
new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
}
} else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
Type *PointeeTy = PrivArrayType->getElementType();
Type *PointeePtrTy = PointeeTy->getPointerTo();
uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
Value *Ptr = constructPointer(PointeePtrTy, PrivType, &Base,
u * PointeeTySize, IRB, DL);
new StoreInst(F.getArg(ArgNo + u), Ptr, &IP);
}
} else {
new StoreInst(F.getArg(ArgNo), &Base, &IP);
}
}
/// Extract values from \p Base according to the type \p PrivType at the
/// call position \p ACS. The values are appended to \p ReplacementValues.
void createReplacementValues(Align Alignment, Type *PrivType,
AbstractCallSite ACS, Value *Base,
SmallVectorImpl<Value *> &ReplacementValues) {
assert(Base && "Expected base value!");
assert(PrivType && "Expected privatizable type!");
Instruction *IP = ACS.getInstruction();
IRBuilder<NoFolder> IRB(IP);
const DataLayout &DL = IP->getModule()->getDataLayout();
Type *PrivPtrType = PrivType->getPointerTo();
if (Base->getType() != PrivPtrType)
Base = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
Base, PrivPtrType, "", ACS.getInstruction());
// Traverse the type, build GEPs and loads.
if (auto *PrivStructType = dyn_cast<StructType>(PrivType)) {
const StructLayout *PrivStructLayout = DL.getStructLayout(PrivStructType);
for (unsigned u = 0, e = PrivStructType->getNumElements(); u < e; u++) {
Type *PointeeTy = PrivStructType->getElementType(u);
Value *Ptr =
constructPointer(PointeeTy->getPointerTo(), PrivType, Base,
PrivStructLayout->getElementOffset(u), IRB, DL);
LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
L->setAlignment(Alignment);
ReplacementValues.push_back(L);
}
} else if (auto *PrivArrayType = dyn_cast<ArrayType>(PrivType)) {
Type *PointeeTy = PrivArrayType->getElementType();
uint64_t PointeeTySize = DL.getTypeStoreSize(PointeeTy);
Type *PointeePtrTy = PointeeTy->getPointerTo();
for (unsigned u = 0, e = PrivArrayType->getNumElements(); u < e; u++) {
Value *Ptr = constructPointer(PointeePtrTy, PrivType, Base,
u * PointeeTySize, IRB, DL);
LoadInst *L = new LoadInst(PointeeTy, Ptr, "", IP);
L->setAlignment(Alignment);
ReplacementValues.push_back(L);
}
} else {
LoadInst *L = new LoadInst(PrivType, Base, "", IP);
L->setAlignment(Alignment);
ReplacementValues.push_back(L);
}
}
/// See AbstractAttribute::manifest(...)
ChangeStatus manifest(Attributor &A) override {
if (!PrivatizableType)
return ChangeStatus::UNCHANGED;
assert(*PrivatizableType && "Expected privatizable type!");
// Collect all tail calls in the function as we cannot allow new allocas to
// escape into tail recursion.
// TODO: Be smarter about new allocas escaping into tail calls.
SmallVector<CallInst *, 16> TailCalls;
bool UsedAssumedInformation = false;
if (!A.checkForAllInstructions(
[&](Instruction &I) {
CallInst &CI = cast<CallInst>(I);
if (CI.isTailCall())
TailCalls.push_back(&CI);
return true;
},
*this, {Instruction::Call}, UsedAssumedInformation))
return ChangeStatus::UNCHANGED;
Argument *Arg = getAssociatedArgument();
// Query AAAlign attribute for alignment of associated argument to
// determine the best alignment of loads.
const auto &AlignAA =
A.getAAFor<AAAlign>(*this, IRPosition::value(*Arg), DepClassTy::NONE);
// Callback to repair the associated function. A new alloca is placed at the
// beginning and initialized with the values passed through arguments. The
// new alloca replaces the use of the old pointer argument.
Attributor::ArgumentReplacementInfo::CalleeRepairCBTy FnRepairCB =
[=](const Attributor::ArgumentReplacementInfo &ARI,
Function &ReplacementFn, Function::arg_iterator ArgIt) {
BasicBlock &EntryBB = ReplacementFn.getEntryBlock();
Instruction *IP = &*EntryBB.getFirstInsertionPt();
const DataLayout &DL = IP->getModule()->getDataLayout();
unsigned AS = DL.getAllocaAddrSpace();
Instruction *AI = new AllocaInst(*PrivatizableType, AS,
Arg->getName() + ".priv", IP);
createInitialization(*PrivatizableType, *AI, ReplacementFn,
ArgIt->getArgNo(), *IP);
if (AI->getType() != Arg->getType())
AI = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
AI, Arg->getType(), "", IP);
Arg->replaceAllUsesWith(AI);
for (CallInst *CI : TailCalls)
CI->setTailCall(false);
};
// Callback to repair a call site of the associated function. The elements
// of the privatizable type are loaded prior to the call and passed to the
// new function version.
Attributor::ArgumentReplacementInfo::ACSRepairCBTy ACSRepairCB =
[=, &AlignAA](const Attributor::ArgumentReplacementInfo &ARI,
AbstractCallSite ACS,
SmallVectorImpl<Value *> &NewArgOperands) {
// When no alignment is specified for the load instruction,
// natural alignment is assumed.
createReplacementValues(
AlignAA.getAssumedAlign(), *PrivatizableType, ACS,
ACS.getCallArgOperand(ARI.getReplacedArg().getArgNo()),
NewArgOperands);
};
// Collect the types that will replace the privatizable type in the function
// signature.
SmallVector<Type *, 16> ReplacementTypes;
identifyReplacementTypes(*PrivatizableType, ReplacementTypes);
// Register a rewrite of the argument.
if (A.registerFunctionSignatureRewrite(*Arg, ReplacementTypes,
std::move(FnRepairCB),
std::move(ACSRepairCB)))
return ChangeStatus::CHANGED;
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_ARG_ATTR(privatizable_ptr);
}
};
struct AAPrivatizablePtrFloating : public AAPrivatizablePtrImpl {
AAPrivatizablePtrFloating(const IRPosition &IRP, Attributor &A)
: AAPrivatizablePtrImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// TODO: We can privatize more than arguments.
indicatePessimisticFixpoint();
}
ChangeStatus updateImpl(Attributor &A) override {
llvm_unreachable("AAPrivatizablePtr(Floating|Returned|CallSiteReturned)::"
"updateImpl will not be called");
}
/// See AAPrivatizablePtrImpl::identifyPrivatizableType(...)
std::optional<Type *> identifyPrivatizableType(Attributor &A) override {
Value *Obj = getUnderlyingObject(&getAssociatedValue());
if (!Obj) {
LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] No underlying object found!\n");
return nullptr;
}
if (auto *AI = dyn_cast<AllocaInst>(Obj))
if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
if (CI->isOne())
return AI->getAllocatedType();
if (auto *Arg = dyn_cast<Argument>(Obj)) {
auto &PrivArgAA = A.getAAFor<AAPrivatizablePtr>(
*this, IRPosition::argument(*Arg), DepClassTy::REQUIRED);
if (PrivArgAA.isAssumedPrivatizablePtr())
return PrivArgAA.getPrivatizableType();
}
LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] Underlying object neither valid "
"alloca nor privatizable argument: "
<< *Obj << "!\n");
return nullptr;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FLOATING_ATTR(privatizable_ptr);
}
};
struct AAPrivatizablePtrCallSiteArgument final
: public AAPrivatizablePtrFloating {
AAPrivatizablePtrCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AAPrivatizablePtrFloating(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (getIRPosition().hasAttr(Attribute::ByVal))
indicateOptimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
PrivatizableType = identifyPrivatizableType(A);
if (!PrivatizableType)
return ChangeStatus::UNCHANGED;
if (!*PrivatizableType)
return indicatePessimisticFixpoint();
const IRPosition &IRP = getIRPosition();
auto &NoCaptureAA =
A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::REQUIRED);
if (!NoCaptureAA.isAssumedNoCapture()) {
LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might be captured!\n");
return indicatePessimisticFixpoint();
}
auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP, DepClassTy::REQUIRED);
if (!NoAliasAA.isAssumedNoAlias()) {
LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer might alias!\n");
return indicatePessimisticFixpoint();
}
bool IsKnown;
if (!AA::isAssumedReadOnly(A, IRP, *this, IsKnown)) {
LLVM_DEBUG(dbgs() << "[AAPrivatizablePtr] pointer is written!\n");
return indicatePessimisticFixpoint();
}
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CSARG_ATTR(privatizable_ptr);
}
};
struct AAPrivatizablePtrCallSiteReturned final
: public AAPrivatizablePtrFloating {
AAPrivatizablePtrCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AAPrivatizablePtrFloating(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// TODO: We can privatize more than arguments.
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CSRET_ATTR(privatizable_ptr);
}
};
struct AAPrivatizablePtrReturned final : public AAPrivatizablePtrFloating {
AAPrivatizablePtrReturned(const IRPosition &IRP, Attributor &A)
: AAPrivatizablePtrFloating(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// TODO: We can privatize more than arguments.
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FNRET_ATTR(privatizable_ptr);
}
};
} // namespace
/// -------------------- Memory Behavior Attributes ----------------------------
/// Includes read-none, read-only, and write-only.
/// ----------------------------------------------------------------------------
namespace {
struct AAMemoryBehaviorImpl : public AAMemoryBehavior {
AAMemoryBehaviorImpl(const IRPosition &IRP, Attributor &A)
: AAMemoryBehavior(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
intersectAssumedBits(BEST_STATE);
getKnownStateFromValue(getIRPosition(), getState());
AAMemoryBehavior::initialize(A);
}
/// Return the memory behavior information encoded in the IR for \p IRP.
static void getKnownStateFromValue(const IRPosition &IRP,
BitIntegerState &State,
bool IgnoreSubsumingPositions = false) {
SmallVector<Attribute, 2> Attrs;
IRP.getAttrs(AttrKinds, Attrs, IgnoreSubsumingPositions);
for (const Attribute &Attr : Attrs) {
switch (Attr.getKindAsEnum()) {
case Attribute::ReadNone:
State.addKnownBits(NO_ACCESSES);
break;
case Attribute::ReadOnly:
State.addKnownBits(NO_WRITES);
break;
case Attribute::WriteOnly:
State.addKnownBits(NO_READS);
break;
default:
llvm_unreachable("Unexpected attribute!");
}
}
if (auto *I = dyn_cast<Instruction>(&IRP.getAnchorValue())) {
if (!I->mayReadFromMemory())
State.addKnownBits(NO_READS);
if (!I->mayWriteToMemory())
State.addKnownBits(NO_WRITES);
}
}
/// See AbstractAttribute::getDeducedAttributes(...).
void getDeducedAttributes(LLVMContext &Ctx,
SmallVectorImpl<Attribute> &Attrs) const override {
assert(Attrs.size() == 0);
if (isAssumedReadNone())
Attrs.push_back(Attribute::get(Ctx, Attribute::ReadNone));
else if (isAssumedReadOnly())
Attrs.push_back(Attribute::get(Ctx, Attribute::ReadOnly));
else if (isAssumedWriteOnly())
Attrs.push_back(Attribute::get(Ctx, Attribute::WriteOnly));
assert(Attrs.size() <= 1);
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
if (hasAttr(Attribute::ReadNone, /* IgnoreSubsumingPositions */ true))
return ChangeStatus::UNCHANGED;
const IRPosition &IRP = getIRPosition();
// Check if we would improve the existing attributes first.
SmallVector<Attribute, 4> DeducedAttrs;
getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
if (llvm::all_of(DeducedAttrs, [&](const Attribute &Attr) {
return IRP.hasAttr(Attr.getKindAsEnum(),
/* IgnoreSubsumingPositions */ true);
}))
return ChangeStatus::UNCHANGED;
// Clear existing attributes.
IRP.removeAttrs(AttrKinds);
// Use the generic manifest method.
return IRAttribute::manifest(A);
}
/// See AbstractState::getAsStr().
const std::string getAsStr() const override {
if (isAssumedReadNone())
return "readnone";
if (isAssumedReadOnly())
return "readonly";
if (isAssumedWriteOnly())
return "writeonly";
return "may-read/write";
}
/// The set of IR attributes AAMemoryBehavior deals with.
static const Attribute::AttrKind AttrKinds[3];
};
const Attribute::AttrKind AAMemoryBehaviorImpl::AttrKinds[] = {
Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly};
/// Memory behavior attribute for a floating value.
struct AAMemoryBehaviorFloating : AAMemoryBehaviorImpl {
AAMemoryBehaviorFloating(const IRPosition &IRP, Attributor &A)
: AAMemoryBehaviorImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
if (isAssumedReadNone())
STATS_DECLTRACK_FLOATING_ATTR(readnone)
else if (isAssumedReadOnly())
STATS_DECLTRACK_FLOATING_ATTR(readonly)
else if (isAssumedWriteOnly())
STATS_DECLTRACK_FLOATING_ATTR(writeonly)
}
private:
/// Return true if users of \p UserI might access the underlying
/// variable/location described by \p U and should therefore be analyzed.
bool followUsersOfUseIn(Attributor &A, const Use &U,
const Instruction *UserI);
/// Update the state according to the effect of use \p U in \p UserI.
void analyzeUseIn(Attributor &A, const Use &U, const Instruction *UserI);
};
/// Memory behavior attribute for function argument.
struct AAMemoryBehaviorArgument : AAMemoryBehaviorFloating {
AAMemoryBehaviorArgument(const IRPosition &IRP, Attributor &A)
: AAMemoryBehaviorFloating(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
intersectAssumedBits(BEST_STATE);
const IRPosition &IRP = getIRPosition();
// TODO: Make IgnoreSubsumingPositions a property of an IRAttribute so we
// can query it when we use has/getAttr. That would allow us to reuse the
// initialize of the base class here.
bool HasByVal =
IRP.hasAttr({Attribute::ByVal}, /* IgnoreSubsumingPositions */ true);
getKnownStateFromValue(IRP, getState(),
/* IgnoreSubsumingPositions */ HasByVal);
// Initialize the use vector with all direct uses of the associated value.
Argument *Arg = getAssociatedArgument();
if (!Arg || !A.isFunctionIPOAmendable(*(Arg->getParent())))
indicatePessimisticFixpoint();
}
ChangeStatus manifest(Attributor &A) override {
// TODO: Pointer arguments are not supported on vectors of pointers yet.
if (!getAssociatedValue().getType()->isPointerTy())
return ChangeStatus::UNCHANGED;
// TODO: From readattrs.ll: "inalloca parameters are always
// considered written"
if (hasAttr({Attribute::InAlloca, Attribute::Preallocated})) {
removeKnownBits(NO_WRITES);
removeAssumedBits(NO_WRITES);
}
return AAMemoryBehaviorFloating::manifest(A);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
if (isAssumedReadNone())
STATS_DECLTRACK_ARG_ATTR(readnone)
else if (isAssumedReadOnly())
STATS_DECLTRACK_ARG_ATTR(readonly)
else if (isAssumedWriteOnly())
STATS_DECLTRACK_ARG_ATTR(writeonly)
}
};
struct AAMemoryBehaviorCallSiteArgument final : AAMemoryBehaviorArgument {
AAMemoryBehaviorCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AAMemoryBehaviorArgument(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// If we don't have an associated attribute this is either a variadic call
// or an indirect call, either way, nothing to do here.
Argument *Arg = getAssociatedArgument();
if (!Arg) {
indicatePessimisticFixpoint();
return;
}
if (Arg->hasByValAttr()) {
addKnownBits(NO_WRITES);
removeKnownBits(NO_READS);
removeAssumedBits(NO_READS);
}
AAMemoryBehaviorArgument::initialize(A);
if (getAssociatedFunction()->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Argument *Arg = getAssociatedArgument();
const IRPosition &ArgPos = IRPosition::argument(*Arg);
auto &ArgAA =
A.getAAFor<AAMemoryBehavior>(*this, ArgPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), ArgAA.getState());
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
if (isAssumedReadNone())
STATS_DECLTRACK_CSARG_ATTR(readnone)
else if (isAssumedReadOnly())
STATS_DECLTRACK_CSARG_ATTR(readonly)
else if (isAssumedWriteOnly())
STATS_DECLTRACK_CSARG_ATTR(writeonly)
}
};
/// Memory behavior attribute for a call site return position.
struct AAMemoryBehaviorCallSiteReturned final : AAMemoryBehaviorFloating {
AAMemoryBehaviorCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AAMemoryBehaviorFloating(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAMemoryBehaviorImpl::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
// We do not annotate returned values.
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {}
};
/// An AA to represent the memory behavior function attributes.
struct AAMemoryBehaviorFunction final : public AAMemoryBehaviorImpl {
AAMemoryBehaviorFunction(const IRPosition &IRP, Attributor &A)
: AAMemoryBehaviorImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(Attributor &A).
ChangeStatus updateImpl(Attributor &A) override;
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
// TODO: It would be better to merge this with AAMemoryLocation, so that
// we could determine read/write per location. This would also have the
// benefit of only one place trying to manifest the memory attribute.
Function &F = cast<Function>(getAnchorValue());
MemoryEffects ME = MemoryEffects::unknown();
if (isAssumedReadNone())
ME = MemoryEffects::none();
else if (isAssumedReadOnly())
ME = MemoryEffects::readOnly();
else if (isAssumedWriteOnly())
ME = MemoryEffects::writeOnly();
// Intersect with existing memory attribute, as we currently deduce the
// location and modref portion separately.
