blob: 3e63f17c6518dd9dbe6d521aeca93632385d8335 [file] [log] [blame]
//===-- SystemZAsmPrinter.cpp - SystemZ LLVM assembly printer -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Streams SystemZ assembly language and associated data, in the form of
// MCInsts and MCExprs respectively.
//
//===----------------------------------------------------------------------===//
#include "SystemZAsmPrinter.h"
#include "MCTargetDesc/SystemZInstPrinter.h"
#include "SystemZConstantPoolValue.h"
#include "SystemZMCInstLower.h"
#include "TargetInfo/SystemZTargetInfo.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/Mangler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/TargetRegistry.h"
using namespace llvm;
// Return an RI instruction like MI with opcode Opcode, but with the
// GR64 register operands turned into GR32s.
static MCInst lowerRILow(const MachineInstr *MI, unsigned Opcode) {
if (MI->isCompare())
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsGR32(MI->getOperand(0).getReg()))
.addImm(MI->getOperand(1).getImm());
else
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsGR32(MI->getOperand(0).getReg()))
.addReg(SystemZMC::getRegAsGR32(MI->getOperand(1).getReg()))
.addImm(MI->getOperand(2).getImm());
}
// Return an RI instruction like MI with opcode Opcode, but with the
// GR64 register operands turned into GRH32s.
static MCInst lowerRIHigh(const MachineInstr *MI, unsigned Opcode) {
if (MI->isCompare())
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsGRH32(MI->getOperand(0).getReg()))
.addImm(MI->getOperand(1).getImm());
else
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsGRH32(MI->getOperand(0).getReg()))
.addReg(SystemZMC::getRegAsGRH32(MI->getOperand(1).getReg()))
.addImm(MI->getOperand(2).getImm());
}
// Return an RI instruction like MI with opcode Opcode, but with the
// R2 register turned into a GR64.
static MCInst lowerRIEfLow(const MachineInstr *MI, unsigned Opcode) {
return MCInstBuilder(Opcode)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addReg(SystemZMC::getRegAsGR64(MI->getOperand(2).getReg()))
.addImm(MI->getOperand(3).getImm())
.addImm(MI->getOperand(4).getImm())
.addImm(MI->getOperand(5).getImm());
}
static const MCSymbolRefExpr *getTLSGetOffset(MCContext &Context) {
StringRef Name = "__tls_get_offset";
return MCSymbolRefExpr::create(Context.getOrCreateSymbol(Name),
MCSymbolRefExpr::VK_PLT,
Context);
}
static const MCSymbolRefExpr *getGlobalOffsetTable(MCContext &Context) {
StringRef Name = "_GLOBAL_OFFSET_TABLE_";
return MCSymbolRefExpr::create(Context.getOrCreateSymbol(Name),
MCSymbolRefExpr::VK_None,
Context);
}
// MI is an instruction that accepts an optional alignment hint,
// and which was already lowered to LoweredMI. If the alignment
// of the original memory operand is known, update LoweredMI to
// an instruction with the corresponding hint set.
static void lowerAlignmentHint(const MachineInstr *MI, MCInst &LoweredMI,
unsigned Opcode) {
if (MI->memoperands_empty())
return;
Align Alignment = Align(16);
for (MachineInstr::mmo_iterator MMOI = MI->memoperands_begin(),
EE = MI->memoperands_end(); MMOI != EE; ++MMOI)
if ((*MMOI)->getAlign() < Alignment)
Alignment = (*MMOI)->getAlign();
unsigned AlignmentHint = 0;
if (Alignment >= Align(16))
AlignmentHint = 4;
else if (Alignment >= Align(8))
AlignmentHint = 3;
if (AlignmentHint == 0)
return;
LoweredMI.setOpcode(Opcode);
LoweredMI.addOperand(MCOperand::createImm(AlignmentHint));
}
// MI loads the high part of a vector from memory. Return an instruction
// that uses replicating vector load Opcode to do the same thing.
static MCInst lowerSubvectorLoad(const MachineInstr *MI, unsigned Opcode) {
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg()))
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg());
}
// MI stores the high part of a vector to memory. Return an instruction
// that uses elemental vector store Opcode to do the same thing.
static MCInst lowerSubvectorStore(const MachineInstr *MI, unsigned Opcode) {
return MCInstBuilder(Opcode)
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg()))
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
}
// The XPLINK ABI requires that a no-op encoding the call type is emitted after
// each call to a subroutine. This information can be used by the called
// function to determine its entry point, e.g. for generating a backtrace. The
// call type is encoded as a register number in the bcr instruction. See
// enumeration CallType for the possible values.
