blob: 4c7123a1f955437193de4fc2bb9b242fee4d3c83 [file] [log] [blame]
//===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the X86 specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
#define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
#include "X86FrameLowering.h"
#include "X86ISelLowering.h"
#include "X86InstrInfo.h"
#include "X86SelectionDAGInfo.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/CallingConv.h"
#include <climits>
#include <memory>
#define GET_SUBTARGETINFO_HEADER
#include "X86GenSubtargetInfo.inc"
namespace llvm {
class CallLowering;
class GlobalValue;
class InstructionSelector;
class LegalizerInfo;
class RegisterBankInfo;
class StringRef;
class TargetMachine;
/// The X86 backend supports a number of different styles of PIC.
///
namespace PICStyles {
enum class Style {
StubPIC, // Used on i386-darwin in pic mode.
GOT, // Used on 32 bit elf on when in pic mode.
RIPRel, // Used on X86-64 when in pic mode.
None // Set when not in pic mode.
};
} // end namespace PICStyles
class X86Subtarget final : public X86GenSubtargetInfo {
enum X86SSEEnum {
NoSSE, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512
};
enum X863DNowEnum {
NoThreeDNow, MMX, ThreeDNow, ThreeDNowA
};
/// Which PIC style to use
PICStyles::Style PICStyle;
const TargetMachine &TM;
/// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
X86SSEEnum X86SSELevel = NoSSE;
/// MMX, 3DNow, 3DNow Athlon, or none supported.
X863DNowEnum X863DNowLevel = NoThreeDNow;
#define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER) \
bool ATTRIBUTE = DEFAULT;
#include "X86GenSubtargetInfo.inc"
/// The minimum alignment known to hold of the stack frame on
/// entry to the function and which must be maintained by every function.
Align stackAlignment = Align(4);
Align TileConfigAlignment = Align(4);
/// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
///
// FIXME: this is a known good value for Yonah. How about others?
unsigned MaxInlineSizeThreshold = 128;
/// What processor and OS we're targeting.
Triple TargetTriple;
/// GlobalISel related APIs.
std::unique_ptr<CallLowering> CallLoweringInfo;
std::unique_ptr<LegalizerInfo> Legalizer;
std::unique_ptr<RegisterBankInfo> RegBankInfo;
std::unique_ptr<InstructionSelector> InstSelector;
/// Override the stack alignment.
MaybeAlign StackAlignOverride;
/// Preferred vector width from function attribute.
unsigned PreferVectorWidthOverride;
/// Resolved preferred vector width from function attribute and subtarget
/// features.
unsigned PreferVectorWidth = UINT32_MAX;
/// Required vector width from function attribute.
unsigned RequiredVectorWidth;
X86SelectionDAGInfo TSInfo;
// Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
// X86TargetLowering needs.
X86InstrInfo InstrInfo;
X86TargetLowering TLInfo;
X86FrameLowering FrameLowering;
public:
/// This constructor initializes the data members to match that
/// of the specified triple.
///
X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS,
const X86TargetMachine &TM, MaybeAlign StackAlignOverride,
unsigned PreferVectorWidthOverride,
unsigned RequiredVectorWidth);
const X86TargetLowering *getTargetLowering() const override {
return &TLInfo;
}
const X86InstrInfo *getInstrInfo() const override { return &InstrInfo; }
const X86FrameLowering *getFrameLowering() const override {
return &FrameLowering;
}
const X86SelectionDAGInfo *getSelectionDAGInfo() const override {
return &TSInfo;
}
const X86RegisterInfo *getRegisterInfo() const override {
return &getInstrInfo()->getRegisterInfo();
}
unsigned getTileConfigSize() const { return 64; }
Align getTileConfigAlignment() const { return TileConfigAlignment; }
/// Returns the minimum alignment known to hold of the
/// stack frame on entry to the function and which must be maintained by every
/// function for this subtarget.
Align getStackAlignment() const { return stackAlignment; }
/// Returns the maximum memset / memcpy size
/// that still makes it profitable to inline the call.
unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
/// ParseSubtargetFeatures - Parses features string setting specified
/// subtarget options. Definition of function is auto generated by tblgen.
void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
/// Methods used by Global ISel
const CallLowering *getCallLowering() const override;
InstructionSelector *getInstructionSelector() const override;
const LegalizerInfo *getLegalizerInfo() const override;
const RegisterBankInfo *getRegBankInfo() const override;
private:
/// Initialize the full set of dependencies so we can use an initializer
/// list for X86Subtarget.