MemoryEffects ExistingME = F.getMemoryEffects();
ME &= ExistingME;
if (ME == ExistingME)
return ChangeStatus::UNCHANGED;
return IRAttributeManifest::manifestAttrs(
A, getIRPosition(), Attribute::getWithMemoryEffects(F.getContext(), ME),
/*ForceReplace*/ true);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
if (isAssumedReadNone())
STATS_DECLTRACK_FN_ATTR(readnone)
else if (isAssumedReadOnly())
STATS_DECLTRACK_FN_ATTR(readonly)
else if (isAssumedWriteOnly())
STATS_DECLTRACK_FN_ATTR(writeonly)
}
};
/// AAMemoryBehavior attribute for call sites.
struct AAMemoryBehaviorCallSite final : AAMemoryBehaviorImpl {
AAMemoryBehaviorCallSite(const IRPosition &IRP, Attributor &A)
: AAMemoryBehaviorImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAMemoryBehaviorImpl::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Function *F = getAssociatedFunction();
const IRPosition &FnPos = IRPosition::function(*F);
auto &FnAA =
A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::REQUIRED);
return clampStateAndIndicateChange(getState(), FnAA.getState());
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
// TODO: Deduplicate this with AAMemoryBehaviorFunction.
CallBase &CB = cast<CallBase>(getAnchorValue());
MemoryEffects ME = MemoryEffects::unknown();
if (isAssumedReadNone())
ME = MemoryEffects::none();
else if (isAssumedReadOnly())
ME = MemoryEffects::readOnly();
else if (isAssumedWriteOnly())
ME = MemoryEffects::writeOnly();
// Intersect with existing memory attribute, as we currently deduce the
// location and modref portion separately.
MemoryEffects ExistingME = CB.getMemoryEffects();
ME &= ExistingME;
if (ME == ExistingME)
return ChangeStatus::UNCHANGED;
return IRAttributeManifest::manifestAttrs(
A, getIRPosition(),
Attribute::getWithMemoryEffects(CB.getContext(), ME),
/*ForceReplace*/ true);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
if (isAssumedReadNone())
STATS_DECLTRACK_CS_ATTR(readnone)
else if (isAssumedReadOnly())
STATS_DECLTRACK_CS_ATTR(readonly)
else if (isAssumedWriteOnly())
STATS_DECLTRACK_CS_ATTR(writeonly)
}
};
ChangeStatus AAMemoryBehaviorFunction::updateImpl(Attributor &A) {
// The current assumed state used to determine a change.
auto AssumedState = getAssumed();
auto CheckRWInst = [&](Instruction &I) {
// If the instruction has an own memory behavior state, use it to restrict
// the local state. No further analysis is required as the other memory
// state is as optimistic as it gets.
if (const auto *CB = dyn_cast<CallBase>(&I)) {
const auto &MemBehaviorAA = A.getAAFor<AAMemoryBehavior>(
*this, IRPosition::callsite_function(*CB), DepClassTy::REQUIRED);
intersectAssumedBits(MemBehaviorAA.getAssumed());
return !isAtFixpoint();
}
// Remove access kind modifiers if necessary.
if (I.mayReadFromMemory())
removeAssumedBits(NO_READS);
if (I.mayWriteToMemory())
removeAssumedBits(NO_WRITES);
return !isAtFixpoint();
};
bool UsedAssumedInformation = false;
if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
: ChangeStatus::UNCHANGED;
}
ChangeStatus AAMemoryBehaviorFloating::updateImpl(Attributor &A) {
const IRPosition &IRP = getIRPosition();
const IRPosition &FnPos = IRPosition::function_scope(IRP);
AAMemoryBehavior::StateType &S = getState();
// First, check the function scope. We take the known information and we avoid
// work if the assumed information implies the current assumed information for
// this attribute. This is a valid for all but byval arguments.
Argument *Arg = IRP.getAssociatedArgument();
AAMemoryBehavior::base_t FnMemAssumedState =
AAMemoryBehavior::StateType::getWorstState();
if (!Arg || !Arg->hasByValAttr()) {
const auto &FnMemAA =
A.getAAFor<AAMemoryBehavior>(*this, FnPos, DepClassTy::OPTIONAL);
FnMemAssumedState = FnMemAA.getAssumed();
S.addKnownBits(FnMemAA.getKnown());
if ((S.getAssumed() & FnMemAA.getAssumed()) == S.getAssumed())
return ChangeStatus::UNCHANGED;
}
// The current assumed state used to determine a change.
auto AssumedState = S.getAssumed();
// Make sure the value is not captured (except through "return"), if
// it is, any information derived would be irrelevant anyway as we cannot
// check the potential aliases introduced by the capture. However, no need
// to fall back to anythign less optimistic than the function state.
const auto &ArgNoCaptureAA =
A.getAAFor<AANoCapture>(*this, IRP, DepClassTy::OPTIONAL);
if (!ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
S.intersectAssumedBits(FnMemAssumedState);
return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
: ChangeStatus::UNCHANGED;
}
// Visit and expand uses until all are analyzed or a fixpoint is reached.
auto UsePred = [&](const Use &U, bool &Follow) -> bool {
Instruction *UserI = cast<Instruction>(U.getUser());
LLVM_DEBUG(dbgs() << "[AAMemoryBehavior] Use: " << *U << " in " << *UserI
<< " \n");
// Droppable users, e.g., llvm::assume does not actually perform any action.
if (UserI->isDroppable())
return true;
// Check if the users of UserI should also be visited.
Follow = followUsersOfUseIn(A, U, UserI);
// If UserI might touch memory we analyze the use in detail.
if (UserI->mayReadOrWriteMemory())
analyzeUseIn(A, U, UserI);
return !isAtFixpoint();
};
if (!A.checkForAllUses(UsePred, *this, getAssociatedValue()))
return indicatePessimisticFixpoint();
return (AssumedState != getAssumed()) ? ChangeStatus::CHANGED
: ChangeStatus::UNCHANGED;
}
bool AAMemoryBehaviorFloating::followUsersOfUseIn(Attributor &A, const Use &U,
const Instruction *UserI) {
// The loaded value is unrelated to the pointer argument, no need to
// follow the users of the load.
if (isa<LoadInst>(UserI) || isa<ReturnInst>(UserI))
return false;
// By default we follow all uses assuming UserI might leak information on U,
// we have special handling for call sites operands though.
const auto *CB = dyn_cast<CallBase>(UserI);
if (!CB || !CB->isArgOperand(&U))
return true;
// If the use is a call argument known not to be captured, the users of
// the call do not need to be visited because they have to be unrelated to
// the input. Note that this check is not trivial even though we disallow
// general capturing of the underlying argument. The reason is that the
// call might the argument "through return", which we allow and for which we
// need to check call users.
if (U.get()->getType()->isPointerTy()) {
unsigned ArgNo = CB->getArgOperandNo(&U);
const auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(
*this, IRPosition::callsite_argument(*CB, ArgNo), DepClassTy::OPTIONAL);
return !ArgNoCaptureAA.isAssumedNoCapture();
}
return true;
}
void AAMemoryBehaviorFloating::analyzeUseIn(Attributor &A, const Use &U,
const Instruction *UserI) {
assert(UserI->mayReadOrWriteMemory());
switch (UserI->getOpcode()) {
default:
// TODO: Handle all atomics and other side-effect operations we know of.
break;
case Instruction::Load:
// Loads cause the NO_READS property to disappear.
removeAssumedBits(NO_READS);
return;
case Instruction::Store:
// Stores cause the NO_WRITES property to disappear if the use is the
// pointer operand. Note that while capturing was taken care of somewhere
// else we need to deal with stores of the value that is not looked through.
if (cast<StoreInst>(UserI)->getPointerOperand() == U.get())
removeAssumedBits(NO_WRITES);
else
indicatePessimisticFixpoint();
return;
case Instruction::Call:
case Instruction::CallBr:
case Instruction::Invoke: {
// For call sites we look at the argument memory behavior attribute (this
// could be recursive!) in order to restrict our own state.
const auto *CB = cast<CallBase>(UserI);
// Give up on operand bundles.
if (CB->isBundleOperand(&U)) {
indicatePessimisticFixpoint();
return;
}
// Calling a function does read the function pointer, maybe write it if the
// function is self-modifying.
if (CB->isCallee(&U)) {
removeAssumedBits(NO_READS);
break;
}
// Adjust the possible access behavior based on the information on the
// argument.
IRPosition Pos;
if (U.get()->getType()->isPointerTy())
Pos = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
else
Pos = IRPosition::callsite_function(*CB);
const auto &MemBehaviorAA =
A.getAAFor<AAMemoryBehavior>(*this, Pos, DepClassTy::OPTIONAL);
// "assumed" has at most the same bits as the MemBehaviorAA assumed
// and at least "known".
intersectAssumedBits(MemBehaviorAA.getAssumed());
return;
}
};
// Generally, look at the "may-properties" and adjust the assumed state if we
// did not trigger special handling before.
if (UserI->mayReadFromMemory())
removeAssumedBits(NO_READS);
if (UserI->mayWriteToMemory())
removeAssumedBits(NO_WRITES);
}
} // namespace
/// -------------------- Memory Locations Attributes ---------------------------
/// Includes read-none, argmemonly, inaccessiblememonly,
/// inaccessiblememorargmemonly
/// ----------------------------------------------------------------------------
std::string AAMemoryLocation::getMemoryLocationsAsStr(
AAMemoryLocation::MemoryLocationsKind MLK) {
if (0 == (MLK & AAMemoryLocation::NO_LOCATIONS))
return "all memory";
if (MLK == AAMemoryLocation::NO_LOCATIONS)
return "no memory";
std::string S = "memory:";
if (0 == (MLK & AAMemoryLocation::NO_LOCAL_MEM))
S += "stack,";
if (0 == (MLK & AAMemoryLocation::NO_CONST_MEM))
S += "constant,";
if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_INTERNAL_MEM))
S += "internal global,";
if (0 == (MLK & AAMemoryLocation::NO_GLOBAL_EXTERNAL_MEM))
S += "external global,";
if (0 == (MLK & AAMemoryLocation::NO_ARGUMENT_MEM))
S += "argument,";
if (0 == (MLK & AAMemoryLocation::NO_INACCESSIBLE_MEM))
S += "inaccessible,";
if (0 == (MLK & AAMemoryLocation::NO_MALLOCED_MEM))
S += "malloced,";
if (0 == (MLK & AAMemoryLocation::NO_UNKOWN_MEM))
S += "unknown,";
S.pop_back();
return S;
}
namespace {
struct AAMemoryLocationImpl : public AAMemoryLocation {
AAMemoryLocationImpl(const IRPosition &IRP, Attributor &A)
: AAMemoryLocation(IRP, A), Allocator(A.Allocator) {
AccessKind2Accesses.fill(nullptr);
}
~AAMemoryLocationImpl() {
// The AccessSets are allocated via a BumpPtrAllocator, we call
// the destructor manually.
for (AccessSet *AS : AccessKind2Accesses)
if (AS)
AS->~AccessSet();
}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
intersectAssumedBits(BEST_STATE);
getKnownStateFromValue(A, getIRPosition(), getState());
AAMemoryLocation::initialize(A);
}
/// Return the memory behavior information encoded in the IR for \p IRP.
static void getKnownStateFromValue(Attributor &A, const IRPosition &IRP,
BitIntegerState &State,
bool IgnoreSubsumingPositions = false) {
// For internal functions we ignore `argmemonly` and
// `inaccessiblememorargmemonly` as we might break it via interprocedural
// constant propagation. It is unclear if this is the best way but it is
// unlikely this will cause real performance problems. If we are deriving
// attributes for the anchor function we even remove the attribute in
// addition to ignoring it.
// TODO: A better way to handle this would be to add ~NO_GLOBAL_MEM /
// MemoryEffects::Other as a possible location.
bool UseArgMemOnly = true;
Function *AnchorFn = IRP.getAnchorScope();
if (AnchorFn && A.isRunOn(*AnchorFn))
UseArgMemOnly = !AnchorFn->hasLocalLinkage();
SmallVector<Attribute, 2> Attrs;
IRP.getAttrs({Attribute::Memory}, Attrs, IgnoreSubsumingPositions);
for (const Attribute &Attr : Attrs) {
// TODO: We can map MemoryEffects to Attributor locations more precisely.
MemoryEffects ME = Attr.getMemoryEffects();
if (ME.doesNotAccessMemory()) {
State.addKnownBits(NO_LOCAL_MEM | NO_CONST_MEM);
continue;
}
if (ME.onlyAccessesInaccessibleMem()) {
State.addKnownBits(inverseLocation(NO_INACCESSIBLE_MEM, true, true));
continue;
}
if (ME.onlyAccessesArgPointees()) {
if (UseArgMemOnly)
State.addKnownBits(inverseLocation(NO_ARGUMENT_MEM, true, true));
else {
// Remove location information, only keep read/write info.
ME = MemoryEffects(ME.getModRef());
IRAttributeManifest::manifestAttrs(
A, IRP,
Attribute::getWithMemoryEffects(IRP.getAnchorValue().getContext(),
ME),
/*ForceReplace*/ true);
}
continue;
}
if (ME.onlyAccessesInaccessibleOrArgMem()) {
if (UseArgMemOnly)
State.addKnownBits(inverseLocation(
NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true));
else {
// Remove location information, only keep read/write info.
ME = MemoryEffects(ME.getModRef());
IRAttributeManifest::manifestAttrs(
A, IRP,
Attribute::getWithMemoryEffects(IRP.getAnchorValue().getContext(),
ME),
/*ForceReplace*/ true);
}
continue;
}
}
}
/// See AbstractAttribute::getDeducedAttributes(...).
void getDeducedAttributes(LLVMContext &Ctx,
SmallVectorImpl<Attribute> &Attrs) const override {
// TODO: We can map Attributor locations to MemoryEffects more precisely.
assert(Attrs.size() == 0);
if (getIRPosition().getPositionKind() == IRPosition::IRP_FUNCTION) {
if (isAssumedReadNone())
Attrs.push_back(
Attribute::getWithMemoryEffects(Ctx, MemoryEffects::none()));
else if (isAssumedInaccessibleMemOnly())
Attrs.push_back(Attribute::getWithMemoryEffects(
Ctx, MemoryEffects::inaccessibleMemOnly()));
else if (isAssumedArgMemOnly())
Attrs.push_back(
Attribute::getWithMemoryEffects(Ctx, MemoryEffects::argMemOnly()));
else if (isAssumedInaccessibleOrArgMemOnly())
Attrs.push_back(Attribute::getWithMemoryEffects(
Ctx, MemoryEffects::inaccessibleOrArgMemOnly()));
}
assert(Attrs.size() <= 1);
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
// TODO: If AAMemoryLocation and AAMemoryBehavior are merged, we could
// provide per-location modref information here.
const IRPosition &IRP = getIRPosition();
SmallVector<Attribute, 1> DeducedAttrs;
getDeducedAttributes(IRP.getAnchorValue().getContext(), DeducedAttrs);
if (DeducedAttrs.size() != 1)
return ChangeStatus::UNCHANGED;
MemoryEffects ME = DeducedAttrs[0].getMemoryEffects();
// Intersect with existing memory attribute, as we currently deduce the
// location and modref portion separately.
SmallVector<Attribute, 1> ExistingAttrs;
IRP.getAttrs({Attribute::Memory}, ExistingAttrs,
/* IgnoreSubsumingPositions */ true);
if (ExistingAttrs.size() == 1) {
MemoryEffects ExistingME = ExistingAttrs[0].getMemoryEffects();
ME &= ExistingME;
if (ME == ExistingME)
return ChangeStatus::UNCHANGED;
}
return IRAttributeManifest::manifestAttrs(
A, IRP,
Attribute::getWithMemoryEffects(IRP.getAnchorValue().getContext(), ME),
/*ForceReplace*/ true);
}
/// See AAMemoryLocation::checkForAllAccessesToMemoryKind(...).
bool checkForAllAccessesToMemoryKind(
function_ref<bool(const Instruction *, const Value *, AccessKind,
MemoryLocationsKind)>
Pred,
MemoryLocationsKind RequestedMLK) const override {
if (!isValidState())
return false;
MemoryLocationsKind AssumedMLK = getAssumedNotAccessedLocation();
if (AssumedMLK == NO_LOCATIONS)
return true;
unsigned Idx = 0;
for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS;
CurMLK *= 2, ++Idx) {
if (CurMLK & RequestedMLK)
continue;
if (const AccessSet *Accesses = AccessKind2Accesses[Idx])
for (const AccessInfo &AI : *Accesses)
if (!Pred(AI.I, AI.Ptr, AI.Kind, CurMLK))
return false;
}
return true;
}
ChangeStatus indicatePessimisticFixpoint() override {
// If we give up and indicate a pessimistic fixpoint this instruction will
// become an access for all potential access kinds:
// TODO: Add pointers for argmemonly and globals to improve the results of
// checkForAllAccessesToMemoryKind.
bool Changed = false;
MemoryLocationsKind KnownMLK = getKnown();
Instruction *I = dyn_cast<Instruction>(&getAssociatedValue());
for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2)
if (!(CurMLK & KnownMLK))
updateStateAndAccessesMap(getState(), CurMLK, I, nullptr, Changed,
getAccessKindFromInst(I));
return AAMemoryLocation::indicatePessimisticFixpoint();
}
protected:
/// Helper struct to tie together an instruction that has a read or write
/// effect with the pointer it accesses (if any).
struct AccessInfo {
/// The instruction that caused the access.
const Instruction *I;
/// The base pointer that is accessed, or null if unknown.
const Value *Ptr;
/// The kind of access (read/write/read+write).