void SystemZAsmPrinter::emitCallInformation(CallType CT) {
EmitToStreamer(*OutStreamer,
MCInstBuilder(SystemZ::BCRAsm)
.addImm(0)
.addReg(SystemZMC::GR64Regs[static_cast<unsigned>(CT)]));
}
void SystemZAsmPrinter::emitInstruction(const MachineInstr *MI) {
SystemZ_MC::verifyInstructionPredicates(MI->getOpcode(),
getSubtargetInfo().getFeatureBits());
SystemZMCInstLower Lower(MF->getContext(), *this);
MCInst LoweredMI;
switch (MI->getOpcode()) {
case SystemZ::Return:
LoweredMI = MCInstBuilder(SystemZ::BR)
.addReg(SystemZ::R14D);
break;
case SystemZ::Return_XPLINK:
LoweredMI = MCInstBuilder(SystemZ::B)
.addReg(SystemZ::R7D)
.addImm(2)
.addReg(0);
break;
case SystemZ::CondReturn:
LoweredMI = MCInstBuilder(SystemZ::BCR)
.addImm(MI->getOperand(0).getImm())
.addImm(MI->getOperand(1).getImm())
.addReg(SystemZ::R14D);
break;
case SystemZ::CondReturn_XPLINK:
LoweredMI = MCInstBuilder(SystemZ::BC)
.addImm(MI->getOperand(0).getImm())
.addImm(MI->getOperand(1).getImm())
.addReg(SystemZ::R7D)
.addImm(2)
.addReg(0);
break;
case SystemZ::CRBReturn:
LoweredMI = MCInstBuilder(SystemZ::CRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CGRBReturn:
LoweredMI = MCInstBuilder(SystemZ::CGRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CIBReturn:
LoweredMI = MCInstBuilder(SystemZ::CIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CGIBReturn:
LoweredMI = MCInstBuilder(SystemZ::CGIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CLRBReturn:
LoweredMI = MCInstBuilder(SystemZ::CLRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CLGRBReturn:
LoweredMI = MCInstBuilder(SystemZ::CLGRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CLIBReturn:
LoweredMI = MCInstBuilder(SystemZ::CLIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CLGIBReturn:
LoweredMI = MCInstBuilder(SystemZ::CLGIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(SystemZ::R14D)
.addImm(0);
break;
case SystemZ::CallBRASL_XPLINK64:
EmitToStreamer(*OutStreamer,
MCInstBuilder(SystemZ::BRASL)
.addReg(SystemZ::R7D)
.addExpr(Lower.getExpr(MI->getOperand(0),
MCSymbolRefExpr::VK_PLT)));
emitCallInformation(CallType::BRASL7);
return;
case SystemZ::CallBASR_XPLINK64:
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::BASR)
.addReg(SystemZ::R7D)
.addReg(MI->getOperand(0).getReg()));
emitCallInformation(CallType::BASR76);
return;
case SystemZ::CallBASR_STACKEXT:
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::BASR)
.addReg(SystemZ::R3D)
.addReg(MI->getOperand(0).getReg()));
emitCallInformation(CallType::BASR33);
return;
case SystemZ::CallBRASL:
LoweredMI = MCInstBuilder(SystemZ::BRASL)
.addReg(SystemZ::R14D)
.addExpr(Lower.getExpr(MI->getOperand(0), MCSymbolRefExpr::VK_PLT));
break;
case SystemZ::CallBASR:
LoweredMI = MCInstBuilder(SystemZ::BASR)
.addReg(SystemZ::R14D)
.addReg(MI->getOperand(0).getReg());
break;
case SystemZ::CallJG:
LoweredMI = MCInstBuilder(SystemZ::JG)
.addExpr(Lower.getExpr(MI->getOperand(0), MCSymbolRefExpr::VK_PLT));
break;
case SystemZ::CallBRCL:
LoweredMI = MCInstBuilder(SystemZ::BRCL)
.addImm(MI->getOperand(0).getImm())
.addImm(MI->getOperand(1).getImm())
.addExpr(Lower.getExpr(MI->getOperand(2), MCSymbolRefExpr::VK_PLT));
break;
case SystemZ::CallBR:
LoweredMI = MCInstBuilder(SystemZ::BR)
.addReg(MI->getOperand(0).getReg());
break;
case SystemZ::CallBCR:
LoweredMI = MCInstBuilder(SystemZ::BCR)
.addImm(MI->getOperand(0).getImm())
.addImm(MI->getOperand(1).getImm())
.addReg(MI->getOperand(2).getReg());
break;
case SystemZ::CRBCall:
LoweredMI = MCInstBuilder(SystemZ::CRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CGRBCall:
LoweredMI = MCInstBuilder(SystemZ::CGRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CIBCall:
LoweredMI = MCInstBuilder(SystemZ::CIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CGIBCall:
LoweredMI = MCInstBuilder(SystemZ::CGIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CLRBCall:
LoweredMI = MCInstBuilder(SystemZ::CLRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CLGRBCall:
LoweredMI = MCInstBuilder(SystemZ::CLGRB)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CLIBCall:
LoweredMI = MCInstBuilder(SystemZ::CLIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::CLGIBCall:
LoweredMI = MCInstBuilder(SystemZ::CLGIB)
.addReg(MI->getOperand(0).getReg())
.addImm(MI->getOperand(1).getImm())
.addImm(MI->getOperand(2).getImm())
.addReg(MI->getOperand(3).getReg())
.addImm(0);
break;
case SystemZ::TLS_GDCALL:
LoweredMI = MCInstBuilder(SystemZ::BRASL)
.addReg(SystemZ::R14D)
.addExpr(getTLSGetOffset(MF->getContext()))
.addExpr(Lower.getExpr(MI->getOperand(0), MCSymbolRefExpr::VK_TLSGD));
break;
case SystemZ::TLS_LDCALL:
LoweredMI = MCInstBuilder(SystemZ::BRASL)
.addReg(SystemZ::R14D)
.addExpr(getTLSGetOffset(MF->getContext()))
.addExpr(Lower.getExpr(MI->getOperand(0), MCSymbolRefExpr::VK_TLSLDM));
break;
case SystemZ::GOT:
LoweredMI = MCInstBuilder(SystemZ::LARL)
.addReg(MI->getOperand(0).getReg())
.addExpr(getGlobalOffsetTable(MF->getContext()));
break;
case SystemZ::IILF64:
LoweredMI = MCInstBuilder(SystemZ::IILF)
.addReg(SystemZMC::getRegAsGR32(MI->getOperand(0).getReg()))
.addImm(MI->getOperand(2).getImm());
break;
case SystemZ::IIHF64:
LoweredMI = MCInstBuilder(SystemZ::IIHF)
.addReg(SystemZMC::getRegAsGRH32(MI->getOperand(0).getReg()))
.addImm(MI->getOperand(2).getImm());
break;
case SystemZ::RISBHH:
case SystemZ::RISBHL:
LoweredMI = lowerRIEfLow(MI, SystemZ::RISBHG);
break;
case SystemZ::RISBLH:
case SystemZ::RISBLL:
LoweredMI = lowerRIEfLow(MI, SystemZ::RISBLG);
break;
case SystemZ::VLVGP32:
LoweredMI = MCInstBuilder(SystemZ::VLVGP)
.addReg(MI->getOperand(0).getReg())
.addReg(SystemZMC::getRegAsGR64(MI->getOperand(1).getReg()))
.addReg(SystemZMC::getRegAsGR64(MI->getOperand(2).getReg()));
break;
case SystemZ::VLR32:
case SystemZ::VLR64:
LoweredMI = MCInstBuilder(SystemZ::VLR)
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg()))
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(1).getReg()));
break;
case SystemZ::VL:
Lower.lower(MI, LoweredMI);
lowerAlignmentHint(MI, LoweredMI, SystemZ::VLAlign);
break;
case SystemZ::VST:
Lower.lower(MI, LoweredMI);
lowerAlignmentHint(MI, LoweredMI, SystemZ::VSTAlign);
break;
case SystemZ::VLM:
Lower.lower(MI, LoweredMI);
lowerAlignmentHint(MI, LoweredMI, SystemZ::VLMAlign);
break;
case SystemZ::VSTM:
Lower.lower(MI, LoweredMI);
lowerAlignmentHint(MI, LoweredMI, SystemZ::VSTMAlign);
break;
case SystemZ::VL32:
LoweredMI = lowerSubvectorLoad(MI, SystemZ::VLREPF);
break;
case SystemZ::VL64:
LoweredMI = lowerSubvectorLoad(MI, SystemZ::VLREPG);
break;
case SystemZ::VST32:
LoweredMI = lowerSubvectorStore(MI, SystemZ::VSTEF);
break;
case SystemZ::VST64:
LoweredMI = lowerSubvectorStore(MI, SystemZ::VSTEG);
break;
case SystemZ::LFER:
LoweredMI = MCInstBuilder(SystemZ::VLGVF)
.addReg(SystemZMC::getRegAsGR64(MI->getOperand(0).getReg()))
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(1).getReg()))
.addReg(0).addImm(0);
break;
case SystemZ::LEFR:
LoweredMI = MCInstBuilder(SystemZ::VLVGF)
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg()))
.addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg()))
.addReg(MI->getOperand(1).getReg())
.addReg(0).addImm(0);
break;
#define LOWER_LOW(NAME) \
case SystemZ::NAME##64: LoweredMI = lowerRILow(MI, SystemZ::NAME); break
LOWER_LOW(IILL);
LOWER_LOW(IILH);
LOWER_LOW(TMLL);
LOWER_LOW(TMLH);
LOWER_LOW(NILL);
LOWER_LOW(NILH);
LOWER_LOW(NILF);
LOWER_LOW(OILL);
LOWER_LOW(OILH);
LOWER_LOW(OILF);
LOWER_LOW(XILF);
#undef LOWER_LOW
#define LOWER_HIGH(NAME) \
case SystemZ::NAME##64: LoweredMI = lowerRIHigh(MI, SystemZ::NAME); break
LOWER_HIGH(IIHL);
LOWER_HIGH(IIHH);
LOWER_HIGH(TMHL);
LOWER_HIGH(TMHH);
LOWER_HIGH(NIHL);
LOWER_HIGH(NIHH);
LOWER_HIGH(NIHF);
LOWER_HIGH(OIHL);
LOWER_HIGH(OIHH);
LOWER_HIGH(OIHF);
LOWER_HIGH(XIHF);
#undef LOWER_HIGH
case SystemZ::Serialize:
if (MF->getSubtarget<SystemZSubtarget>().hasFastSerialization())
LoweredMI = MCInstBuilder(SystemZ::BCRAsm)
.addImm(14).addReg(SystemZ::R0D);
else
LoweredMI = MCInstBuilder(SystemZ::BCRAsm)
.addImm(15).addReg(SystemZ::R0D);
break;
// We want to emit "j .+2" for traps, jumping to the relative immediate field
// of the jump instruction, which is an illegal instruction. We cannot emit a
// "." symbol, so create and emit a temp label before the instruction and use
// that instead.