X86Subtarget &initializeSubtargetDependencies(StringRef CPU,
StringRef TuneCPU,
StringRef FS);
void initSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
public:
#define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER) \
bool GETTER() const { return ATTRIBUTE; }
#include "X86GenSubtargetInfo.inc"
/// Is this x86_64 with the ILP32 programming model (x32 ABI)?
bool isTarget64BitILP32() const {
return Is64Bit && (TargetTriple.isX32() || TargetTriple.isOSNaCl());
}
/// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
bool isTarget64BitLP64() const {
return Is64Bit && (!TargetTriple.isX32() && !TargetTriple.isOSNaCl());
}
PICStyles::Style getPICStyle() const { return PICStyle; }
void setPICStyle(PICStyles::Style Style) { PICStyle = Style; }
bool canUseCMPXCHG8B() const { return hasCX8(); }
bool canUseCMPXCHG16B() const {
// CX16 is just the CPUID bit, instruction requires 64-bit mode too.
return hasCX16() && is64Bit();
}
// SSE codegen depends on cmovs, and all SSE1+ processors support them.
// All 64-bit processors support cmov.
bool canUseCMOV() const { return hasCMOV() || hasSSE1() || is64Bit(); }
bool hasSSE1() const { return X86SSELevel >= SSE1; }
bool hasSSE2() const { return X86SSELevel >= SSE2; }
bool hasSSE3() const { return X86SSELevel >= SSE3; }
bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
bool hasSSE41() const { return X86SSELevel >= SSE41; }
bool hasSSE42() const { return X86SSELevel >= SSE42; }
bool hasAVX() const { return X86SSELevel >= AVX; }
bool hasAVX2() const { return X86SSELevel >= AVX2; }
bool hasAVX512() const { return X86SSELevel >= AVX512; }
bool hasInt256() const { return hasAVX2(); }
bool hasMMX() const { return X863DNowLevel >= MMX; }
bool hasThreeDNow() const { return X863DNowLevel >= ThreeDNow; }
bool hasThreeDNowA() const { return X863DNowLevel >= ThreeDNowA; }
bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
bool hasPrefetchW() const {
// The PREFETCHW instruction was added with 3DNow but later CPUs gave it
// its own CPUID bit as part of deprecating 3DNow. Intel eventually added
// it and KNL has another that prefetches to L2 cache. We assume the
// L1 version exists if the L2 version does.
return hasThreeDNow() || hasPRFCHW() || hasPREFETCHWT1();
}
bool hasSSEPrefetch() const {
// We implicitly enable these when we have a write prefix supporting cache
// level OR if we have prfchw, but don't already have a read prefetch from
// 3dnow.
return hasSSE1() || (hasPRFCHW() && !hasThreeDNow()) || hasPREFETCHWT1() ||
hasPREFETCHI();
}
bool canUseLAHFSAHF() const { return hasLAHFSAHF64() || !is64Bit(); }
// These are generic getters that OR together all of the thunk types
// supported by the subtarget. Therefore useIndirectThunk*() will return true
// if any respective thunk feature is enabled.
bool useIndirectThunkCalls() const {
return useRetpolineIndirectCalls() || useLVIControlFlowIntegrity();
}
bool useIndirectThunkBranches() const {
return useRetpolineIndirectBranches() || useLVIControlFlowIntegrity();
}
unsigned getPreferVectorWidth() const { return PreferVectorWidth; }
unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; }
// Helper functions to determine when we should allow widening to 512-bit
// during codegen.
// TODO: Currently we're always allowing widening on CPUs without VLX,
// because for many cases we don't have a better option.
bool canExtendTo512DQ() const {
return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512);
}
bool canExtendTo512BW() const {
return hasBWI() && canExtendTo512DQ();
}
// If there are no 512-bit vectors and we prefer not to use 512-bit registers,
// disable them in the legalizer.
bool useAVX512Regs() const {
return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth > 256);
}
bool useLight256BitInstructions() const {
return getPreferVectorWidth() >= 256 || AllowLight256Bit;
}
bool useBWIRegs() const {
return hasBWI() && useAVX512Regs();
}
bool isXRaySupported() const override { return is64Bit(); }
/// Use clflush if we have SSE2 or we're on x86-64 (even if we asked for
/// no-sse2). There isn't any reason to disable it if the target processor
/// supports it.
bool hasCLFLUSH() const { return hasSSE2() || is64Bit(); }
/// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
/// no-sse2). There isn't any reason to disable it if the target processor
/// supports it.