AccessKind Kind;
bool operator==(const AccessInfo &RHS) const {
return I == RHS.I && Ptr == RHS.Ptr && Kind == RHS.Kind;
}
bool operator()(const AccessInfo &LHS, const AccessInfo &RHS) const {
if (LHS.I != RHS.I)
return LHS.I < RHS.I;
if (LHS.Ptr != RHS.Ptr)
return LHS.Ptr < RHS.Ptr;
if (LHS.Kind != RHS.Kind)
return LHS.Kind < RHS.Kind;
return false;
}
};
/// Mapping from *single* memory location kinds, e.g., LOCAL_MEM with the
/// value of NO_LOCAL_MEM, to the accesses encountered for this memory kind.
using AccessSet = SmallSet<AccessInfo, 2, AccessInfo>;
std::array<AccessSet *, llvm::CTLog2<VALID_STATE>()> AccessKind2Accesses;
/// Categorize the pointer arguments of CB that might access memory in
/// AccessedLoc and update the state and access map accordingly.
void
categorizeArgumentPointerLocations(Attributor &A, CallBase &CB,
AAMemoryLocation::StateType &AccessedLocs,
bool &Changed);
/// Return the kind(s) of location that may be accessed by \p V.
AAMemoryLocation::MemoryLocationsKind
categorizeAccessedLocations(Attributor &A, Instruction &I, bool &Changed);
/// Return the access kind as determined by \p I.
AccessKind getAccessKindFromInst(const Instruction *I) {
AccessKind AK = READ_WRITE;
if (I) {
AK = I->mayReadFromMemory() ? READ : NONE;
AK = AccessKind(AK | (I->mayWriteToMemory() ? WRITE : NONE));
}
return AK;
}
/// Update the state \p State and the AccessKind2Accesses given that \p I is
/// an access of kind \p AK to a \p MLK memory location with the access
/// pointer \p Ptr.
void updateStateAndAccessesMap(AAMemoryLocation::StateType &State,
MemoryLocationsKind MLK, const Instruction *I,
const Value *Ptr, bool &Changed,
AccessKind AK = READ_WRITE) {
assert(isPowerOf2_32(MLK) && "Expected a single location set!");
auto *&Accesses = AccessKind2Accesses[llvm::Log2_32(MLK)];
if (!Accesses)
Accesses = new (Allocator) AccessSet();
Changed |= Accesses->insert(AccessInfo{I, Ptr, AK}).second;
State.removeAssumedBits(MLK);
}
/// Determine the underlying locations kinds for \p Ptr, e.g., globals or
/// arguments, and update the state and access map accordingly.
void categorizePtrValue(Attributor &A, const Instruction &I, const Value &Ptr,
AAMemoryLocation::StateType &State, bool &Changed);
/// Used to allocate access sets.
BumpPtrAllocator &Allocator;
};
void AAMemoryLocationImpl::categorizePtrValue(
Attributor &A, const Instruction &I, const Value &Ptr,
AAMemoryLocation::StateType &State, bool &Changed) {
LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize pointer locations for "
<< Ptr << " ["
<< getMemoryLocationsAsStr(State.getAssumed()) << "]\n");
auto Pred = [&](Value &Obj) {
// TODO: recognize the TBAA used for constant accesses.
MemoryLocationsKind MLK = NO_LOCATIONS;
if (isa<UndefValue>(&Obj))
return true;
if (isa<Argument>(&Obj)) {
// TODO: For now we do not treat byval arguments as local copies performed
// on the call edge, though, we should. To make that happen we need to
// teach various passes, e.g., DSE, about the copy effect of a byval. That
// would also allow us to mark functions only accessing byval arguments as
// readnone again, arguably their accesses have no effect outside of the
// function, like accesses to allocas.
MLK = NO_ARGUMENT_MEM;
} else if (auto *GV = dyn_cast<GlobalValue>(&Obj)) {
// Reading constant memory is not treated as a read "effect" by the
// function attr pass so we won't neither. Constants defined by TBAA are
// similar. (We know we do not write it because it is constant.)
if (auto *GVar = dyn_cast<GlobalVariable>(GV))
if (GVar->isConstant())
return true;
if (GV->hasLocalLinkage())
MLK = NO_GLOBAL_INTERNAL_MEM;
else
MLK = NO_GLOBAL_EXTERNAL_MEM;
} else if (isa<ConstantPointerNull>(&Obj) &&
!NullPointerIsDefined(getAssociatedFunction(),
Ptr.getType()->getPointerAddressSpace())) {
return true;
} else if (isa<AllocaInst>(&Obj)) {
MLK = NO_LOCAL_MEM;
} else if (const auto *CB = dyn_cast<CallBase>(&Obj)) {
const auto &NoAliasAA = A.getAAFor<AANoAlias>(
*this, IRPosition::callsite_returned(*CB), DepClassTy::OPTIONAL);
if (NoAliasAA.isAssumedNoAlias())
MLK = NO_MALLOCED_MEM;
else
MLK = NO_UNKOWN_MEM;
} else {
MLK = NO_UNKOWN_MEM;
}
assert(MLK != NO_LOCATIONS && "No location specified!");
LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Ptr value can be categorized: "
<< Obj << " -> " << getMemoryLocationsAsStr(MLK) << "\n");
updateStateAndAccessesMap(getState(), MLK, &I, &Obj, Changed,
getAccessKindFromInst(&I));
return true;
};
const auto &AA = A.getAAFor<AAUnderlyingObjects>(
*this, IRPosition::value(Ptr), DepClassTy::OPTIONAL);
if (!AA.forallUnderlyingObjects(Pred, AA::Intraprocedural)) {
LLVM_DEBUG(
dbgs() << "[AAMemoryLocation] Pointer locations not categorized\n");
updateStateAndAccessesMap(State, NO_UNKOWN_MEM, &I, nullptr, Changed,
getAccessKindFromInst(&I));
return;
}
LLVM_DEBUG(
dbgs() << "[AAMemoryLocation] Accessed locations with pointer locations: "
<< getMemoryLocationsAsStr(State.getAssumed()) << "\n");
}
void AAMemoryLocationImpl::categorizeArgumentPointerLocations(
Attributor &A, CallBase &CB, AAMemoryLocation::StateType &AccessedLocs,
bool &Changed) {
for (unsigned ArgNo = 0, E = CB.arg_size(); ArgNo < E; ++ArgNo) {
// Skip non-pointer arguments.
const Value *ArgOp = CB.getArgOperand(ArgNo);
if (!ArgOp->getType()->isPtrOrPtrVectorTy())
continue;
// Skip readnone arguments.
const IRPosition &ArgOpIRP = IRPosition::callsite_argument(CB, ArgNo);
const auto &ArgOpMemLocationAA =
A.getAAFor<AAMemoryBehavior>(*this, ArgOpIRP, DepClassTy::OPTIONAL);
if (ArgOpMemLocationAA.isAssumedReadNone())
continue;
// Categorize potentially accessed pointer arguments as if there was an
// access instruction with them as pointer.
categorizePtrValue(A, CB, *ArgOp, AccessedLocs, Changed);
}
}
AAMemoryLocation::MemoryLocationsKind
AAMemoryLocationImpl::categorizeAccessedLocations(Attributor &A, Instruction &I,
bool &Changed) {
LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize accessed locations for "
<< I << "\n");
AAMemoryLocation::StateType AccessedLocs;
AccessedLocs.intersectAssumedBits(NO_LOCATIONS);
if (auto *CB = dyn_cast<CallBase>(&I)) {
// First check if we assume any memory is access is visible.
const auto &CBMemLocationAA = A.getAAFor<AAMemoryLocation>(
*this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Categorize call site: " << I
<< " [" << CBMemLocationAA << "]\n");
if (CBMemLocationAA.isAssumedReadNone())
return NO_LOCATIONS;
if (CBMemLocationAA.isAssumedInaccessibleMemOnly()) {
updateStateAndAccessesMap(AccessedLocs, NO_INACCESSIBLE_MEM, &I, nullptr,
Changed, getAccessKindFromInst(&I));
return AccessedLocs.getAssumed();
}
uint32_t CBAssumedNotAccessedLocs =
CBMemLocationAA.getAssumedNotAccessedLocation();
// Set the argmemonly and global bit as we handle them separately below.
uint32_t CBAssumedNotAccessedLocsNoArgMem =
CBAssumedNotAccessedLocs | NO_ARGUMENT_MEM | NO_GLOBAL_MEM;
for (MemoryLocationsKind CurMLK = 1; CurMLK < NO_LOCATIONS; CurMLK *= 2) {
if (CBAssumedNotAccessedLocsNoArgMem & CurMLK)
continue;
updateStateAndAccessesMap(AccessedLocs, CurMLK, &I, nullptr, Changed,
getAccessKindFromInst(&I));
}
// Now handle global memory if it might be accessed. This is slightly tricky
// as NO_GLOBAL_MEM has multiple bits set.
bool HasGlobalAccesses = ((~CBAssumedNotAccessedLocs) & NO_GLOBAL_MEM);
if (HasGlobalAccesses) {
auto AccessPred = [&](const Instruction *, const Value *Ptr,
AccessKind Kind, MemoryLocationsKind MLK) {
updateStateAndAccessesMap(AccessedLocs, MLK, &I, Ptr, Changed,
getAccessKindFromInst(&I));
return true;
};
if (!CBMemLocationAA.checkForAllAccessesToMemoryKind(
AccessPred, inverseLocation(NO_GLOBAL_MEM, false, false)))
return AccessedLocs.getWorstState();
}
LLVM_DEBUG(
dbgs() << "[AAMemoryLocation] Accessed state before argument handling: "
<< getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
// Now handle argument memory if it might be accessed.
bool HasArgAccesses = ((~CBAssumedNotAccessedLocs) & NO_ARGUMENT_MEM);
if (HasArgAccesses)
categorizeArgumentPointerLocations(A, *CB, AccessedLocs, Changed);
LLVM_DEBUG(
dbgs() << "[AAMemoryLocation] Accessed state after argument handling: "
<< getMemoryLocationsAsStr(AccessedLocs.getAssumed()) << "\n");
return AccessedLocs.getAssumed();
}
if (const Value *Ptr = getPointerOperand(&I, /* AllowVolatile */ true)) {
LLVM_DEBUG(
dbgs() << "[AAMemoryLocation] Categorize memory access with pointer: "
<< I << " [" << *Ptr << "]\n");
categorizePtrValue(A, I, *Ptr, AccessedLocs, Changed);
return AccessedLocs.getAssumed();
}
LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Failed to categorize instruction: "
<< I << "\n");
updateStateAndAccessesMap(AccessedLocs, NO_UNKOWN_MEM, &I, nullptr, Changed,
getAccessKindFromInst(&I));
return AccessedLocs.getAssumed();
}
/// An AA to represent the memory behavior function attributes.
struct AAMemoryLocationFunction final : public AAMemoryLocationImpl {
AAMemoryLocationFunction(const IRPosition &IRP, Attributor &A)
: AAMemoryLocationImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(Attributor &A).
ChangeStatus updateImpl(Attributor &A) override {
const auto &MemBehaviorAA =
A.getAAFor<AAMemoryBehavior>(*this, getIRPosition(), DepClassTy::NONE);
if (MemBehaviorAA.isAssumedReadNone()) {
if (MemBehaviorAA.isKnownReadNone())
return indicateOptimisticFixpoint();
assert(isAssumedReadNone() &&
"AAMemoryLocation was not read-none but AAMemoryBehavior was!");
A.recordDependence(MemBehaviorAA, *this, DepClassTy::OPTIONAL);
return ChangeStatus::UNCHANGED;
}
// The current assumed state used to determine a change.
auto AssumedState = getAssumed();
bool Changed = false;
auto CheckRWInst = [&](Instruction &I) {
MemoryLocationsKind MLK = categorizeAccessedLocations(A, I, Changed);
LLVM_DEBUG(dbgs() << "[AAMemoryLocation] Accessed locations for " << I
<< ": " << getMemoryLocationsAsStr(MLK) << "\n");
removeAssumedBits(inverseLocation(MLK, false, false));
// Stop once only the valid bit set in the *not assumed location*, thus
// once we don't actually exclude any memory locations in the state.
return getAssumedNotAccessedLocation() != VALID_STATE;
};
bool UsedAssumedInformation = false;
if (!A.checkForAllReadWriteInstructions(CheckRWInst, *this,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
Changed |= AssumedState != getAssumed();
return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
if (isAssumedReadNone())
STATS_DECLTRACK_FN_ATTR(readnone)
else if (isAssumedArgMemOnly())
STATS_DECLTRACK_FN_ATTR(argmemonly)
else if (isAssumedInaccessibleMemOnly())
STATS_DECLTRACK_FN_ATTR(inaccessiblememonly)
else if (isAssumedInaccessibleOrArgMemOnly())
STATS_DECLTRACK_FN_ATTR(inaccessiblememorargmemonly)
}
};
/// AAMemoryLocation attribute for call sites.
struct AAMemoryLocationCallSite final : AAMemoryLocationImpl {
AAMemoryLocationCallSite(const IRPosition &IRP, Attributor &A)
: AAMemoryLocationImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAMemoryLocationImpl::initialize(A);
Function *F = getAssociatedFunction();
if (!F || F->isDeclaration())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Once we have call site specific value information we can provide
// call site specific liveness liveness information and then it makes
// sense to specialize attributes for call sites arguments instead of
// redirecting requests to the callee argument.
Function *F = getAssociatedFunction();
const IRPosition &FnPos = IRPosition::function(*F);
auto &FnAA =
A.getAAFor<AAMemoryLocation>(*this, FnPos, DepClassTy::REQUIRED);
bool Changed = false;
auto AccessPred = [&](const Instruction *I, const Value *Ptr,
AccessKind Kind, MemoryLocationsKind MLK) {
updateStateAndAccessesMap(getState(), MLK, I, Ptr, Changed,
getAccessKindFromInst(I));
return true;
};
if (!FnAA.checkForAllAccessesToMemoryKind(AccessPred, ALL_LOCATIONS))
return indicatePessimisticFixpoint();
return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
if (isAssumedReadNone())
STATS_DECLTRACK_CS_ATTR(readnone)
}
};
} // namespace
/// ------------------ Value Constant Range Attribute -------------------------
namespace {
struct AAValueConstantRangeImpl : AAValueConstantRange {
using StateType = IntegerRangeState;
AAValueConstantRangeImpl(const IRPosition &IRP, Attributor &A)
: AAValueConstantRange(IRP, A) {}
/// See AbstractAttribute::initialize(..).
void initialize(Attributor &A) override {
if (A.hasSimplificationCallback(getIRPosition())) {
indicatePessimisticFixpoint();
return;
}
// Intersect a range given by SCEV.
intersectKnown(getConstantRangeFromSCEV(A, getCtxI()));
// Intersect a range given by LVI.
intersectKnown(getConstantRangeFromLVI(A, getCtxI()));
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
std::string Str;
llvm::raw_string_ostream OS(Str);
OS << "range(" << getBitWidth() << ")<";
getKnown().print(OS);
OS << " / ";
getAssumed().print(OS);
OS << ">";
return OS.str();
}
/// Helper function to get a SCEV expr for the associated value at program
/// point \p I.
const SCEV *getSCEV(Attributor &A, const Instruction *I = nullptr) const {
if (!getAnchorScope())
return nullptr;
ScalarEvolution *SE =
A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
*getAnchorScope());
LoopInfo *LI = A.getInfoCache().getAnalysisResultForFunction<LoopAnalysis>(
*getAnchorScope());
if (!SE || !LI)
return nullptr;
const SCEV *S = SE->getSCEV(&getAssociatedValue());
if (!I)
return S;
return SE->getSCEVAtScope(S, LI->getLoopFor(I->getParent()));
}
/// Helper function to get a range from SCEV for the associated value at
/// program point \p I.
ConstantRange getConstantRangeFromSCEV(Attributor &A,
const Instruction *I = nullptr) const {
if (!getAnchorScope())
return getWorstState(getBitWidth());
ScalarEvolution *SE =
A.getInfoCache().getAnalysisResultForFunction<ScalarEvolutionAnalysis>(
*getAnchorScope());
const SCEV *S = getSCEV(A, I);
if (!SE || !S)
return getWorstState(getBitWidth());
return SE->getUnsignedRange(S);
}
/// Helper function to get a range from LVI for the associated value at
/// program point \p I.
ConstantRange
getConstantRangeFromLVI(Attributor &A,
const Instruction *CtxI = nullptr) const {
if (!getAnchorScope())
return getWorstState(getBitWidth());
LazyValueInfo *LVI =
A.getInfoCache().getAnalysisResultForFunction<LazyValueAnalysis>(
*getAnchorScope());
if (!LVI || !CtxI)
return getWorstState(getBitWidth());
return LVI->getConstantRange(&getAssociatedValue(),
const_cast<Instruction *>(CtxI));
}
/// Return true if \p CtxI is valid for querying outside analyses.
/// This basically makes sure we do not ask intra-procedural analysis
/// about a context in the wrong function or a context that violates
/// dominance assumptions they might have. The \p AllowAACtxI flag indicates
/// if the original context of this AA is OK or should be considered invalid.
bool isValidCtxInstructionForOutsideAnalysis(Attributor &A,
const Instruction *CtxI,
bool AllowAACtxI) const {
if (!CtxI || (!AllowAACtxI && CtxI == getCtxI()))
return false;
// Our context might be in a different function, neither intra-procedural
// analysis (ScalarEvolution nor LazyValueInfo) can handle that.
if (!AA::isValidInScope(getAssociatedValue(), CtxI->getFunction()))
return false;
// If the context is not dominated by the value there are paths to the
// context that do not define the value. This cannot be handled by
// LazyValueInfo so we need to bail.
if (auto *I = dyn_cast<Instruction>(&getAssociatedValue())) {
InformationCache &InfoCache = A.getInfoCache();
const DominatorTree *DT =
InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
*I->getFunction());
return DT && DT->dominates(I, CtxI);
}
return true;
}
/// See AAValueConstantRange::getKnownConstantRange(..).