case SystemZ::Trap: {
MCSymbol *DotSym = OutContext.createTempSymbol();
OutStreamer->emitLabel(DotSym);
const MCSymbolRefExpr *Expr = MCSymbolRefExpr::create(DotSym, OutContext);
const MCConstantExpr *ConstExpr = MCConstantExpr::create(2, OutContext);
LoweredMI = MCInstBuilder(SystemZ::J)
.addExpr(MCBinaryExpr::createAdd(Expr, ConstExpr, OutContext));
}
break;
// Conditional traps will create a branch on condition instruction that jumps
// to the relative immediate field of the jump instruction. (eg. "jo .+2")
case SystemZ::CondTrap: {
MCSymbol *DotSym = OutContext.createTempSymbol();
OutStreamer->emitLabel(DotSym);
const MCSymbolRefExpr *Expr = MCSymbolRefExpr::create(DotSym, OutContext);
const MCConstantExpr *ConstExpr = MCConstantExpr::create(2, OutContext);
LoweredMI = MCInstBuilder(SystemZ::BRC)
.addImm(MI->getOperand(0).getImm())
.addImm(MI->getOperand(1).getImm())
.addExpr(MCBinaryExpr::createAdd(Expr, ConstExpr, OutContext));
}
break;
case TargetOpcode::FENTRY_CALL:
LowerFENTRY_CALL(*MI, Lower);
return;
case TargetOpcode::STACKMAP:
LowerSTACKMAP(*MI);
return;
case TargetOpcode::PATCHPOINT:
LowerPATCHPOINT(*MI, Lower);
return;
case SystemZ::EXRL_Pseudo: {
unsigned TargetInsOpc = MI->getOperand(0).getImm();
Register LenMinus1Reg = MI->getOperand(1).getReg();
Register DestReg = MI->getOperand(2).getReg();
int64_t DestDisp = MI->getOperand(3).getImm();
Register SrcReg = MI->getOperand(4).getReg();
int64_t SrcDisp = MI->getOperand(5).getImm();
SystemZTargetStreamer *TS = getTargetStreamer();
MCSymbol *DotSym = nullptr;
MCInst ET = MCInstBuilder(TargetInsOpc).addReg(DestReg)
.addImm(DestDisp).addImm(1).addReg(SrcReg).addImm(SrcDisp);
SystemZTargetStreamer::MCInstSTIPair ET_STI(ET, &MF->getSubtarget());
SystemZTargetStreamer::EXRLT2SymMap::iterator I =
TS->EXRLTargets2Sym.find(ET_STI);
if (I != TS->EXRLTargets2Sym.end())
DotSym = I->second;
else
TS->EXRLTargets2Sym[ET_STI] = DotSym = OutContext.createTempSymbol();
const MCSymbolRefExpr *Dot = MCSymbolRefExpr::create(DotSym, OutContext);
EmitToStreamer(
*OutStreamer,
MCInstBuilder(SystemZ::EXRL).addReg(LenMinus1Reg).addExpr(Dot));
return;
}
default:
Lower.lower(MI, LoweredMI);
break;
}
EmitToStreamer(*OutStreamer, LoweredMI);
}
// Emit the largest nop instruction smaller than or equal to NumBytes
// bytes. Return the size of nop emitted.
static unsigned EmitNop(MCContext &OutContext, MCStreamer &OutStreamer,
unsigned NumBytes, const MCSubtargetInfo &STI) {
if (NumBytes < 2) {
llvm_unreachable("Zero nops?");
return 0;
}
else if (NumBytes < 4) {
OutStreamer.emitInstruction(
MCInstBuilder(SystemZ::BCRAsm).addImm(0).addReg(SystemZ::R0D), STI);
return 2;
}
else if (NumBytes < 6) {
OutStreamer.emitInstruction(
MCInstBuilder(SystemZ::BCAsm).addImm(0).addReg(0).addImm(0).addReg(0),
STI);
return 4;
}
else {
MCSymbol *DotSym = OutContext.createTempSymbol();
const MCSymbolRefExpr *Dot = MCSymbolRefExpr::create(DotSym, OutContext);
OutStreamer.emitLabel(DotSym);
OutStreamer.emitInstruction(
MCInstBuilder(SystemZ::BRCLAsm).addImm(0).addExpr(Dot), STI);
return 6;
}
}
void SystemZAsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
SystemZMCInstLower &Lower) {
MCContext &Ctx = MF->getContext();
if (MF->getFunction().hasFnAttribute("mrecord-mcount")) {
MCSymbol *DotSym = OutContext.createTempSymbol();
OutStreamer->pushSection();
OutStreamer->switchSection(
Ctx.getELFSection("__mcount_loc", ELF::SHT_PROGBITS, ELF::SHF_ALLOC));
OutStreamer->emitSymbolValue(DotSym, 8);
OutStreamer->popSection();
OutStreamer->emitLabel(DotSym);
}
if (MF->getFunction().hasFnAttribute("mnop-mcount")) {
EmitNop(Ctx, *OutStreamer, 6, getSubtargetInfo());
return;
}
MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
const MCSymbolRefExpr *Op =
MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_PLT, Ctx);
OutStreamer->emitInstruction(
MCInstBuilder(SystemZ::BRASL).addReg(SystemZ::R0D).addExpr(Op),
getSubtargetInfo());
}
void SystemZAsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
auto *TII = MF->getSubtarget<SystemZSubtarget>().getInstrInfo();
unsigned NumNOPBytes = MI.getOperand(1).getImm();
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordStackMap(*MILabel, MI);
assert(NumNOPBytes % 2 == 0 && "Invalid number of NOP bytes requested!");
// Scan ahead to trim the shadow.