bool hasMFence() const { return hasSSE2() || is64Bit(); }
const Triple &getTargetTriple() const { return TargetTriple; }
bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
bool isTargetFreeBSD() const { return TargetTriple.isOSFreeBSD(); }
bool isTargetDragonFly() const { return TargetTriple.isOSDragonFly(); }
bool isTargetSolaris() const { return TargetTriple.isOSSolaris(); }
bool isTargetPS() const { return TargetTriple.isPS(); }
bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); }
bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
bool isTargetKFreeBSD() const { return TargetTriple.isOSKFreeBSD(); }
bool isTargetGlibc() const { return TargetTriple.isOSGlibc(); }
bool isTargetAndroid() const { return TargetTriple.isAndroid(); }
bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
bool isTargetMCU() const { return TargetTriple.isOSIAMCU(); }
bool isTargetFuchsia() const { return TargetTriple.isOSFuchsia(); }
bool isTargetWindowsMSVC() const {
return TargetTriple.isWindowsMSVCEnvironment();
}
bool isTargetWindowsCoreCLR() const {
return TargetTriple.isWindowsCoreCLREnvironment();
}
bool isTargetWindowsCygwin() const {
return TargetTriple.isWindowsCygwinEnvironment();
}
bool isTargetWindowsGNU() const {
return TargetTriple.isWindowsGNUEnvironment();
}
bool isTargetWindowsItanium() const {
return TargetTriple.isWindowsItaniumEnvironment();
}
bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
bool isOSWindows() const { return TargetTriple.isOSWindows(); }
bool isTargetWin64() const { return Is64Bit && isOSWindows(); }
bool isTargetWin32() const { return !Is64Bit && isOSWindows(); }
bool isPICStyleGOT() const { return PICStyle == PICStyles::Style::GOT; }
bool isPICStyleRIPRel() const { return PICStyle == PICStyles::Style::RIPRel; }
bool isPICStyleStubPIC() const {
return PICStyle == PICStyles::Style::StubPIC;
}
bool isPositionIndependent() const;
bool isCallingConvWin64(CallingConv::ID CC) const {
switch (CC) {
// On Win64, all these conventions just use the default convention.
case CallingConv::C:
case CallingConv::Fast:
case CallingConv::Tail:
case CallingConv::Swift:
case CallingConv::SwiftTail:
case CallingConv::X86_FastCall:
case CallingConv::X86_StdCall:
case CallingConv::X86_ThisCall:
case CallingConv::X86_VectorCall:
case CallingConv::Intel_OCL_BI:
return isTargetWin64();
// This convention allows using the Win64 convention on other targets.
case CallingConv::Win64:
return true;
// This convention allows using the SysV convention on Windows targets.
case CallingConv::X86_64_SysV:
return false;
// Otherwise, who knows what this is.
default:
return false;
}
}
/// Classify a global variable reference for the current subtarget according
/// to how we should reference it in a non-pcrel context.
unsigned char classifyLocalReference(const GlobalValue *GV) const;
unsigned char classifyGlobalReference(const GlobalValue *GV,
const Module &M) const;
unsigned char classifyGlobalReference(const GlobalValue *GV) const;
/// Classify a global function reference for the current subtarget.
unsigned char classifyGlobalFunctionReference(const GlobalValue *GV,
const Module &M) const;
unsigned char
classifyGlobalFunctionReference(const GlobalValue *GV) const override;
/// Classify a blockaddress reference for the current subtarget according to
/// how we should reference it in a non-pcrel context.
unsigned char classifyBlockAddressReference() const;
/// Return true if the subtarget allows calls to immediate address.
bool isLegalToCallImmediateAddr() const;
/// Return whether FrameLowering should always set the "extended frame
/// present" bit in FP, or set it based on a symbol in the runtime.
bool swiftAsyncContextIsDynamicallySet() const {
// Older OS versions (particularly system unwinders) are confused by the
// Swift extended frame, so when building code that might be run on them we
// must dynamically query the concurrency library to determine whether
// extended frames should be flagged as present.
const Triple &TT = getTargetTriple();
unsigned Major = TT.getOSVersion().getMajor();
switch(TT.getOS()) {
default:
return false;
case Triple::IOS:
case Triple::TvOS:
return Major < 15;
case Triple::WatchOS:
return Major < 8;
case Triple::MacOSX:
case Triple::Darwin:
return Major < 12;
}
}
/// If we are using indirect thunks, we need to expand indirectbr to avoid it
/// lowering to an actual indirect jump.
bool enableIndirectBrExpand() const override {
return useIndirectThunkBranches();
}
/// Enable the MachineScheduler pass for all X86 subtargets.
bool enableMachineScheduler() const override { return true; }
bool enableEarlyIfConversion() const override;
void getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>>
&Mutations) const override;
AntiDepBreakMode getAntiDepBreakMode() const override {
return TargetSubtargetInfo::ANTIDEP_CRITICAL;
}
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H