ConstantRange
getKnownConstantRange(Attributor &A,
const Instruction *CtxI = nullptr) const override {
if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
/* AllowAACtxI */ false))
return getKnown();
ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
return getKnown().intersectWith(SCEVR).intersectWith(LVIR);
}
/// See AAValueConstantRange::getAssumedConstantRange(..).
ConstantRange
getAssumedConstantRange(Attributor &A,
const Instruction *CtxI = nullptr) const override {
// TODO: Make SCEV use Attributor assumption.
// We may be able to bound a variable range via assumptions in
// Attributor. ex.) If x is assumed to be in [1, 3] and y is known to
// evolve to x^2 + x, then we can say that y is in [2, 12].
if (!isValidCtxInstructionForOutsideAnalysis(A, CtxI,
/* AllowAACtxI */ false))
return getAssumed();
ConstantRange LVIR = getConstantRangeFromLVI(A, CtxI);
ConstantRange SCEVR = getConstantRangeFromSCEV(A, CtxI);
return getAssumed().intersectWith(SCEVR).intersectWith(LVIR);
}
/// Helper function to create MDNode for range metadata.
static MDNode *
getMDNodeForConstantRange(Type *Ty, LLVMContext &Ctx,
const ConstantRange &AssumedConstantRange) {
Metadata *LowAndHigh[] = {ConstantAsMetadata::get(ConstantInt::get(
Ty, AssumedConstantRange.getLower())),
ConstantAsMetadata::get(ConstantInt::get(
Ty, AssumedConstantRange.getUpper()))};
return MDNode::get(Ctx, LowAndHigh);
}
/// Return true if \p Assumed is included in \p KnownRanges.
static bool isBetterRange(const ConstantRange &Assumed, MDNode *KnownRanges) {
if (Assumed.isFullSet())
return false;
if (!KnownRanges)
return true;
// If multiple ranges are annotated in IR, we give up to annotate assumed
// range for now.
// TODO: If there exists a known range which containts assumed range, we
// can say assumed range is better.
if (KnownRanges->getNumOperands() > 2)
return false;
ConstantInt *Lower =
mdconst::extract<ConstantInt>(KnownRanges->getOperand(0));
ConstantInt *Upper =
mdconst::extract<ConstantInt>(KnownRanges->getOperand(1));
ConstantRange Known(Lower->getValue(), Upper->getValue());
return Known.contains(Assumed) && Known != Assumed;
}
/// Helper function to set range metadata.
static bool
setRangeMetadataIfisBetterRange(Instruction *I,
const ConstantRange &AssumedConstantRange) {
auto *OldRangeMD = I->getMetadata(LLVMContext::MD_range);
if (isBetterRange(AssumedConstantRange, OldRangeMD)) {
if (!AssumedConstantRange.isEmptySet()) {
I->setMetadata(LLVMContext::MD_range,
getMDNodeForConstantRange(I->getType(), I->getContext(),
AssumedConstantRange));
return true;
}
}
return false;
}
/// See AbstractAttribute::manifest()
ChangeStatus manifest(Attributor &A) override {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
ConstantRange AssumedConstantRange = getAssumedConstantRange(A);
assert(!AssumedConstantRange.isFullSet() && "Invalid state");
auto &V = getAssociatedValue();
if (!AssumedConstantRange.isEmptySet() &&
!AssumedConstantRange.isSingleElement()) {
if (Instruction *I = dyn_cast<Instruction>(&V)) {
assert(I == getCtxI() && "Should not annotate an instruction which is "
"not the context instruction");
if (isa<CallInst>(I) || isa<LoadInst>(I))
if (setRangeMetadataIfisBetterRange(I, AssumedConstantRange))
Changed = ChangeStatus::CHANGED;
}
}
return Changed;
}
};
struct AAValueConstantRangeArgument final
: AAArgumentFromCallSiteArguments<
AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
true /* BridgeCallBaseContext */> {
using Base = AAArgumentFromCallSiteArguments<
AAValueConstantRange, AAValueConstantRangeImpl, IntegerRangeState,
true /* BridgeCallBaseContext */>;
AAValueConstantRangeArgument(const IRPosition &IRP, Attributor &A)
: Base(IRP, A) {}
/// See AbstractAttribute::initialize(..).
void initialize(Attributor &A) override {
if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
indicatePessimisticFixpoint();
} else {
Base::initialize(A);
}
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_ARG_ATTR(value_range)
}
};
struct AAValueConstantRangeReturned
: AAReturnedFromReturnedValues<AAValueConstantRange,
AAValueConstantRangeImpl,
AAValueConstantRangeImpl::StateType,
/* PropogateCallBaseContext */ true> {
using Base =
AAReturnedFromReturnedValues<AAValueConstantRange,
AAValueConstantRangeImpl,
AAValueConstantRangeImpl::StateType,
/* PropogateCallBaseContext */ true>;
AAValueConstantRangeReturned(const IRPosition &IRP, Attributor &A)
: Base(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FNRET_ATTR(value_range)
}
};
struct AAValueConstantRangeFloating : AAValueConstantRangeImpl {
AAValueConstantRangeFloating(const IRPosition &IRP, Attributor &A)
: AAValueConstantRangeImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AAValueConstantRangeImpl::initialize(A);
if (isAtFixpoint())
return;
Value &V = getAssociatedValue();
if (auto *C = dyn_cast<ConstantInt>(&V)) {
unionAssumed(ConstantRange(C->getValue()));
indicateOptimisticFixpoint();
return;
}
if (isa<UndefValue>(&V)) {
// Collapse the undef state to 0.
unionAssumed(ConstantRange(APInt(getBitWidth(), 0)));
indicateOptimisticFixpoint();
return;
}
if (isa<CallBase>(&V))
return;
if (isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<CastInst>(&V))
return;
// If it is a load instruction with range metadata, use it.
if (LoadInst *LI = dyn_cast<LoadInst>(&V))
if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) {
intersectKnown(getConstantRangeFromMetadata(*RangeMD));
return;
}
// We can work with PHI and select instruction as we traverse their operands
// during update.
if (isa<SelectInst>(V) || isa<PHINode>(V))
return;
// Otherwise we give up.
indicatePessimisticFixpoint();
LLVM_DEBUG(dbgs() << "[AAValueConstantRange] We give up: "
<< getAssociatedValue() << "\n");
}
bool calculateBinaryOperator(
Attributor &A, BinaryOperator *BinOp, IntegerRangeState &T,
const Instruction *CtxI,
SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
Value *LHS = BinOp->getOperand(0);
Value *RHS = BinOp->getOperand(1);
// Simplify the operands first.
bool UsedAssumedInformation = false;
const auto &SimplifiedLHS = A.getAssumedSimplified(
IRPosition::value(*LHS, getCallBaseContext()), *this,
UsedAssumedInformation, AA::Interprocedural);
if (!SimplifiedLHS.has_value())
return true;
if (!*SimplifiedLHS)
return false;
LHS = *SimplifiedLHS;
const auto &SimplifiedRHS = A.getAssumedSimplified(
IRPosition::value(*RHS, getCallBaseContext()), *this,
UsedAssumedInformation, AA::Interprocedural);
if (!SimplifiedRHS.has_value())
return true;
if (!*SimplifiedRHS)
return false;
RHS = *SimplifiedRHS;
// TODO: Allow non integers as well.
if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
return false;
auto &LHSAA = A.getAAFor<AAValueConstantRange>(
*this, IRPosition::value(*LHS, getCallBaseContext()),
DepClassTy::REQUIRED);
QuerriedAAs.push_back(&LHSAA);
auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
auto &RHSAA = A.getAAFor<AAValueConstantRange>(
*this, IRPosition::value(*RHS, getCallBaseContext()),
DepClassTy::REQUIRED);
QuerriedAAs.push_back(&RHSAA);
auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
auto AssumedRange = LHSAARange.binaryOp(BinOp->getOpcode(), RHSAARange);
T.unionAssumed(AssumedRange);
// TODO: Track a known state too.
return T.isValidState();
}
bool calculateCastInst(
Attributor &A, CastInst *CastI, IntegerRangeState &T,
const Instruction *CtxI,
SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
assert(CastI->getNumOperands() == 1 && "Expected cast to be unary!");
// TODO: Allow non integers as well.
Value *OpV = CastI->getOperand(0);
// Simplify the operand first.
bool UsedAssumedInformation = false;
const auto &SimplifiedOpV = A.getAssumedSimplified(
IRPosition::value(*OpV, getCallBaseContext()), *this,
UsedAssumedInformation, AA::Interprocedural);
if (!SimplifiedOpV.has_value())
return true;
if (!*SimplifiedOpV)
return false;
OpV = *SimplifiedOpV;
if (!OpV->getType()->isIntegerTy())
return false;
auto &OpAA = A.getAAFor<AAValueConstantRange>(
*this, IRPosition::value(*OpV, getCallBaseContext()),
DepClassTy::REQUIRED);
QuerriedAAs.push_back(&OpAA);
T.unionAssumed(
OpAA.getAssumed().castOp(CastI->getOpcode(), getState().getBitWidth()));
return T.isValidState();
}
bool
calculateCmpInst(Attributor &A, CmpInst *CmpI, IntegerRangeState &T,
const Instruction *CtxI,
SmallVectorImpl<const AAValueConstantRange *> &QuerriedAAs) {
Value *LHS = CmpI->getOperand(0);
Value *RHS = CmpI->getOperand(1);
// Simplify the operands first.
bool UsedAssumedInformation = false;
const auto &SimplifiedLHS = A.getAssumedSimplified(
IRPosition::value(*LHS, getCallBaseContext()), *this,
UsedAssumedInformation, AA::Interprocedural);
if (!SimplifiedLHS.has_value())
return true;
if (!*SimplifiedLHS)
return false;
LHS = *SimplifiedLHS;
const auto &SimplifiedRHS = A.getAssumedSimplified(
IRPosition::value(*RHS, getCallBaseContext()), *this,
UsedAssumedInformation, AA::Interprocedural);
if (!SimplifiedRHS.has_value())
return true;
if (!*SimplifiedRHS)
return false;
RHS = *SimplifiedRHS;
// TODO: Allow non integers as well.
if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
return false;
auto &LHSAA = A.getAAFor<AAValueConstantRange>(
*this, IRPosition::value(*LHS, getCallBaseContext()),
DepClassTy::REQUIRED);
QuerriedAAs.push_back(&LHSAA);
auto &RHSAA = A.getAAFor<AAValueConstantRange>(
*this, IRPosition::value(*RHS, getCallBaseContext()),
DepClassTy::REQUIRED);
QuerriedAAs.push_back(&RHSAA);
auto LHSAARange = LHSAA.getAssumedConstantRange(A, CtxI);
auto RHSAARange = RHSAA.getAssumedConstantRange(A, CtxI);
// If one of them is empty set, we can't decide.
if (LHSAARange.isEmptySet() || RHSAARange.isEmptySet())
return true;
bool MustTrue = false, MustFalse = false;
auto AllowedRegion =
ConstantRange::makeAllowedICmpRegion(CmpI->getPredicate(), RHSAARange);
if (AllowedRegion.intersectWith(LHSAARange).isEmptySet())
MustFalse = true;
if (LHSAARange.icmp(CmpI->getPredicate(), RHSAARange))
MustTrue = true;
assert((!MustTrue || !MustFalse) &&
"Either MustTrue or MustFalse should be false!");
if (MustTrue)
T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 1)));
else if (MustFalse)
T.unionAssumed(ConstantRange(APInt(/* numBits */ 1, /* val */ 0)));
else
T.unionAssumed(ConstantRange(/* BitWidth */ 1, /* isFullSet */ true));
LLVM_DEBUG(dbgs() << "[AAValueConstantRange] " << *CmpI << " " << LHSAA
<< " " << RHSAA << "\n");
// TODO: Track a known state too.
return T.isValidState();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
IntegerRangeState T(getBitWidth());
auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
Instruction *I = dyn_cast<Instruction>(&V);
if (!I || isa<CallBase>(I)) {
// Simplify the operand first.
bool UsedAssumedInformation = false;
const auto &SimplifiedOpV = A.getAssumedSimplified(
IRPosition::value(V, getCallBaseContext()), *this,
UsedAssumedInformation, AA::Interprocedural);
if (!SimplifiedOpV.has_value())
return true;
if (!*SimplifiedOpV)
return false;
Value *VPtr = *SimplifiedOpV;
// If the value is not instruction, we query AA to Attributor.
const auto &AA = A.getAAFor<AAValueConstantRange>(
*this, IRPosition::value(*VPtr, getCallBaseContext()),
DepClassTy::REQUIRED);
// Clamp operator is not used to utilize a program point CtxI.
T.unionAssumed(AA.getAssumedConstantRange(A, CtxI));
return T.isValidState();
}
SmallVector<const AAValueConstantRange *, 4> QuerriedAAs;
if (auto *BinOp = dyn_cast<BinaryOperator>(I)) {
if (!calculateBinaryOperator(A, BinOp, T, CtxI, QuerriedAAs))
return false;
} else if (auto *CmpI = dyn_cast<CmpInst>(I)) {
if (!calculateCmpInst(A, CmpI, T, CtxI, QuerriedAAs))
return false;
} else if (auto *CastI = dyn_cast<CastInst>(I)) {
if (!calculateCastInst(A, CastI, T, CtxI, QuerriedAAs))
return false;
} else {
// Give up with other instructions.
// TODO: Add other instructions
T.indicatePessimisticFixpoint();
return false;
}
// Catch circular reasoning in a pessimistic way for now.
// TODO: Check how the range evolves and if we stripped anything, see also
// AADereferenceable or AAAlign for similar situations.
for (const AAValueConstantRange *QueriedAA : QuerriedAAs) {
if (QueriedAA != this)
continue;
// If we are in a stady state we do not need to worry.
if (T.getAssumed() == getState().getAssumed())
continue;
T.indicatePessimisticFixpoint();
}
return T.isValidState();
};
if (!VisitValueCB(getAssociatedValue(), getCtxI()))
return indicatePessimisticFixpoint();
// Ensure that long def-use chains can't cause circular reasoning either by
// introducing a cutoff below.
if (clampStateAndIndicateChange(getState(), T) == ChangeStatus::UNCHANGED)
return ChangeStatus::UNCHANGED;
if (++NumChanges > MaxNumChanges) {
LLVM_DEBUG(dbgs() << "[AAValueConstantRange] performed " << NumChanges
<< " but only " << MaxNumChanges
<< " are allowed to avoid cyclic reasoning.");
return indicatePessimisticFixpoint();
}
return ChangeStatus::CHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FLOATING_ATTR(value_range)
}
/// Tracker to bail after too many widening steps of the constant range.
int NumChanges = 0;
/// Upper bound for the number of allowed changes (=widening steps) for the
/// constant range before we give up.
static constexpr int MaxNumChanges = 5;
};
struct AAValueConstantRangeFunction : AAValueConstantRangeImpl {
AAValueConstantRangeFunction(const IRPosition &IRP, Attributor &A)
: AAValueConstantRangeImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
ChangeStatus updateImpl(Attributor &A) override {
llvm_unreachable("AAValueConstantRange(Function|CallSite)::updateImpl will "
"not be called");
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(value_range) }
};
struct AAValueConstantRangeCallSite : AAValueConstantRangeFunction {
AAValueConstantRangeCallSite(const IRPosition &IRP, Attributor &A)
: AAValueConstantRangeFunction(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(value_range) }
};
struct AAValueConstantRangeCallSiteReturned
: AACallSiteReturnedFromReturned<AAValueConstantRange,
AAValueConstantRangeImpl,
AAValueConstantRangeImpl::StateType,
/* IntroduceCallBaseContext */ true> {
AAValueConstantRangeCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AACallSiteReturnedFromReturned<AAValueConstantRange,
AAValueConstantRangeImpl,
AAValueConstantRangeImpl::StateType,
/* IntroduceCallBaseContext */ true>(IRP,
A) {
}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// If it is a load instruction with range metadata, use the metadata.
if (CallInst *CI = dyn_cast<CallInst>(&getAssociatedValue()))
if (auto *RangeMD = CI->getMetadata(LLVMContext::MD_range))
intersectKnown(getConstantRangeFromMetadata(*RangeMD));
AAValueConstantRangeImpl::initialize(A);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CSRET_ATTR(value_range)
}
};
struct AAValueConstantRangeCallSiteArgument : AAValueConstantRangeFloating {
AAValueConstantRangeCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AAValueConstantRangeFloating(IRP, A) {}
/// See AbstractAttribute::manifest()
ChangeStatus manifest(Attributor &A) override {
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CSARG_ATTR(value_range)
}
};
} // namespace
/// ------------------ Potential Values Attribute -------------------------
namespace {
struct AAPotentialConstantValuesImpl : AAPotentialConstantValues {
using StateType = PotentialConstantIntValuesState;
AAPotentialConstantValuesImpl(const IRPosition &IRP, Attributor &A)
: AAPotentialConstantValues(IRP, A) {}
/// See AbstractAttribute::initialize(..).
void initialize(Attributor &A) override {
if (A.hasSimplificationCallback(getIRPosition()))
indicatePessimisticFixpoint();
else
AAPotentialConstantValues::initialize(A);
}
bool fillSetWithConstantValues(Attributor &A, const IRPosition &IRP, SetTy &S,
bool &ContainsUndef, bool ForSelf) {
SmallVector<AA::ValueAndContext> Values;
bool UsedAssumedInformation = false;
if (!A.getAssumedSimplifiedValues(IRP, *this, Values, AA::Interprocedural,
UsedAssumedInformation)) {
// Avoid recursion when the caller is computing constant values for this
// IRP itself.
if (ForSelf)
return false;
if (!IRP.getAssociatedType()->isIntegerTy())
return false;
auto &PotentialValuesAA = A.getAAFor<AAPotentialConstantValues>(
*this, IRP, DepClassTy::REQUIRED);
if (!PotentialValuesAA.getState().isValidState())
return false;
ContainsUndef = PotentialValuesAA.getState().undefIsContained();
S = PotentialValuesAA.getState().getAssumedSet();
return true;
}
// Copy all the constant values, except UndefValue. ContainsUndef is true
// iff Values contains only UndefValue instances. If there are other known
// constants, then UndefValue is dropped.