unsigned ShadowBytes = 0;
const MachineBasicBlock &MBB = *MI.getParent();
MachineBasicBlock::const_iterator MII(MI);
++MII;
while (ShadowBytes < NumNOPBytes) {
if (MII == MBB.end() ||
MII->getOpcode() == TargetOpcode::PATCHPOINT ||
MII->getOpcode() == TargetOpcode::STACKMAP)
break;
ShadowBytes += TII->getInstSizeInBytes(*MII);
if (MII->isCall())
break;
++MII;
}
// Emit nops.
while (ShadowBytes < NumNOPBytes)
ShadowBytes += EmitNop(OutContext, *OutStreamer, NumNOPBytes - ShadowBytes,
getSubtargetInfo());
}
// Lower a patchpoint of the form:
// [<def>], <id>, <numBytes>, <target>, <numArgs>
void SystemZAsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
SystemZMCInstLower &Lower) {
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordPatchPoint(*MILabel, MI);
PatchPointOpers Opers(&MI);
unsigned EncodedBytes = 0;
const MachineOperand &CalleeMO = Opers.getCallTarget();
if (CalleeMO.isImm()) {
uint64_t CallTarget = CalleeMO.getImm();
if (CallTarget) {
unsigned ScratchIdx = -1;
unsigned ScratchReg = 0;
do {
ScratchIdx = Opers.getNextScratchIdx(ScratchIdx + 1);
ScratchReg = MI.getOperand(ScratchIdx).getReg();
} while (ScratchReg == SystemZ::R0D);
// Materialize the call target address
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::LLILF)
.addReg(ScratchReg)
.addImm(CallTarget & 0xFFFFFFFF));
EncodedBytes += 6;
if (CallTarget >> 32) {
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::IIHF)
.addReg(ScratchReg)
.addImm(CallTarget >> 32));
EncodedBytes += 6;
}
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::BASR)
.addReg(SystemZ::R14D)
.addReg(ScratchReg));
EncodedBytes += 2;
}
} else if (CalleeMO.isGlobal()) {
const MCExpr *Expr = Lower.getExpr(CalleeMO, MCSymbolRefExpr::VK_PLT);
EmitToStreamer(*OutStreamer, MCInstBuilder(SystemZ::BRASL)
.addReg(SystemZ::R14D)
.addExpr(Expr));
EncodedBytes += 6;
}
// Emit padding.
unsigned NumBytes = Opers.getNumPatchBytes();
assert(NumBytes >= EncodedBytes &&
"Patchpoint can't request size less than the length of a call.");
assert((NumBytes - EncodedBytes) % 2 == 0 &&
"Invalid number of NOP bytes requested!");
while (EncodedBytes < NumBytes)
EncodedBytes += EmitNop(OutContext, *OutStreamer, NumBytes - EncodedBytes,
getSubtargetInfo());
}
// The *alignment* of 128-bit vector types is different between the software
// and hardware vector ABIs. If the there is an externally visible use of a
// vector type in the module it should be annotated with an attribute.
void SystemZAsmPrinter::emitAttributes(Module &M) {
if (M.getModuleFlag("s390x-visible-vector-ABI")) {
bool HasVectorFeature =
TM.getMCSubtargetInfo()->getFeatureBits()[SystemZ::FeatureVector];
OutStreamer->emitGNUAttribute(8, HasVectorFeature ? 2 : 1);
}
}
// Convert a SystemZ-specific constant pool modifier into the associated
// MCSymbolRefExpr variant kind.
static MCSymbolRefExpr::VariantKind
getModifierVariantKind(SystemZCP::SystemZCPModifier Modifier) {
switch (Modifier) {
case SystemZCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD;
case SystemZCP::TLSLDM: return MCSymbolRefExpr::VK_TLSLDM;
case SystemZCP::DTPOFF: return MCSymbolRefExpr::VK_DTPOFF;
case SystemZCP::NTPOFF: return MCSymbolRefExpr::VK_NTPOFF;
}
llvm_unreachable("Invalid SystemCPModifier!");
}
void SystemZAsmPrinter::emitMachineConstantPoolValue(
MachineConstantPoolValue *MCPV) {
auto *ZCPV = static_cast<SystemZConstantPoolValue*>(MCPV);
const MCExpr *Expr =
MCSymbolRefExpr::create(getSymbol(ZCPV->getGlobalValue()),
getModifierVariantKind(ZCPV->getModifier()),
OutContext);
uint64_t Size = getDataLayout().getTypeAllocSize(ZCPV->getType());
OutStreamer->emitValue(Expr, Size);
}
static void printFormattedRegName(const MCAsmInfo *MAI, unsigned RegNo,
raw_ostream &OS) {
const char *RegName = SystemZInstPrinter::getRegisterName(RegNo);
if (MAI->getAssemblerDialect() == AD_HLASM) {
// Skip register prefix so that only register number is left