ContainsUndef = false;
for (auto &It : Values) {
if (isa<UndefValue>(It.getValue())) {
ContainsUndef = true;
continue;
}
auto *CI = dyn_cast<ConstantInt>(It.getValue());
if (!CI)
return false;
S.insert(CI->getValue());
}
ContainsUndef &= S.empty();
return true;
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
std::string Str;
llvm::raw_string_ostream OS(Str);
OS << getState();
return OS.str();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
return indicatePessimisticFixpoint();
}
};
struct AAPotentialConstantValuesArgument final
: AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
AAPotentialConstantValuesImpl,
PotentialConstantIntValuesState> {
using Base = AAArgumentFromCallSiteArguments<AAPotentialConstantValues,
AAPotentialConstantValuesImpl,
PotentialConstantIntValuesState>;
AAPotentialConstantValuesArgument(const IRPosition &IRP, Attributor &A)
: Base(IRP, A) {}
/// See AbstractAttribute::initialize(..).
void initialize(Attributor &A) override {
if (!getAnchorScope() || getAnchorScope()->isDeclaration()) {
indicatePessimisticFixpoint();
} else {
Base::initialize(A);
}
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_ARG_ATTR(potential_values)
}
};
struct AAPotentialConstantValuesReturned
: AAReturnedFromReturnedValues<AAPotentialConstantValues,
AAPotentialConstantValuesImpl> {
using Base = AAReturnedFromReturnedValues<AAPotentialConstantValues,
AAPotentialConstantValuesImpl>;
AAPotentialConstantValuesReturned(const IRPosition &IRP, Attributor &A)
: Base(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FNRET_ATTR(potential_values)
}
};
struct AAPotentialConstantValuesFloating : AAPotentialConstantValuesImpl {
AAPotentialConstantValuesFloating(const IRPosition &IRP, Attributor &A)
: AAPotentialConstantValuesImpl(IRP, A) {}
/// See AbstractAttribute::initialize(..).
void initialize(Attributor &A) override {
AAPotentialConstantValuesImpl::initialize(A);
if (isAtFixpoint())
return;
Value &V = getAssociatedValue();
if (auto *C = dyn_cast<ConstantInt>(&V)) {
unionAssumed(C->getValue());
indicateOptimisticFixpoint();
return;
}
if (isa<UndefValue>(&V)) {
unionAssumedWithUndef();
indicateOptimisticFixpoint();
return;
}
if (isa<BinaryOperator>(&V) || isa<ICmpInst>(&V) || isa<CastInst>(&V))
return;
if (isa<SelectInst>(V) || isa<PHINode>(V) || isa<LoadInst>(V))
return;
indicatePessimisticFixpoint();
LLVM_DEBUG(dbgs() << "[AAPotentialConstantValues] We give up: "
<< getAssociatedValue() << "\n");
}
static bool calculateICmpInst(const ICmpInst *ICI, const APInt &LHS,
const APInt &RHS) {
return ICmpInst::compare(LHS, RHS, ICI->getPredicate());
}
static APInt calculateCastInst(const CastInst *CI, const APInt &Src,
uint32_t ResultBitWidth) {
Instruction::CastOps CastOp = CI->getOpcode();
switch (CastOp) {
default:
llvm_unreachable("unsupported or not integer cast");
case Instruction::Trunc:
return Src.trunc(ResultBitWidth);
case Instruction::SExt:
return Src.sext(ResultBitWidth);
case Instruction::ZExt:
return Src.zext(ResultBitWidth);
case Instruction::BitCast:
return Src;
}
}
static APInt calculateBinaryOperator(const BinaryOperator *BinOp,
const APInt &LHS, const APInt &RHS,
bool &SkipOperation, bool &Unsupported) {
Instruction::BinaryOps BinOpcode = BinOp->getOpcode();
// Unsupported is set to true when the binary operator is not supported.
// SkipOperation is set to true when UB occur with the given operand pair
// (LHS, RHS).
// TODO: we should look at nsw and nuw keywords to handle operations
// that create poison or undef value.
switch (BinOpcode) {
default:
Unsupported = true;
return LHS;
case Instruction::Add:
return LHS + RHS;
case Instruction::Sub:
return LHS - RHS;
case Instruction::Mul:
return LHS * RHS;
case Instruction::UDiv:
if (RHS.isZero()) {
SkipOperation = true;
return LHS;
}
return LHS.udiv(RHS);
case Instruction::SDiv:
if (RHS.isZero()) {
SkipOperation = true;
return LHS;
}
return LHS.sdiv(RHS);
case Instruction::URem:
if (RHS.isZero()) {
SkipOperation = true;
return LHS;
}
return LHS.urem(RHS);
case Instruction::SRem:
if (RHS.isZero()) {
SkipOperation = true;
return LHS;
}
return LHS.srem(RHS);
case Instruction::Shl:
return LHS.shl(RHS);
case Instruction::LShr:
return LHS.lshr(RHS);
case Instruction::AShr:
return LHS.ashr(RHS);
case Instruction::And:
return LHS & RHS;
case Instruction::Or:
return LHS | RHS;
case Instruction::Xor:
return LHS ^ RHS;
}
}
bool calculateBinaryOperatorAndTakeUnion(const BinaryOperator *BinOp,
const APInt &LHS, const APInt &RHS) {
bool SkipOperation = false;
bool Unsupported = false;
APInt Result =
calculateBinaryOperator(BinOp, LHS, RHS, SkipOperation, Unsupported);
if (Unsupported)
return false;
// If SkipOperation is true, we can ignore this operand pair (L, R).
if (!SkipOperation)
unionAssumed(Result);
return isValidState();
}
ChangeStatus updateWithICmpInst(Attributor &A, ICmpInst *ICI) {
auto AssumedBefore = getAssumed();
Value *LHS = ICI->getOperand(0);
Value *RHS = ICI->getOperand(1);
bool LHSContainsUndef = false, RHSContainsUndef = false;
SetTy LHSAAPVS, RHSAAPVS;
if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
LHSContainsUndef, /* ForSelf */ false) ||
!fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
RHSContainsUndef, /* ForSelf */ false))
return indicatePessimisticFixpoint();
// TODO: make use of undef flag to limit potential values aggressively.
bool MaybeTrue = false, MaybeFalse = false;
const APInt Zero(RHS->getType()->getIntegerBitWidth(), 0);
if (LHSContainsUndef && RHSContainsUndef) {
// The result of any comparison between undefs can be soundly replaced
// with undef.
unionAssumedWithUndef();
} else if (LHSContainsUndef) {
for (const APInt &R : RHSAAPVS) {
bool CmpResult = calculateICmpInst(ICI, Zero, R);
MaybeTrue |= CmpResult;
MaybeFalse |= !CmpResult;
if (MaybeTrue & MaybeFalse)
return indicatePessimisticFixpoint();
}
} else if (RHSContainsUndef) {
for (const APInt &L : LHSAAPVS) {
bool CmpResult = calculateICmpInst(ICI, L, Zero);
MaybeTrue |= CmpResult;
MaybeFalse |= !CmpResult;
if (MaybeTrue & MaybeFalse)
return indicatePessimisticFixpoint();
}
} else {
for (const APInt &L : LHSAAPVS) {
for (const APInt &R : RHSAAPVS) {
bool CmpResult = calculateICmpInst(ICI, L, R);
MaybeTrue |= CmpResult;
MaybeFalse |= !CmpResult;
if (MaybeTrue & MaybeFalse)
return indicatePessimisticFixpoint();
}
}
}
if (MaybeTrue)
unionAssumed(APInt(/* numBits */ 1, /* val */ 1));
if (MaybeFalse)
unionAssumed(APInt(/* numBits */ 1, /* val */ 0));
return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
: ChangeStatus::CHANGED;
}
ChangeStatus updateWithSelectInst(Attributor &A, SelectInst *SI) {
auto AssumedBefore = getAssumed();
Value *LHS = SI->getTrueValue();
Value *RHS = SI->getFalseValue();
bool UsedAssumedInformation = false;
std::optional<Constant *> C = A.getAssumedConstant(
*SI->getCondition(), *this, UsedAssumedInformation);
// Check if we only need one operand.
bool OnlyLeft = false, OnlyRight = false;
if (C && *C && (*C)->isOneValue())
OnlyLeft = true;
else if (C && *C && (*C)->isZeroValue())
OnlyRight = true;
bool LHSContainsUndef = false, RHSContainsUndef = false;
SetTy LHSAAPVS, RHSAAPVS;
if (!OnlyRight &&
!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
LHSContainsUndef, /* ForSelf */ false))
return indicatePessimisticFixpoint();
if (!OnlyLeft &&
!fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
RHSContainsUndef, /* ForSelf */ false))
return indicatePessimisticFixpoint();
if (OnlyLeft || OnlyRight) {
// select (true/false), lhs, rhs
auto *OpAA = OnlyLeft ? &LHSAAPVS : &RHSAAPVS;
auto Undef = OnlyLeft ? LHSContainsUndef : RHSContainsUndef;
if (Undef)
unionAssumedWithUndef();
else {
for (const auto &It : *OpAA)
unionAssumed(It);
}
} else if (LHSContainsUndef && RHSContainsUndef) {
// select i1 *, undef , undef => undef
unionAssumedWithUndef();
} else {
for (const auto &It : LHSAAPVS)
unionAssumed(It);
for (const auto &It : RHSAAPVS)
unionAssumed(It);
}
return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
: ChangeStatus::CHANGED;
}
ChangeStatus updateWithCastInst(Attributor &A, CastInst *CI) {
auto AssumedBefore = getAssumed();
if (!CI->isIntegerCast())
return indicatePessimisticFixpoint();
assert(CI->getNumOperands() == 1 && "Expected cast to be unary!");
uint32_t ResultBitWidth = CI->getDestTy()->getIntegerBitWidth();
Value *Src = CI->getOperand(0);
bool SrcContainsUndef = false;
SetTy SrcPVS;
if (!fillSetWithConstantValues(A, IRPosition::value(*Src), SrcPVS,
SrcContainsUndef, /* ForSelf */ false))
return indicatePessimisticFixpoint();
if (SrcContainsUndef)
unionAssumedWithUndef();
else {
for (const APInt &S : SrcPVS) {
APInt T = calculateCastInst(CI, S, ResultBitWidth);
unionAssumed(T);
}
}
return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
: ChangeStatus::CHANGED;
}
ChangeStatus updateWithBinaryOperator(Attributor &A, BinaryOperator *BinOp) {
auto AssumedBefore = getAssumed();
Value *LHS = BinOp->getOperand(0);
Value *RHS = BinOp->getOperand(1);
bool LHSContainsUndef = false, RHSContainsUndef = false;
SetTy LHSAAPVS, RHSAAPVS;
if (!fillSetWithConstantValues(A, IRPosition::value(*LHS), LHSAAPVS,
LHSContainsUndef, /* ForSelf */ false) ||
!fillSetWithConstantValues(A, IRPosition::value(*RHS), RHSAAPVS,
RHSContainsUndef, /* ForSelf */ false))
return indicatePessimisticFixpoint();
const APInt Zero = APInt(LHS->getType()->getIntegerBitWidth(), 0);
// TODO: make use of undef flag to limit potential values aggressively.
if (LHSContainsUndef && RHSContainsUndef) {
if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, Zero))
return indicatePessimisticFixpoint();
} else if (LHSContainsUndef) {
for (const APInt &R : RHSAAPVS) {
if (!calculateBinaryOperatorAndTakeUnion(BinOp, Zero, R))
return indicatePessimisticFixpoint();
}
} else if (RHSContainsUndef) {
for (const APInt &L : LHSAAPVS) {
if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, Zero))
return indicatePessimisticFixpoint();
}
} else {
for (const APInt &L : LHSAAPVS) {
for (const APInt &R : RHSAAPVS) {
if (!calculateBinaryOperatorAndTakeUnion(BinOp, L, R))
return indicatePessimisticFixpoint();
}
}
}
return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
: ChangeStatus::CHANGED;
}
ChangeStatus updateWithInstruction(Attributor &A, Instruction *Inst) {
auto AssumedBefore = getAssumed();
SetTy Incoming;
bool ContainsUndef;
if (!fillSetWithConstantValues(A, IRPosition::value(*Inst), Incoming,
ContainsUndef, /* ForSelf */ true))
return indicatePessimisticFixpoint();
if (ContainsUndef) {
unionAssumedWithUndef();
} else {
for (const auto &It : Incoming)
unionAssumed(It);
}
return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
: ChangeStatus::CHANGED;
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
Value &V = getAssociatedValue();
Instruction *I = dyn_cast<Instruction>(&V);
if (auto *ICI = dyn_cast<ICmpInst>(I))
return updateWithICmpInst(A, ICI);
if (auto *SI = dyn_cast<SelectInst>(I))
return updateWithSelectInst(A, SI);
if (auto *CI = dyn_cast<CastInst>(I))
return updateWithCastInst(A, CI);
if (auto *BinOp = dyn_cast<BinaryOperator>(I))
return updateWithBinaryOperator(A, BinOp);
if (isa<PHINode>(I) || isa<LoadInst>(I))
return updateWithInstruction(A, I);
return indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FLOATING_ATTR(potential_values)
}
};
struct AAPotentialConstantValuesFunction : AAPotentialConstantValuesImpl {
AAPotentialConstantValuesFunction(const IRPosition &IRP, Attributor &A)
: AAPotentialConstantValuesImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
ChangeStatus updateImpl(Attributor &A) override {
llvm_unreachable(
"AAPotentialConstantValues(Function|CallSite)::updateImpl will "
"not be called");
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FN_ATTR(potential_values)
}
};
struct AAPotentialConstantValuesCallSite : AAPotentialConstantValuesFunction {
AAPotentialConstantValuesCallSite(const IRPosition &IRP, Attributor &A)
: AAPotentialConstantValuesFunction(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CS_ATTR(potential_values)
}
};
struct AAPotentialConstantValuesCallSiteReturned
: AACallSiteReturnedFromReturned<AAPotentialConstantValues,
AAPotentialConstantValuesImpl> {
AAPotentialConstantValuesCallSiteReturned(const IRPosition &IRP,
Attributor &A)
: AACallSiteReturnedFromReturned<AAPotentialConstantValues,
AAPotentialConstantValuesImpl>(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CSRET_ATTR(potential_values)
}
};
struct AAPotentialConstantValuesCallSiteArgument
: AAPotentialConstantValuesFloating {
AAPotentialConstantValuesCallSiteArgument(const IRPosition &IRP,
Attributor &A)
: AAPotentialConstantValuesFloating(IRP, A) {}
/// See AbstractAttribute::initialize(..).
void initialize(Attributor &A) override {
AAPotentialConstantValuesImpl::initialize(A);
if (isAtFixpoint())
return;
Value &V = getAssociatedValue();
if (auto *C = dyn_cast<ConstantInt>(&V)) {
unionAssumed(C->getValue());
indicateOptimisticFixpoint();
return;
}
if (isa<UndefValue>(&V)) {
unionAssumedWithUndef();
indicateOptimisticFixpoint();
return;
}
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
Value &V = getAssociatedValue();
auto AssumedBefore = getAssumed();
auto &AA = A.getAAFor<AAPotentialConstantValues>(
*this, IRPosition::value(V), DepClassTy::REQUIRED);
const auto &S = AA.getAssumed();
unionAssumed(S);
return AssumedBefore == getAssumed() ? ChangeStatus::UNCHANGED
: ChangeStatus::CHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CSARG_ATTR(potential_values)
}
};
/// ------------------------ NoUndef Attribute ---------------------------------
struct AANoUndefImpl : AANoUndef {
AANoUndefImpl(const IRPosition &IRP, Attributor &A) : AANoUndef(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (getIRPosition().hasAttr({Attribute::NoUndef})) {
indicateOptimisticFixpoint();
return;
}
Value &V = getAssociatedValue();
if (isa<UndefValue>(V))
indicatePessimisticFixpoint();
else if (isa<FreezeInst>(V))
indicateOptimisticFixpoint();
else if (getPositionKind() != IRPosition::IRP_RETURNED &&
isGuaranteedNotToBeUndefOrPoison(&V))
indicateOptimisticFixpoint();
else
AANoUndef::initialize(A);
}
/// See followUsesInMBEC
bool followUseInMBEC(Attributor &A, const Use *U, const Instruction *I,
AANoUndef::StateType &State) {
const Value *UseV = U->get();
const DominatorTree *DT = nullptr;
AssumptionCache *AC = nullptr;
InformationCache &InfoCache = A.getInfoCache();
if (Function *F = getAnchorScope()) {
DT = InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
}
State.setKnown(isGuaranteedNotToBeUndefOrPoison(UseV, AC, I, DT));
bool TrackUse = false;
// Track use for instructions which must produce undef or poison bits when
// at least one operand contains such bits.
if (isa<CastInst>(*I) || isa<GetElementPtrInst>(*I))
TrackUse = true;
return TrackUse;
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumed() ? "noundef" : "may-undef-or-poison";
}
ChangeStatus manifest(Attributor &A) override {
// We don't manifest noundef attribute for dead positions because the
// associated values with dead positions would be replaced with undef
// values.
bool UsedAssumedInformation = false;
if (A.isAssumedDead(getIRPosition(), nullptr, nullptr,
UsedAssumedInformation))
return ChangeStatus::UNCHANGED;
// A position whose simplified value does not have any value is
// considered to be dead. We don't manifest noundef in such positions for
// the same reason above.
if (!A.getAssumedSimplified(getIRPosition(), *this, UsedAssumedInformation,
AA::Interprocedural)
.has_value())
return ChangeStatus::UNCHANGED;
return AANoUndef::manifest(A);
}
};
struct AANoUndefFloating : public AANoUndefImpl {
AANoUndefFloating(const IRPosition &IRP, Attributor &A)
: AANoUndefImpl(IRP, A) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AANoUndefImpl::initialize(A);
if (!getState().isAtFixpoint())
if (Instruction *CtxI = getCtxI())
followUsesInMBEC(*this, A, getState(), *CtxI);
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
SmallVector<AA::ValueAndContext> Values;
bool UsedAssumedInformation = false;
if (!A.getAssumedSimplifiedValues(getIRPosition(), *this, Values,
AA::AnyScope, UsedAssumedInformation)) {
Values.push_back({getAssociatedValue(), getCtxI()});
}
StateType T;
auto VisitValueCB = [&](Value &V, const Instruction *CtxI) -> bool {
const auto &AA = A.getAAFor<AANoUndef>(*this, IRPosition::value(V),
DepClassTy::REQUIRED);
if (this == &AA) {
T.indicatePessimisticFixpoint();
} else {
const AANoUndef::StateType &S =
static_cast<const AANoUndef::StateType &>(AA.getState());
T ^= S;
}
return T.isValidState();
};
for (const auto &VAC : Values)
if (!VisitValueCB(*VAC.getValue(), VAC.getCtxI()))
return indicatePessimisticFixpoint();
return clampStateAndIndicateChange(getState(), T);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
};
struct AANoUndefReturned final
: AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl> {
AANoUndefReturned(const IRPosition &IRP, Attributor &A)
: AAReturnedFromReturnedValues<AANoUndef, AANoUndefImpl>(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noundef) }
};
struct AANoUndefArgument final
: AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl> {
AANoUndefArgument(const IRPosition &IRP, Attributor &A)
: AAArgumentFromCallSiteArguments<AANoUndef, AANoUndefImpl>(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noundef) }
};
struct AANoUndefCallSiteArgument final : AANoUndefFloating {
AANoUndefCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AANoUndefFloating(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noundef) }
};
struct AANoUndefCallSiteReturned final
: AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl> {
AANoUndefCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AACallSiteReturnedFromReturned<AANoUndef, AANoUndefImpl>(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noundef) }
};
struct AACallEdgesImpl : public AACallEdges {
AACallEdgesImpl(const IRPosition &IRP, Attributor &A) : AACallEdges(IRP, A) {}
const SetVector<Function *> &getOptimisticEdges() const override {
return CalledFunctions;
}
bool hasUnknownCallee() const override { return HasUnknownCallee; }
bool hasNonAsmUnknownCallee() const override {
return HasUnknownCalleeNonAsm;
}
const std::string getAsStr() const override {
return "CallEdges[" + std::to_string(HasUnknownCallee) + "," +
std::to_string(CalledFunctions.size()) + "]";
}
void trackStatistics() const override {}
protected:
void addCalledFunction(Function *Fn, ChangeStatus &Change) {
if (CalledFunctions.insert(Fn)) {
Change = ChangeStatus::CHANGED;
LLVM_DEBUG(dbgs() << "[AACallEdges] New call edge: " << Fn->getName()
<< "\n");
}
}
void setHasUnknownCallee(bool NonAsm, ChangeStatus &Change) {
if (!HasUnknownCallee)
Change = ChangeStatus::CHANGED;
if (NonAsm && !HasUnknownCalleeNonAsm)
Change = ChangeStatus::CHANGED;
HasUnknownCalleeNonAsm |= NonAsm;
HasUnknownCallee = true;
}
private:
/// Optimistic set of functions that might be called by this position.
SetVector<Function *> CalledFunctions;
/// Is there any call with a unknown callee.
bool HasUnknownCallee = false;
/// Is there any call with a unknown callee, excluding any inline asm.
bool HasUnknownCalleeNonAsm = false;
};
struct AACallEdgesCallSite : public AACallEdgesImpl {
AACallEdgesCallSite(const IRPosition &IRP, Attributor &A)
: AACallEdgesImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
ChangeStatus Change = ChangeStatus::UNCHANGED;
auto VisitValue = [&](Value &V, const Instruction *CtxI) -> bool {
if (Function *Fn = dyn_cast<Function>(&V)) {
addCalledFunction(Fn, Change);
} else {
LLVM_DEBUG(dbgs() << "[AACallEdges] Unrecognized value: " << V << "\n");
setHasUnknownCallee(true, Change);
}
// Explore all values.
return true;
};
SmallVector<AA::ValueAndContext> Values;
// Process any value that we might call.
auto ProcessCalledOperand = [&](Value *V, Instruction *CtxI) {
bool UsedAssumedInformation = false;
Values.clear();
if (!A.getAssumedSimplifiedValues(IRPosition::value(*V), *this, Values,
AA::AnyScope, UsedAssumedInformation)) {
Values.push_back({*V, CtxI});
}
for (auto &VAC : Values)
VisitValue(*VAC.getValue(), VAC.getCtxI());
};
CallBase *CB = cast<CallBase>(getCtxI());
if (auto *IA = dyn_cast<InlineAsm>(CB->getCalledOperand())) {
if (IA->hasSideEffects() &&
!hasAssumption(*CB->getCaller(), "ompx_no_call_asm") &&
!hasAssumption(*CB, "ompx_no_call_asm")) {
setHasUnknownCallee(false, Change);
}
return Change;
}
// Process callee metadata if available.
if (auto *MD = getCtxI()->getMetadata(LLVMContext::MD_callees)) {
for (const auto &Op : MD->operands()) {
Function *Callee = mdconst::dyn_extract_or_null<Function>(Op);
if (Callee)
addCalledFunction(Callee, Change);
}
return Change;
}
// The most simple case.
ProcessCalledOperand(CB->getCalledOperand(), CB);
// Process callback functions.
SmallVector<const Use *, 4u> CallbackUses;
AbstractCallSite::getCallbackUses(*CB, CallbackUses);
for (const Use *U : CallbackUses)
ProcessCalledOperand(U->get(), CB);
return Change;
}
};
struct AACallEdgesFunction : public AACallEdgesImpl {
AACallEdgesFunction(const IRPosition &IRP, Attributor &A)
: AACallEdgesImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
ChangeStatus Change = ChangeStatus::UNCHANGED;
auto ProcessCallInst = [&](Instruction &Inst) {
CallBase &CB = cast<CallBase>(Inst);
auto &CBEdges = A.getAAFor<AACallEdges>(
*this, IRPosition::callsite_function(CB), DepClassTy::REQUIRED);
if (CBEdges.hasNonAsmUnknownCallee())
setHasUnknownCallee(true, Change);
if (CBEdges.hasUnknownCallee())
setHasUnknownCallee(false, Change);
for (Function *F : CBEdges.getOptimisticEdges())
addCalledFunction(F, Change);
return true;
};
// Visit all callable instructions.
bool UsedAssumedInformation = false;
if (!A.checkForAllCallLikeInstructions(ProcessCallInst, *this,
UsedAssumedInformation,
/* CheckBBLivenessOnly */ true)) {
// If we haven't looked at all call like instructions, assume that there
// are unknown callees.
setHasUnknownCallee(true, Change);
}
return Change;
}
};
/// -------------------AAInterFnReachability Attribute--------------------------
struct AAInterFnReachabilityFunction
: public CachedReachabilityAA<AAInterFnReachability, Function> {
AAInterFnReachabilityFunction(const IRPosition &IRP, Attributor &A)
: CachedReachabilityAA<AAInterFnReachability, Function>(IRP, A) {}
bool instructionCanReach(
Attributor &A, const Instruction &From, const Function &To,
const AA::InstExclusionSetTy *ExclusionSet,
SmallPtrSet<const Function *, 16> *Visited) const override {
assert(From.getFunction() == getAnchorScope() && "Queried the wrong AA!");
auto *NonConstThis = const_cast<AAInterFnReachabilityFunction *>(this);
RQITy StackRQI(A, From, To, ExclusionSet);
typename RQITy::Reachable Result;
if (RQITy *RQIPtr = NonConstThis->checkQueryCache(A, StackRQI, Result))
return NonConstThis->isReachableImpl(A, *RQIPtr);
return Result == RQITy::Reachable::Yes;
}
bool isReachableImpl(Attributor &A, RQITy &RQI) override {
return isReachableImpl(A, RQI, nullptr);
}
bool isReachableImpl(Attributor &A, RQITy &RQI,
SmallPtrSet<const Function *, 16> *Visited) {
SmallPtrSet<const Function *, 16> LocalVisited;
if (!Visited)
Visited = &LocalVisited;
const auto &IntraFnReachability = A.getAAFor<AAIntraFnReachability>(
*this, IRPosition::function(*RQI.From->getFunction()),
DepClassTy::OPTIONAL);
// Determine call like instructions that we can reach from the inst.
SmallVector<CallBase *> ReachableCallBases;
auto CheckCallBase = [&](Instruction &CBInst) {
if (IntraFnReachability.isAssumedReachable(A, *RQI.From, CBInst,
RQI.ExclusionSet))
ReachableCallBases.push_back(cast<CallBase>(&CBInst));
return true;
};
bool UsedAssumedInformation = false;
if (!A.checkForAllCallLikeInstructions(CheckCallBase, *this,
UsedAssumedInformation,
/* CheckBBLivenessOnly */ true))
return rememberResult(A, RQITy::Reachable::Yes, RQI);
for (CallBase *CB : ReachableCallBases) {
auto &CBEdges = A.getAAFor<AACallEdges>(
*this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
if (!CBEdges.getState().isValidState())
return rememberResult(A, RQITy::Reachable::Yes, RQI);
// TODO Check To backwards in this case.
if (CBEdges.hasUnknownCallee())
return rememberResult(A, RQITy::Reachable::Yes, RQI);
for (Function *Fn : CBEdges.getOptimisticEdges()) {
if (Fn == RQI.To)
return rememberResult(A, RQITy::Reachable::Yes, RQI);
if (!Visited->insert(Fn).second)
continue;
if (Fn->isDeclaration()) {
if (Fn->hasFnAttribute(Attribute::NoCallback))
continue;
// TODO Check To backwards in this case.
return rememberResult(A, RQITy::Reachable::Yes, RQI);
}
const AAInterFnReachability *InterFnReachability = this;
if (Fn != getAnchorScope())
InterFnReachability = &A.getAAFor<AAInterFnReachability>(
*this, IRPosition::function(*Fn), DepClassTy::OPTIONAL);
const Instruction &FnFirstInst = Fn->getEntryBlock().front();
if (InterFnReachability->instructionCanReach(A, FnFirstInst, *RQI.To,
RQI.ExclusionSet, Visited))
return rememberResult(A, RQITy::Reachable::Yes, RQI);
}
}
return rememberResult(A, RQITy::Reachable::No, RQI);
}
void trackStatistics() const override {}
private:
SmallVector<RQITy *> QueryVector;
DenseSet<RQITy *> QueryCache;
};
} // namespace
template <typename AAType>
static std::optional<Constant *>
askForAssumedConstant(Attributor &A, const AbstractAttribute &QueryingAA,
const IRPosition &IRP, Type &Ty) {
if (!Ty.isIntegerTy())
return nullptr;
// This will also pass the call base context.
const auto &AA = A.getAAFor<AAType>(QueryingAA, IRP, DepClassTy::NONE);
std::optional<Constant *> COpt = AA.getAssumedConstant(A);
if (!COpt.has_value()) {
A.recordDependence(AA, QueryingAA, DepClassTy::OPTIONAL);
return std::nullopt;
}
if (auto *C = *COpt) {
A.recordDependence(AA, QueryingAA, DepClassTy::OPTIONAL);
return C;
}
return nullptr;
}
Value *AAPotentialValues::getSingleValue(
Attributor &A, const AbstractAttribute &AA, const IRPosition &IRP,
SmallVectorImpl<AA::ValueAndContext> &Values) {
Type &Ty = *IRP.getAssociatedType();
std::optional<Value *> V;
for (auto &It : Values) {
V = AA::combineOptionalValuesInAAValueLatice(V, It.getValue(), &Ty);
if (V.has_value() && !*V)
break;
}
if (!V.has_value())
return UndefValue::get(&Ty);
return *V;
}
namespace {
struct AAPotentialValuesImpl : AAPotentialValues {
using StateType = PotentialLLVMValuesState;
AAPotentialValuesImpl(const IRPosition &IRP, Attributor &A)
: AAPotentialValues(IRP, A) {}
/// See AbstractAttribute::initialize(..).
void initialize(Attributor &A) override {
if (A.hasSimplificationCallback(getIRPosition())) {
indicatePessimisticFixpoint();
return;
}
Value *Stripped = getAssociatedValue().stripPointerCasts();
auto *CE = dyn_cast<ConstantExpr>(Stripped);
if (isa<Constant>(Stripped) &&
(!CE || CE->getOpcode() != Instruction::ICmp)) {
addValue(A, getState(), *Stripped, getCtxI(), AA::AnyScope,
getAnchorScope());
indicateOptimisticFixpoint();
return;
}
AAPotentialValues::initialize(A);
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
std::string Str;
llvm::raw_string_ostream OS(Str);
OS << getState();
return OS.str();
}
template <typename AAType>
static std::optional<Value *> askOtherAA(Attributor &A,
const AbstractAttribute &AA,
const IRPosition &IRP, Type &Ty) {
if (isa<Constant>(IRP.getAssociatedValue()))
return &IRP.getAssociatedValue();
std::optional<Constant *> C = askForAssumedConstant<AAType>(A, AA, IRP, Ty);
if (!C)
return std::nullopt;
if (*C)
if (auto *CC = AA::getWithType(**C, Ty))
return CC;
return nullptr;
}
void addValue(Attributor &A, StateType &State, Value &V,
const Instruction *CtxI, AA::ValueScope S,
Function *AnchorScope) const {
IRPosition ValIRP = IRPosition::value(V);
if (auto *CB = dyn_cast_or_null<CallBase>(CtxI)) {
for (const auto &U : CB->args()) {
if (U.get() != &V)
continue;
ValIRP = IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
break;
}
}
Value *VPtr = &V;
if (ValIRP.getAssociatedType()->isIntegerTy()) {
Type &Ty = *getAssociatedType();
std::optional<Value *> SimpleV =
askOtherAA<AAValueConstantRange>(A, *this, ValIRP, Ty);
if (SimpleV.has_value() && !*SimpleV) {
auto &PotentialConstantsAA = A.getAAFor<AAPotentialConstantValues>(
*this, ValIRP, DepClassTy::OPTIONAL);
if (PotentialConstantsAA.isValidState()) {
for (const auto &It : PotentialConstantsAA.getAssumedSet())
State.unionAssumed({{*ConstantInt::get(&Ty, It), nullptr}, S});
if (PotentialConstantsAA.undefIsContained())
State.unionAssumed({{*UndefValue::get(&Ty), nullptr}, S});
return;
}
}
if (!SimpleV.has_value())
return;
if (*SimpleV)
VPtr = *SimpleV;
}
if (isa<ConstantInt>(VPtr))
CtxI = nullptr;
if (!AA::isValidInScope(*VPtr, AnchorScope))
S = AA::ValueScope(S | AA::Interprocedural);
State.unionAssumed({{*VPtr, CtxI}, S});
}
/// Helper struct to tie a value+context pair together with the scope for
/// which this is the simplified version.
struct ItemInfo {
AA::ValueAndContext I;
AA::ValueScope S;
bool operator==(const ItemInfo &II) const {
return II.I == I && II.S == S;
};
bool operator<(const ItemInfo &II) const {
if (I == II.I)
return S < II.S;
return I < II.I;
};
};
bool recurseForValue(Attributor &A, const IRPosition &IRP, AA::ValueScope S) {
SmallMapVector<AA::ValueAndContext, int, 8> ValueScopeMap;
for (auto CS : {AA::Intraprocedural, AA::Interprocedural}) {
if (!(CS & S))
continue;
bool UsedAssumedInformation = false;
SmallVector<AA::ValueAndContext> Values;
if (!A.getAssumedSimplifiedValues(IRP, this, Values, CS,
UsedAssumedInformation))
return false;
for (auto &It : Values)
ValueScopeMap[It] += CS;
}
for (auto &It : ValueScopeMap)
addValue(A, getState(), *It.first.getValue(), It.first.getCtxI(),
AA::ValueScope(It.second), getAnchorScope());
return true;
}
void giveUpOnIntraprocedural(Attributor &A) {
auto NewS = StateType::getBestState(getState());
for (const auto &It : getAssumedSet()) {
if (It.second == AA::Intraprocedural)
continue;
addValue(A, NewS, *It.first.getValue(), It.first.getCtxI(),
AA::Interprocedural, getAnchorScope());
}
assert(!undefIsContained() && "Undef should be an explicit value!");
addValue(A, NewS, getAssociatedValue(), getCtxI(), AA::Intraprocedural,
getAnchorScope());
getState() = NewS;
}
/// See AbstractState::indicatePessimisticFixpoint(...).