assert(isalpha(RegName[0]) && isdigit(RegName[1]));
OS << (RegName + 1);
} else
OS << '%' << RegName;
}
static void printOperand(const MCOperand &MCOp, const MCAsmInfo *MAI,
raw_ostream &OS) {
if (MCOp.isReg()) {
if (!MCOp.getReg())
OS << '0';
else
printFormattedRegName(MAI, MCOp.getReg(), OS);
} else if (MCOp.isImm())
OS << MCOp.getImm();
else if (MCOp.isExpr())
MCOp.getExpr()->print(OS, MAI);
else
llvm_unreachable("Invalid operand");
}
static void printAddress(const MCAsmInfo *MAI, unsigned Base,
const MCOperand &DispMO, unsigned Index,
raw_ostream &OS) {
printOperand(DispMO, MAI, OS);
if (Base || Index) {
OS << '(';
if (Index) {
printFormattedRegName(MAI, Index, OS);
if (Base)
OS << ',';
}
if (Base)
printFormattedRegName(MAI, Base, OS);
OS << ')';
}
}
bool SystemZAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
const char *ExtraCode,
raw_ostream &OS) {
const MCRegisterInfo &MRI = *TM.getMCRegisterInfo();
const MachineOperand &MO = MI->getOperand(OpNo);
MCOperand MCOp;
if (ExtraCode) {
if (ExtraCode[0] == 'N' && !ExtraCode[1] && MO.isReg() &&
SystemZ::GR128BitRegClass.contains(MO.getReg()))
MCOp =
MCOperand::createReg(MRI.getSubReg(MO.getReg(), SystemZ::subreg_l64));
else
return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, OS);
} else {
SystemZMCInstLower Lower(MF->getContext(), *this);
MCOp = Lower.lowerOperand(MO);
}
printOperand(MCOp, MAI, OS);
return false;
}
bool SystemZAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
const char *ExtraCode,
raw_ostream &OS) {
printAddress(MAI, MI->getOperand(OpNo).getReg(),
MCOperand::createImm(MI->getOperand(OpNo + 1).getImm()),
MI->getOperand(OpNo + 2).getReg(), OS);
return false;
}
void SystemZAsmPrinter::emitEndOfAsmFile(Module &M) {
emitAttributes(M);
}
void SystemZAsmPrinter::emitFunctionBodyEnd() {
if (TM.getTargetTriple().isOSzOS()) {
// Emit symbol for the end of function if the z/OS target streamer
// is used. This is needed to calculate the size of the function.
MCSymbol *FnEndSym = createTempSymbol("func_end");
OutStreamer->emitLabel(FnEndSym);
OutStreamer->pushSection();
OutStreamer->switchSection(getObjFileLowering().getPPA1Section());
emitPPA1(FnEndSym);
OutStreamer->popSection();
CurrentFnPPA1Sym = nullptr;
CurrentFnEPMarkerSym = nullptr;
}
}
static void emitPPA1Flags(std::unique_ptr<MCStreamer> &OutStreamer, bool VarArg,
bool StackProtector, bool FPRMask, bool VRMask) {
enum class PPA1Flag1 : uint8_t {
DSA64Bit = (0x80 >> 0),
VarArg = (0x80 >> 7),
LLVM_MARK_AS_BITMASK_ENUM(DSA64Bit)
};
enum class PPA1Flag2 : uint8_t {
ExternalProcedure = (0x80 >> 0),
STACKPROTECTOR = (0x80 >> 3),
LLVM_MARK_AS_BITMASK_ENUM(ExternalProcedure)
};
enum class PPA1Flag3 : uint8_t {
FPRMask = (0x80 >> 2),
LLVM_MARK_AS_BITMASK_ENUM(FPRMask)
};
enum class PPA1Flag4 : uint8_t {
EPMOffsetPresent = (0x80 >> 0),
VRMask = (0x80 >> 2),
ProcedureNamePresent = (0x80 >> 7),
LLVM_MARK_AS_BITMASK_ENUM(EPMOffsetPresent)
};
// Declare optional section flags that can be modified.
auto Flags1 = PPA1Flag1(0);
auto Flags2 = PPA1Flag2::ExternalProcedure;
auto Flags3 = PPA1Flag3(0);
auto Flags4 = PPA1Flag4::EPMOffsetPresent | PPA1Flag4::ProcedureNamePresent;
Flags1 |= PPA1Flag1::DSA64Bit;
if (VarArg)
Flags1 |= PPA1Flag1::VarArg;
if (StackProtector)
Flags2 |= PPA1Flag2::STACKPROTECTOR;
// SavedGPRMask, SavedFPRMask, and SavedVRMask are precomputed in.
if (FPRMask)
Flags3 |= PPA1Flag3::FPRMask; // Add emit FPR mask flag.
if (VRMask)
Flags4 |= PPA1Flag4::VRMask; // Add emit VR mask flag.
OutStreamer->AddComment("PPA1 Flags 1");
if ((Flags1 & PPA1Flag1::DSA64Bit) == PPA1Flag1::DSA64Bit)
OutStreamer->AddComment(" Bit 0: 1 = 64-bit DSA");
else
OutStreamer->AddComment(" Bit 0: 0 = 32-bit DSA");
if ((Flags1 & PPA1Flag1::VarArg) == PPA1Flag1::VarArg)
OutStreamer->AddComment(" Bit 7: 1 = Vararg function");
OutStreamer->emitInt8(static_cast<uint8_t>(Flags1)); // Flags 1.
OutStreamer->AddComment("PPA1 Flags 2");
if ((Flags2 & PPA1Flag2::ExternalProcedure) == PPA1Flag2::ExternalProcedure)
OutStreamer->AddComment(" Bit 0: 1 = External procedure");
if ((Flags2 & PPA1Flag2::STACKPROTECTOR) == PPA1Flag2::STACKPROTECTOR)
OutStreamer->AddComment(" Bit 3: 1 = STACKPROTECT is enabled");
else
OutStreamer->AddComment(" Bit 3: 0 = STACKPROTECT is not enabled");
OutStreamer->emitInt8(static_cast<uint8_t>(Flags2)); // Flags 2.
OutStreamer->AddComment("PPA1 Flags 3");
if ((Flags3 & PPA1Flag3::FPRMask) == PPA1Flag3::FPRMask)
OutStreamer->AddComment(" Bit 2: 1 = FP Reg Mask is in optional area");
OutStreamer->emitInt8(
static_cast<uint8_t>(Flags3)); // Flags 3 (optional sections).
OutStreamer->AddComment("PPA1 Flags 4");
if ((Flags4 & PPA1Flag4::VRMask) == PPA1Flag4::VRMask)
OutStreamer->AddComment(" Bit 2: 1 = Vector Reg Mask is in optional area");
OutStreamer->emitInt8(static_cast<uint8_t>(
Flags4)); // Flags 4 (optional sections, always emit these).
}
void SystemZAsmPrinter::emitPPA1(MCSymbol *FnEndSym) {
const TargetRegisterInfo *TRI = MF->getRegInfo().getTargetRegisterInfo();
const SystemZSubtarget &Subtarget = MF->getSubtarget<SystemZSubtarget>();
const auto TargetHasVector = Subtarget.hasVector();
const SystemZMachineFunctionInfo *ZFI =
MF->getInfo<SystemZMachineFunctionInfo>();
const auto *ZFL = static_cast<const SystemZXPLINKFrameLowering *>(
Subtarget.getFrameLowering());
const MachineFrameInfo &MFFrame = MF->getFrameInfo();
// Get saved GPR/FPR/VPR masks.
const std::vector<CalleeSavedInfo> &CSI = MFFrame.getCalleeSavedInfo();
uint16_t SavedGPRMask = 0;
uint16_t SavedFPRMask = 0;
uint8_t SavedVRMask = 0;
int64_t OffsetFPR = 0;
int64_t OffsetVR = 0;
const int64_t TopOfStack =
MFFrame.getOffsetAdjustment() + MFFrame.getStackSize();
// Loop over the spilled registers. The CalleeSavedInfo can't be used because
// it does not contain all spilled registers.
for (unsigned I = ZFI->getSpillGPRRegs().LowGPR,
E = ZFI->getSpillGPRRegs().HighGPR;
I && E && I <= E; ++I) {
unsigned V = TRI->getEncodingValue((Register)I);
assert(V < 16 && "GPR index out of range");
SavedGPRMask |= 1 << (15 - V);
}
for (auto &CS : CSI) {
unsigned Reg = CS.getReg();
unsigned I = TRI->getEncodingValue(Reg);
if (SystemZ::FP64BitRegClass.contains(Reg)) {
assert(I < 16 && "FPR index out of range");
SavedFPRMask |= 1 << (15 - I);
int64_t Temp = MFFrame.getObjectOffset(CS.getFrameIdx());
if (Temp < OffsetFPR)
OffsetFPR = Temp;
} else if (SystemZ::VR128BitRegClass.contains(Reg)) {
assert(I >= 16 && I <= 23 && "VPR index out of range");
unsigned BitNum = I - 16;
SavedVRMask |= 1 << (7 - BitNum);
int64_t Temp = MFFrame.getObjectOffset(CS.getFrameIdx());
if (Temp < OffsetVR)
OffsetVR = Temp;
}
}
// Adjust the offset.
OffsetFPR += (OffsetFPR < 0) ? TopOfStack : 0;
OffsetVR += (OffsetVR < 0) ? TopOfStack : 0;
// Get alloca register.
uint8_t FrameReg = TRI->getEncodingValue(TRI->getFrameRegister(*MF));
uint8_t AllocaReg = ZFL->hasFP(*MF) ? FrameReg : 0;
assert(AllocaReg < 16 && "Can't have alloca register larger than 15");
(void)AllocaReg;
// Build FPR save area offset.
uint32_t FrameAndFPROffset = 0;
if (SavedFPRMask) {
uint64_t FPRSaveAreaOffset = OffsetFPR;
assert(FPRSaveAreaOffset < 0x10000000 && "Offset out of range");
FrameAndFPROffset = FPRSaveAreaOffset & 0x0FFFFFFF; // Lose top 4 bits.
FrameAndFPROffset |= FrameReg << 28; // Put into top 4 bits.
}
// Build VR save area offset.
uint32_t FrameAndVROffset = 0;
if (TargetHasVector && SavedVRMask) {
uint64_t VRSaveAreaOffset = OffsetVR;
assert(VRSaveAreaOffset < 0x10000000 && "Offset out of range");
FrameAndVROffset = VRSaveAreaOffset & 0x0FFFFFFF; // Lose top 4 bits.
FrameAndVROffset |= FrameReg << 28; // Put into top 4 bits.
}
// Emit PPA1 section.