ChangeStatus indicatePessimisticFixpoint() override {
getState() = StateType::getBestState(getState());
getState().unionAssumed({{getAssociatedValue(), getCtxI()}, AA::AnyScope});
AAPotentialValues::indicateOptimisticFixpoint();
return ChangeStatus::CHANGED;
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
return indicatePessimisticFixpoint();
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
SmallVector<AA::ValueAndContext> Values;
for (AA::ValueScope S : {AA::Interprocedural, AA::Intraprocedural}) {
Values.clear();
if (!getAssumedSimplifiedValues(A, Values, S))
continue;
Value &OldV = getAssociatedValue();
if (isa<UndefValue>(OldV))
continue;
Value *NewV = getSingleValue(A, *this, getIRPosition(), Values);
if (!NewV || NewV == &OldV)
continue;
if (getCtxI() &&
!AA::isValidAtPosition({*NewV, *getCtxI()}, A.getInfoCache()))
continue;
if (A.changeAfterManifest(getIRPosition(), *NewV))
return ChangeStatus::CHANGED;
}
return ChangeStatus::UNCHANGED;
}
bool getAssumedSimplifiedValues(Attributor &A,
SmallVectorImpl<AA::ValueAndContext> &Values,
AA::ValueScope S) const override {
if (!isValidState())
return false;
for (const auto &It : getAssumedSet())
if (It.second & S)
Values.push_back(It.first);
assert(!undefIsContained() && "Undef should be an explicit value!");
return true;
}
};
struct AAPotentialValuesFloating : AAPotentialValuesImpl {
AAPotentialValuesFloating(const IRPosition &IRP, Attributor &A)
: AAPotentialValuesImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto AssumedBefore = getAssumed();
genericValueTraversal(A);
return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
: ChangeStatus::CHANGED;
}
/// Helper struct to remember which AAIsDead instances we actually used.
struct LivenessInfo {
const AAIsDead *LivenessAA = nullptr;
bool AnyDead = false;
};
/// Check if \p Cmp is a comparison we can simplify.
///
/// We handle multiple cases, one in which at least one operand is an
/// (assumed) nullptr. If so, try to simplify it using AANonNull on the other
/// operand. Return true if successful, in that case Worklist will be updated.
bool handleCmp(Attributor &A, Value &Cmp, Value *LHS, Value *RHS,
CmpInst::Predicate Pred, ItemInfo II,
SmallVectorImpl<ItemInfo> &Worklist) {
// Simplify the operands first.
bool UsedAssumedInformation = false;
const auto &SimplifiedLHS = A.getAssumedSimplified(
IRPosition::value(*LHS, getCallBaseContext()), *this,
UsedAssumedInformation, AA::Intraprocedural);
if (!SimplifiedLHS.has_value())
return true;
if (!*SimplifiedLHS)
return false;
LHS = *SimplifiedLHS;
const auto &SimplifiedRHS = A.getAssumedSimplified(
IRPosition::value(*RHS, getCallBaseContext()), *this,
UsedAssumedInformation, AA::Intraprocedural);
if (!SimplifiedRHS.has_value())
return true;
if (!*SimplifiedRHS)
return false;
RHS = *SimplifiedRHS;
LLVMContext &Ctx = LHS->getContext();
// Handle the trivial case first in which we don't even need to think about
// null or non-null.
if (LHS == RHS &&
(CmpInst::isTrueWhenEqual(Pred) || CmpInst::isFalseWhenEqual(Pred))) {
Constant *NewV = ConstantInt::get(Type::getInt1Ty(Ctx),
CmpInst::isTrueWhenEqual(Pred));
addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S,
getAnchorScope());
return true;
}
// From now on we only handle equalities (==, !=).
if (!CmpInst::isEquality(Pred))
return false;
bool LHSIsNull = isa<ConstantPointerNull>(LHS);
bool RHSIsNull = isa<ConstantPointerNull>(RHS);
if (!LHSIsNull && !RHSIsNull)
return false;
// Left is the nullptr ==/!= non-nullptr case. We'll use AANonNull on the
// non-nullptr operand and if we assume it's non-null we can conclude the
// result of the comparison.
assert((LHSIsNull || RHSIsNull) &&
"Expected nullptr versus non-nullptr comparison at this point");
// The index is the operand that we assume is not null.
unsigned PtrIdx = LHSIsNull;
auto &PtrNonNullAA = A.getAAFor<AANonNull>(
*this, IRPosition::value(*(PtrIdx ? RHS : LHS)), DepClassTy::REQUIRED);
if (!PtrNonNullAA.isAssumedNonNull())
return false;
// The new value depends on the predicate, true for != and false for ==.
Constant *NewV =
ConstantInt::get(Type::getInt1Ty(Ctx), Pred == CmpInst::ICMP_NE);
addValue(A, getState(), *NewV, /* CtxI */ nullptr, II.S, getAnchorScope());
return true;
}
bool handleSelectInst(Attributor &A, SelectInst &SI, ItemInfo II,
SmallVectorImpl<ItemInfo> &Worklist) {
const Instruction *CtxI = II.I.getCtxI();
bool UsedAssumedInformation = false;
std::optional<Constant *> C =
A.getAssumedConstant(*SI.getCondition(), *this, UsedAssumedInformation);
bool NoValueYet = !C.has_value();
if (NoValueYet || isa_and_nonnull<UndefValue>(*C))
return true;
if (auto *CI = dyn_cast_or_null<ConstantInt>(*C)) {
if (CI->isZero())
Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
else
Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
} else if (&SI == &getAssociatedValue()) {
// We could not simplify the condition, assume both values.
Worklist.push_back({{*SI.getTrueValue(), CtxI}, II.S});
Worklist.push_back({{*SI.getFalseValue(), CtxI}, II.S});
} else {
std::optional<Value *> SimpleV = A.getAssumedSimplified(
IRPosition::inst(SI), *this, UsedAssumedInformation, II.S);
if (!SimpleV.has_value())
return true;
if (*SimpleV) {
addValue(A, getState(), **SimpleV, CtxI, II.S, getAnchorScope());
return true;
}
return false;
}
return true;
}
bool handleLoadInst(Attributor &A, LoadInst &LI, ItemInfo II,
SmallVectorImpl<ItemInfo> &Worklist) {
SmallSetVector<Value *, 4> PotentialCopies;
SmallSetVector<Instruction *, 4> PotentialValueOrigins;
bool UsedAssumedInformation = false;
if (!AA::getPotentiallyLoadedValues(A, LI, PotentialCopies,
PotentialValueOrigins, *this,
UsedAssumedInformation,
/* OnlyExact */ true)) {
LLVM_DEBUG(dbgs() << "[AAPotentialValues] Failed to get potentially "
"loaded values for load instruction "
<< LI << "\n");
return false;
}
// Do not simplify loads that are only used in llvm.assume if we cannot also
// remove all stores that may feed into the load. The reason is that the
// assume is probably worth something as long as the stores are around.
InformationCache &InfoCache = A.getInfoCache();
if (InfoCache.isOnlyUsedByAssume(LI)) {
if (!llvm::all_of(PotentialValueOrigins, [&](Instruction *I) {
if (!I)
return true;
if (auto *SI = dyn_cast<StoreInst>(I))
return A.isAssumedDead(SI->getOperandUse(0), this,
/* LivenessAA */ nullptr,
UsedAssumedInformation,
/* CheckBBLivenessOnly */ false);
return A.isAssumedDead(*I, this, /* LivenessAA */ nullptr,
UsedAssumedInformation,
/* CheckBBLivenessOnly */ false);
})) {
LLVM_DEBUG(dbgs() << "[AAPotentialValues] Load is onl used by assumes "
"and we cannot delete all the stores: "
<< LI << "\n");
return false;
}
}
// Values have to be dynamically unique or we loose the fact that a
// single llvm::Value might represent two runtime values (e.g.,
// stack locations in different recursive calls).
const Instruction *CtxI = II.I.getCtxI();
bool ScopeIsLocal = (II.S & AA::Intraprocedural);
bool AllLocal = ScopeIsLocal;
bool DynamicallyUnique = llvm::all_of(PotentialCopies, [&](Value *PC) {
AllLocal &= AA::isValidInScope(*PC, getAnchorScope());
return AA::isDynamicallyUnique(A, *this, *PC);
});
if (!DynamicallyUnique) {
LLVM_DEBUG(dbgs() << "[AAPotentialValues] Not all potentially loaded "
"values are dynamically unique: "
<< LI << "\n");
return false;
}
for (auto *PotentialCopy : PotentialCopies) {
if (AllLocal) {
Worklist.push_back({{*PotentialCopy, CtxI}, II.S});
} else {
Worklist.push_back({{*PotentialCopy, CtxI}, AA::Interprocedural});
}
}
if (!AllLocal && ScopeIsLocal)
addValue(A, getState(), LI, CtxI, AA::Intraprocedural, getAnchorScope());
return true;
}
bool handlePHINode(
Attributor &A, PHINode &PHI, ItemInfo II,
SmallVectorImpl<ItemInfo> &Worklist,
SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
auto GetLivenessInfo = [&](const Function &F) -> LivenessInfo & {
LivenessInfo &LI = LivenessAAs[&F];
if (!LI.LivenessAA)
LI.LivenessAA = &A.getAAFor<AAIsDead>(*this, IRPosition::function(F),
DepClassTy::NONE);
return LI;
};
if (&PHI == &getAssociatedValue()) {
LivenessInfo &LI = GetLivenessInfo(*PHI.getFunction());
for (unsigned u = 0, e = PHI.getNumIncomingValues(); u < e; u++) {
BasicBlock *IncomingBB = PHI.getIncomingBlock(u);
if (LI.LivenessAA->isEdgeDead(IncomingBB, PHI.getParent())) {
LI.AnyDead = true;
continue;
}
Worklist.push_back(
{{*PHI.getIncomingValue(u), IncomingBB->getTerminator()}, II.S});
}
return true;
}
bool UsedAssumedInformation = false;
std::optional<Value *> SimpleV = A.getAssumedSimplified(
IRPosition::inst(PHI), *this, UsedAssumedInformation, II.S);
if (!SimpleV.has_value())
return true;
if (!(*SimpleV))
return false;
addValue(A, getState(), **SimpleV, &PHI, II.S, getAnchorScope());
return true;
}
/// Use the generic, non-optimistic InstSimplfy functionality if we managed to
/// simplify any operand of the instruction \p I. Return true if successful,
/// in that case Worklist will be updated.
bool handleGenericInst(Attributor &A, Instruction &I, ItemInfo II,
SmallVectorImpl<ItemInfo> &Worklist) {
bool SomeSimplified = false;
bool UsedAssumedInformation = false;
SmallVector<Value *, 8> NewOps(I.getNumOperands());
int Idx = 0;
for (Value *Op : I.operands()) {
const auto &SimplifiedOp = A.getAssumedSimplified(
IRPosition::value(*Op, getCallBaseContext()), *this,
UsedAssumedInformation, AA::Intraprocedural);
// If we are not sure about any operand we are not sure about the entire
// instruction, we'll wait.
if (!SimplifiedOp.has_value())
return true;
if (*SimplifiedOp)
NewOps[Idx] = *SimplifiedOp;
else
NewOps[Idx] = Op;
SomeSimplified |= (NewOps[Idx] != Op);
++Idx;
}
// We won't bother with the InstSimplify interface if we didn't simplify any
// operand ourselves.
if (!SomeSimplified)
return false;
InformationCache &InfoCache = A.getInfoCache();
Function *F = I.getFunction();
const auto *DT =
InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*F);
const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
auto *AC = InfoCache.getAnalysisResultForFunction<AssumptionAnalysis>(*F);
OptimizationRemarkEmitter *ORE = nullptr;
const DataLayout &DL = I.getModule()->getDataLayout();
SimplifyQuery Q(DL, TLI, DT, AC, &I);
Value *NewV = simplifyInstructionWithOperands(&I, NewOps, Q, ORE);
if (!NewV || NewV == &I)
return false;
LLVM_DEBUG(dbgs() << "Generic inst " << I << " assumed simplified to "
<< *NewV << "\n");
Worklist.push_back({{*NewV, II.I.getCtxI()}, II.S});
return true;
}
bool simplifyInstruction(
Attributor &A, Instruction &I, ItemInfo II,
SmallVectorImpl<ItemInfo> &Worklist,
SmallMapVector<const Function *, LivenessInfo, 4> &LivenessAAs) {
if (auto *CI = dyn_cast<CmpInst>(&I))
if (handleCmp(A, *CI, CI->getOperand(0), CI->getOperand(1),
CI->getPredicate(), II, Worklist))
return true;
switch (I.getOpcode()) {
case Instruction::Select:
return handleSelectInst(A, cast<SelectInst>(I), II, Worklist);
case Instruction::PHI:
return handlePHINode(A, cast<PHINode>(I), II, Worklist, LivenessAAs);
case Instruction::Load:
return handleLoadInst(A, cast<LoadInst>(I), II, Worklist);
default:
return handleGenericInst(A, I, II, Worklist);
};
return false;
}
void genericValueTraversal(Attributor &A) {
SmallMapVector<const Function *, LivenessInfo, 4> LivenessAAs;
Value *InitialV = &getAssociatedValue();
SmallSet<ItemInfo, 16> Visited;
SmallVector<ItemInfo, 16> Worklist;
Worklist.push_back({{*InitialV, getCtxI()}, AA::AnyScope});
int Iteration = 0;
do {
ItemInfo II = Worklist.pop_back_val();
Value *V = II.I.getValue();
assert(V);
const Instruction *CtxI = II.I.getCtxI();
AA::ValueScope S = II.S;
// Check if we should process the current value. To prevent endless
// recursion keep a record of the values we followed!
if (!Visited.insert(II).second)
continue;
// Make sure we limit the compile time for complex expressions.
if (Iteration++ >= MaxPotentialValuesIterations) {
LLVM_DEBUG(dbgs() << "Generic value traversal reached iteration limit: "
<< Iteration << "!\n");
addValue(A, getState(), *V, CtxI, S, getAnchorScope());
continue;
}
// Explicitly look through calls with a "returned" attribute if we do
// not have a pointer as stripPointerCasts only works on them.
Value *NewV = nullptr;
if (V->getType()->isPointerTy()) {
NewV = AA::getWithType(*V->stripPointerCasts(), *V->getType());
} else {
auto *CB = dyn_cast<CallBase>(V);
if (CB && CB->getCalledFunction()) {
for (Argument &Arg : CB->getCalledFunction()->args())
if (Arg.hasReturnedAttr()) {
NewV = CB->getArgOperand(Arg.getArgNo());
break;
}
}
}
if (NewV && NewV != V) {
Worklist.push_back({{*NewV, CtxI}, S});
continue;
}
if (auto *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->getOpcode() == Instruction::ICmp)
if (handleCmp(A, *CE, CE->getOperand(0), CE->getOperand(1),
CmpInst::Predicate(CE->getPredicate()), II, Worklist))
continue;
}
if (auto *I = dyn_cast<Instruction>(V)) {
if (simplifyInstruction(A, *I, II, Worklist, LivenessAAs))
continue;
}
if (V != InitialV || isa<Argument>(V))
if (recurseForValue(A, IRPosition::value(*V), II.S))
continue;
// If we haven't stripped anything we give up.
if (V == InitialV && CtxI == getCtxI()) {
indicatePessimisticFixpoint();
return;
}
addValue(A, getState(), *V, CtxI, S, getAnchorScope());
} while (!Worklist.empty());
// If we actually used liveness information so we have to record a
// dependence.
for (auto &It : LivenessAAs)
if (It.second.AnyDead)
A.recordDependence(*It.second.LivenessAA, *this, DepClassTy::OPTIONAL);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FLOATING_ATTR(potential_values)
}
};
struct AAPotentialValuesArgument final : AAPotentialValuesImpl {
using Base = AAPotentialValuesImpl;
AAPotentialValuesArgument(const IRPosition &IRP, Attributor &A)
: Base(IRP, A) {}
/// See AbstractAttribute::initialize(..).
void initialize(Attributor &A) override {
auto &Arg = cast<Argument>(getAssociatedValue());
if (Arg.hasPointeeInMemoryValueAttr())
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto AssumedBefore = getAssumed();
unsigned CSArgNo = getCallSiteArgNo();
bool UsedAssumedInformation = false;
SmallVector<AA::ValueAndContext> Values;
auto CallSitePred = [&](AbstractCallSite ACS) {
const auto CSArgIRP = IRPosition::callsite_argument(ACS, CSArgNo);
if (CSArgIRP.getPositionKind() == IRP_INVALID)
return false;
if (!A.getAssumedSimplifiedValues(CSArgIRP, this, Values,
AA::Interprocedural,
UsedAssumedInformation))
return false;
return isValidState();
};
if (!A.checkForAllCallSites(CallSitePred, *this,
/* RequireAllCallSites */ true,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
Function *Fn = getAssociatedFunction();
bool AnyNonLocal = false;
for (auto &It : Values) {
if (isa<Constant>(It.getValue())) {
addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
getAnchorScope());
continue;
}
if (!AA::isDynamicallyUnique(A, *this, *It.getValue()))
return indicatePessimisticFixpoint();
if (auto *Arg = dyn_cast<Argument>(It.getValue()))
if (Arg->getParent() == Fn) {
addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::AnyScope,
getAnchorScope());
continue;
}
addValue(A, getState(), *It.getValue(), It.getCtxI(), AA::Interprocedural,
getAnchorScope());
AnyNonLocal = true;
}
assert(!undefIsContained() && "Undef should be an explicit value!");
if (AnyNonLocal)
giveUpOnIntraprocedural(A);
return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
: ChangeStatus::CHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_ARG_ATTR(potential_values)
}
};
struct AAPotentialValuesReturned
: AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl> {
using Base =
AAReturnedFromReturnedValues<AAPotentialValues, AAPotentialValuesImpl>;
AAPotentialValuesReturned(const IRPosition &IRP, Attributor &A)
: Base(IRP, A) {}
/// See AbstractAttribute::initialize(..).