OutStreamer->AddComment("PPA1");
OutStreamer->emitLabel(CurrentFnPPA1Sym);
OutStreamer->AddComment("Version");
OutStreamer->emitInt8(0x02); // Version.
OutStreamer->AddComment("LE Signature X'CE'");
OutStreamer->emitInt8(0xCE); // CEL signature.
OutStreamer->AddComment("Saved GPR Mask");
OutStreamer->emitInt16(SavedGPRMask);
emitPPA1Flags(OutStreamer, MF->getFunction().isVarArg(),
MFFrame.hasStackProtectorIndex(), SavedFPRMask != 0,
TargetHasVector && SavedVRMask != 0);
OutStreamer->AddComment("Length/4 of Parms");
OutStreamer->emitInt16(
static_cast<uint16_t>(MFFrame.getMaxCallFrameSize() / 4)); // Parms/4.
OutStreamer->AddComment("Length of Code");
OutStreamer->emitAbsoluteSymbolDiff(FnEndSym, CurrentFnEPMarkerSym, 4);
// Emit saved FPR mask and offset to FPR save area (0x20 of flags 3).
if (SavedFPRMask) {
OutStreamer->AddComment("FPR mask");
OutStreamer->emitInt16(SavedFPRMask);
OutStreamer->AddComment("AR mask");
OutStreamer->emitInt16(0); // AR Mask, unused currently.
OutStreamer->AddComment("FPR Save Area Locator");
OutStreamer->AddComment(Twine(" Bit 0-3: Register R")
.concat(utostr(FrameAndFPROffset >> 28))
.str());
OutStreamer->AddComment(Twine(" Bit 4-31: Offset ")
.concat(utostr(FrameAndFPROffset & 0x0FFFFFFF))
.str());
OutStreamer->emitInt32(FrameAndFPROffset); // Offset to FPR save area with
// register to add value to
// (alloca reg).
}
// Emit saved VR mask to VR save area.
if (TargetHasVector && SavedVRMask) {
OutStreamer->AddComment("VR mask");
OutStreamer->emitInt8(SavedVRMask);
OutStreamer->emitInt8(0); // Reserved.
OutStreamer->emitInt16(0); // Also reserved.
OutStreamer->AddComment("VR Save Area Locator");
OutStreamer->AddComment(Twine(" Bit 0-3: Register R")
.concat(utostr(FrameAndVROffset >> 28))
.str());
OutStreamer->AddComment(Twine(" Bit 4-31: Offset ")
.concat(utostr(FrameAndVROffset & 0x0FFFFFFF))
.str());
OutStreamer->emitInt32(FrameAndVROffset);
}
// Emit offset to entry point optional section (0x80 of flags 4).
OutStreamer->emitAbsoluteSymbolDiff(CurrentFnEPMarkerSym, CurrentFnPPA1Sym,
4);
}
void SystemZAsmPrinter::emitFunctionEntryLabel() {
const SystemZSubtarget &Subtarget = MF->getSubtarget<SystemZSubtarget>();
if (Subtarget.getTargetTriple().isOSzOS()) {
MCContext &OutContext = OutStreamer->getContext();
// Save information for later use.
std::string N(MF->getFunction().hasName()
? Twine(MF->getFunction().getName()).concat("_").str()
: "");
CurrentFnEPMarkerSym =
OutContext.createTempSymbol(Twine("EPM_").concat(N).str(), true);
CurrentFnPPA1Sym =
OutContext.createTempSymbol(Twine("PPA1_").concat(N).str(), true);
// EntryPoint Marker
const MachineFrameInfo &MFFrame = MF->getFrameInfo();
bool IsUsingAlloca = MFFrame.hasVarSizedObjects();
// Set Flags
uint8_t Flags = 0;
if (IsUsingAlloca)
Flags |= 0x04;
uint32_t DSASize = MFFrame.getStackSize();
// Combine into top 27 bits of DSASize and bottom 5 bits of Flags.
uint32_t DSAAndFlags = DSASize & 0xFFFFFFE0; // (x/32) << 5
DSAAndFlags |= Flags;
// Emit entry point marker section.
OutStreamer->AddComment("XPLINK Routine Layout Entry");
OutStreamer->emitLabel(CurrentFnEPMarkerSym);
OutStreamer->AddComment("Eyecatcher 0x00C300C500C500");
OutStreamer->emitIntValueInHex(0x00C300C500C500, 7); // Eyecatcher.
OutStreamer->AddComment("Mark Type C'1'");
OutStreamer->emitInt8(0xF1); // Mark Type.
OutStreamer->AddComment("Offset to PPA1");
OutStreamer->emitAbsoluteSymbolDiff(CurrentFnPPA1Sym, CurrentFnEPMarkerSym,
4);
if (OutStreamer->isVerboseAsm()) {
OutStreamer->AddComment("DSA Size 0x" + Twine::utohexstr(DSASize));
OutStreamer->AddComment("Entry Flags");
if (Flags & 0x04)
OutStreamer->AddComment(" Bit 2: 1 = Uses alloca");
else
OutStreamer->AddComment(" Bit 2: 0 = Does not use alloca");
}
OutStreamer->emitInt32(DSAAndFlags);
}
AsmPrinter::emitFunctionEntryLabel();
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmPrinter() {
RegisterAsmPrinter<SystemZAsmPrinter> X(getTheSystemZTarget());
}