void initialize(Attributor &A) override {
if (A.hasSimplificationCallback(getIRPosition()))
indicatePessimisticFixpoint();
else
AAPotentialValues::initialize(A);
}
ChangeStatus manifest(Attributor &A) override {
// We queried AAValueSimplify for the returned values so they will be
// replaced if a simplified form was found. Nothing to do here.
return ChangeStatus::UNCHANGED;
}
ChangeStatus indicatePessimisticFixpoint() override {
return AAPotentialValues::indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FNRET_ATTR(potential_values)
}
};
struct AAPotentialValuesFunction : AAPotentialValuesImpl {
AAPotentialValuesFunction(const IRPosition &IRP, Attributor &A)
: AAPotentialValuesImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
llvm_unreachable("AAPotentialValues(Function|CallSite)::updateImpl will "
"not be called");
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FN_ATTR(potential_values)
}
};
struct AAPotentialValuesCallSite : AAPotentialValuesFunction {
AAPotentialValuesCallSite(const IRPosition &IRP, Attributor &A)
: AAPotentialValuesFunction(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CS_ATTR(potential_values)
}
};
struct AAPotentialValuesCallSiteReturned : AAPotentialValuesImpl {
AAPotentialValuesCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AAPotentialValuesImpl(IRP, A) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto AssumedBefore = getAssumed();
Function *Callee = getAssociatedFunction();
if (!Callee)
return indicatePessimisticFixpoint();
bool UsedAssumedInformation = false;
auto *CB = cast<CallBase>(getCtxI());
if (CB->isMustTailCall() &&
!A.isAssumedDead(IRPosition::inst(*CB), this, nullptr,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
SmallVector<AA::ValueAndContext> Values;
if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
Values, AA::Intraprocedural,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
Function *Caller = CB->getCaller();
bool AnyNonLocal = false;
for (auto &It : Values) {
Value *V = It.getValue();
std::optional<Value *> CallerV = A.translateArgumentToCallSiteContent(
V, *CB, *this, UsedAssumedInformation);
if (!CallerV.has_value()) {
// Nothing to do as long as no value was determined.
continue;
}
V = *CallerV ? *CallerV : V;
if (AA::isDynamicallyUnique(A, *this, *V) &&
AA::isValidInScope(*V, Caller)) {
if (*CallerV) {
SmallVector<AA::ValueAndContext> ArgValues;
IRPosition IRP = IRPosition::value(*V);
if (auto *Arg = dyn_cast<Argument>(V))
if (Arg->getParent() == CB->getCalledFunction())
IRP = IRPosition::callsite_argument(*CB, Arg->getArgNo());
if (recurseForValue(A, IRP, AA::AnyScope))
continue;
}
addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
} else {
AnyNonLocal = true;
break;
}
}
if (AnyNonLocal) {
Values.clear();
if (!A.getAssumedSimplifiedValues(IRPosition::returned(*Callee), this,
Values, AA::Interprocedural,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
AnyNonLocal = false;
getState() = PotentialLLVMValuesState::getBestState();
for (auto &It : Values) {
Value *V = It.getValue();
if (!AA::isDynamicallyUnique(A, *this, *V))
return indicatePessimisticFixpoint();
if (AA::isValidInScope(*V, Caller)) {
addValue(A, getState(), *V, CB, AA::AnyScope, getAnchorScope());
} else {
AnyNonLocal = true;
addValue(A, getState(), *V, CB, AA::Interprocedural,
getAnchorScope());
}
}
if (AnyNonLocal)
giveUpOnIntraprocedural(A);
}
return (AssumedBefore == getAssumed()) ? ChangeStatus::UNCHANGED
: ChangeStatus::CHANGED;
}
ChangeStatus indicatePessimisticFixpoint() override {
return AAPotentialValues::indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CSRET_ATTR(potential_values)
}
};
struct AAPotentialValuesCallSiteArgument : AAPotentialValuesFloating {
AAPotentialValuesCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AAPotentialValuesFloating(IRP, A) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CSARG_ATTR(potential_values)
}
};
} // namespace
/// ---------------------- Assumption Propagation ------------------------------
namespace {
struct AAAssumptionInfoImpl : public AAAssumptionInfo {
AAAssumptionInfoImpl(const IRPosition &IRP, Attributor &A,
const DenseSet<StringRef> &Known)
: AAAssumptionInfo(IRP, A, Known) {}
bool hasAssumption(const StringRef Assumption) const override {
return isValidState() && setContains(Assumption);
}
/// See AbstractAttribute::getAsStr()
const std::string getAsStr() const override {
const SetContents &Known = getKnown();
const SetContents &Assumed = getAssumed();
const std::string KnownStr =
llvm::join(Known.getSet().begin(), Known.getSet().end(), ",");
const std::string AssumedStr =
(Assumed.isUniversal())
? "Universal"
: llvm::join(Assumed.getSet().begin(), Assumed.getSet().end(), ",");
return "Known [" + KnownStr + "]," + " Assumed [" + AssumedStr + "]";
}
};
/// Propagates assumption information from parent functions to all of their
/// successors. An assumption can be propagated if the containing function
/// dominates the called function.
///
/// We start with a "known" set of assumptions already valid for the associated
/// function and an "assumed" set that initially contains all possible
/// assumptions. The assumed set is inter-procedurally updated by narrowing its
/// contents as concrete values are known. The concrete values are seeded by the
/// first nodes that are either entries into the call graph, or contains no
/// assumptions. Each node is updated as the intersection of the assumed state
/// with all of its predecessors.
struct AAAssumptionInfoFunction final : AAAssumptionInfoImpl {
AAAssumptionInfoFunction(const IRPosition &IRP, Attributor &A)
: AAAssumptionInfoImpl(IRP, A,
getAssumptions(*IRP.getAssociatedFunction())) {}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
const auto &Assumptions = getKnown();
// Don't manifest a universal set if it somehow made it here.
if (Assumptions.isUniversal())
return ChangeStatus::UNCHANGED;
Function *AssociatedFunction = getAssociatedFunction();
bool Changed = addAssumptions(*AssociatedFunction, Assumptions.getSet());
return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
bool Changed = false;
auto CallSitePred = [&](AbstractCallSite ACS) {
const auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
*this, IRPosition::callsite_function(*ACS.getInstruction()),
DepClassTy::REQUIRED);
// Get the set of assumptions shared by all of this function's callers.
Changed |= getIntersection(AssumptionAA.getAssumed());
return !getAssumed().empty() || !getKnown().empty();
};
bool UsedAssumedInformation = false;
// Get the intersection of all assumptions held by this node's predecessors.
// If we don't know all the call sites then this is either an entry into the
// call graph or an empty node. This node is known to only contain its own
// assumptions and can be propagated to its successors.
if (!A.checkForAllCallSites(CallSitePred, *this, true,
UsedAssumedInformation))
return indicatePessimisticFixpoint();
return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
}
void trackStatistics() const override {}
};
/// Assumption Info defined for call sites.
struct AAAssumptionInfoCallSite final : AAAssumptionInfoImpl {
AAAssumptionInfoCallSite(const IRPosition &IRP, Attributor &A)
: AAAssumptionInfoImpl(IRP, A, getInitialAssumptions(IRP)) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
// Don't manifest a universal set if it somehow made it here.
if (getKnown().isUniversal())
return ChangeStatus::UNCHANGED;
CallBase &AssociatedCall = cast<CallBase>(getAssociatedValue());
bool Changed = addAssumptions(AssociatedCall, getAssumed().getSet());
return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
const IRPosition &FnPos = IRPosition::function(*getAnchorScope());
auto &AssumptionAA =
A.getAAFor<AAAssumptionInfo>(*this, FnPos, DepClassTy::REQUIRED);
bool Changed = getIntersection(AssumptionAA.getAssumed());
return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {}
private:
/// Helper to initialized the known set as all the assumptions this call and
/// the callee contain.
DenseSet<StringRef> getInitialAssumptions(const IRPosition &IRP) {
const CallBase &CB = cast<CallBase>(IRP.getAssociatedValue());
auto Assumptions = getAssumptions(CB);
if (const Function *F = CB.getCaller())
set_union(Assumptions, getAssumptions(*F));
if (Function *F = IRP.getAssociatedFunction())
set_union(Assumptions, getAssumptions(*F));
return Assumptions;
}
};
} // namespace
AACallGraphNode *AACallEdgeIterator::operator*() const {
return static_cast<AACallGraphNode *>(const_cast<AACallEdges *>(
&A.getOrCreateAAFor<AACallEdges>(IRPosition::function(**I))));
}
void AttributorCallGraph::print() { llvm::WriteGraph(outs(), this); }
/// ------------------------ UnderlyingObjects ---------------------------------
namespace {
struct AAUnderlyingObjectsImpl
: StateWrapper<BooleanState, AAUnderlyingObjects> {
using BaseTy = StateWrapper<BooleanState, AAUnderlyingObjects>;
AAUnderlyingObjectsImpl(const IRPosition &IRP, Attributor &A) : BaseTy(IRP) {}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return std::string("UnderlyingObjects ") +
(isValidState()
? (std::string("inter #") +
std::to_string(InterAssumedUnderlyingObjects.size()) +
" objs" + std::string(", intra #") +
std::to_string(IntraAssumedUnderlyingObjects.size()) +
" objs")
: "<invalid>");
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto &Ptr = getAssociatedValue();
auto DoUpdate = [&](SmallSetVector<Value *, 8> &UnderlyingObjects,
AA::ValueScope Scope) {
bool UsedAssumedInformation = false;
SmallPtrSet<Value *, 8> SeenObjects;
SmallVector<AA::ValueAndContext> Values;
if (!A.getAssumedSimplifiedValues(IRPosition::value(Ptr), *this, Values,
Scope, UsedAssumedInformation))
return UnderlyingObjects.insert(&Ptr);
bool Changed = false;
for (unsigned I = 0; I < Values.size(); ++I) {
auto &VAC = Values[I];
auto *Obj = VAC.getValue();
Value *UO = getUnderlyingObject(Obj);
if (UO && UO != VAC.getValue() && SeenObjects.insert(UO).second) {
const auto &OtherAA = A.getAAFor<AAUnderlyingObjects>(
*this, IRPosition::value(*UO), DepClassTy::OPTIONAL);
auto Pred = [&Values](Value &V) {
Values.emplace_back(V, nullptr);
return true;
};
if (!OtherAA.forallUnderlyingObjects(Pred, Scope))
llvm_unreachable(
"The forall call should not return false at this position");
continue;
}
if (isa<SelectInst>(Obj) || isa<PHINode>(Obj)) {
Changed |= handleIndirect(A, *Obj, UnderlyingObjects, Scope);
continue;
}
Changed |= UnderlyingObjects.insert(Obj);
}
return Changed;
};
bool Changed = false;
Changed |= DoUpdate(IntraAssumedUnderlyingObjects, AA::Intraprocedural);
Changed |= DoUpdate(InterAssumedUnderlyingObjects, AA::Interprocedural);
return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
}
bool forallUnderlyingObjects(
function_ref<bool(Value &)> Pred,
AA::ValueScope Scope = AA::Interprocedural) const override {
if (!isValidState())
return Pred(getAssociatedValue());
auto &AssumedUnderlyingObjects = Scope == AA::Intraprocedural
? IntraAssumedUnderlyingObjects
: InterAssumedUnderlyingObjects;
for (Value *Obj : AssumedUnderlyingObjects)
if (!Pred(*Obj))
return false;
return true;
}
private:
/// Handle the case where the value is not the actual underlying value, such
/// as a phi node or a select instruction.
bool handleIndirect(Attributor &A, Value &V,
SmallSetVector<Value *, 8> &UnderlyingObjects,
AA::ValueScope Scope) {
bool Changed = false;
const auto &AA = A.getAAFor<AAUnderlyingObjects>(
*this, IRPosition::value(V), DepClassTy::OPTIONAL);
auto Pred = [&](Value &V) {
Changed |= UnderlyingObjects.insert(&V);
return true;
};
if (!AA.forallUnderlyingObjects(Pred, Scope))
llvm_unreachable(
"The forall call should not return false at this position");
return Changed;
}
/// All the underlying objects collected so far via intra procedural scope.
SmallSetVector<Value *, 8> IntraAssumedUnderlyingObjects;
/// All the underlying objects collected so far via inter procedural scope.
SmallSetVector<Value *, 8> InterAssumedUnderlyingObjects;
};
struct AAUnderlyingObjectsFloating final : AAUnderlyingObjectsImpl {
AAUnderlyingObjectsFloating(const IRPosition &IRP, Attributor &A)
: AAUnderlyingObjectsImpl(IRP, A) {}
};
struct AAUnderlyingObjectsArgument final : AAUnderlyingObjectsImpl {
AAUnderlyingObjectsArgument(const IRPosition &IRP, Attributor &A)
: AAUnderlyingObjectsImpl(IRP, A) {}
};
struct AAUnderlyingObjectsCallSite final : AAUnderlyingObjectsImpl {
AAUnderlyingObjectsCallSite(const IRPosition &IRP, Attributor &A)
: AAUnderlyingObjectsImpl(IRP, A) {}
};
struct AAUnderlyingObjectsCallSiteArgument final : AAUnderlyingObjectsImpl {
AAUnderlyingObjectsCallSiteArgument(const IRPosition &IRP, Attributor &A)
: AAUnderlyingObjectsImpl(IRP, A) {}
};
struct AAUnderlyingObjectsReturned final : AAUnderlyingObjectsImpl {
AAUnderlyingObjectsReturned(const IRPosition &IRP, Attributor &A)
: AAUnderlyingObjectsImpl(IRP, A) {}
};
struct AAUnderlyingObjectsCallSiteReturned final : AAUnderlyingObjectsImpl {
AAUnderlyingObjectsCallSiteReturned(const IRPosition &IRP, Attributor &A)
: AAUnderlyingObjectsImpl(IRP, A) {}
};
struct AAUnderlyingObjectsFunction final : AAUnderlyingObjectsImpl {
AAUnderlyingObjectsFunction(const IRPosition &IRP, Attributor &A)
: AAUnderlyingObjectsImpl(IRP, A) {}
};
}
const char AAReturnedValues::ID = 0;
const char AANoUnwind::ID = 0;
const char AANoSync::ID = 0;
const char AANoFree::ID = 0;
const char AANonNull::ID = 0;
const char AANoRecurse::ID = 0;
const char AAWillReturn::ID = 0;
const char AAUndefinedBehavior::ID = 0;
const char AANoAlias::ID = 0;
const char AAIntraFnReachability::ID = 0;
const char AANoReturn::ID = 0;
const char AAIsDead::ID = 0;
const char AADereferenceable::ID = 0;
const char AAAlign::ID = 0;
const char AAInstanceInfo::ID = 0;
const char AANoCapture::ID = 0;
const char AAValueSimplify::ID = 0;
const char AAHeapToStack::ID = 0;
const char AAPrivatizablePtr::ID = 0;
const char AAMemoryBehavior::ID = 0;
const char AAMemoryLocation::ID = 0;
const char AAValueConstantRange::ID = 0;
const char AAPotentialConstantValues::ID = 0;
const char AAPotentialValues::ID = 0;
const char AANoUndef::ID = 0;
const char AACallEdges::ID = 0;
const char AAInterFnReachability::ID = 0;
const char AAPointerInfo::ID = 0;
const char AAAssumptionInfo::ID = 0;
const char AAUnderlyingObjects::ID = 0;
// Macro magic to create the static generator function for attributes that
// follow the naming scheme.
#define SWITCH_PK_INV(CLASS, PK, POS_NAME) \
case IRPosition::PK: \
llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
#define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \
case IRPosition::PK: \
AA = new (A.Allocator) CLASS##SUFFIX(IRP, A); \
++NumAAs; \
break;
#define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
CLASS *AA = nullptr; \
switch (IRP.getPositionKind()) { \
SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
} \
return *AA; \
}
#define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
CLASS *AA = nullptr; \
switch (IRP.getPositionKind()) { \
SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \
SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
} \
return *AA; \
}
#define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
CLASS *AA = nullptr; \
switch (IRP.getPositionKind()) { \
SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
} \
return *AA; \
}
#define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
CLASS *AA = nullptr; \
switch (IRP.getPositionKind()) { \
SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
} \
return *AA; \
}
#define CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
CLASS *AA = nullptr; \
switch (IRP.getPositionKind()) { \
SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
} \
return *AA; \
}
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryLocation)
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AACallEdges)
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAssumptionInfo)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPrivatizablePtr)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInstanceInfo)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueConstantRange)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialConstantValues)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPotentialValues)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUndef)
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAPointerInfo)
CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUnderlyingObjects)
CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAUndefinedBehavior)
CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIntraFnReachability)
CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAInterFnReachability)
CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAMemoryBehavior)
#undef CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION
#undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
#undef CREATE_NON_RET_ABSTRACT_ATTRIBUTE_FOR_POSITION
#undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
#undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
#undef SWITCH_PK_CREATE
#undef SWITCH_PK_INV