blob: cc881406666c312729c3ab0aabb081d7bce7642a [file] [log] [blame]
//===-- RISCVTargetMachine.cpp - Define TargetMachine for RISCV -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements the info about RISCV target spec.
//
//===----------------------------------------------------------------------===//
#include "RISCVTargetMachine.h"
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVMacroFusion.h"
#include "RISCVTargetObjectFile.h"
#include "RISCVTargetTransformInfo.h"
#include "TargetInfo/RISCVTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/IPO.h"
#include <optional>
using namespace llvm;
static cl::opt<bool> EnableRedundantCopyElimination(
"riscv-enable-copyelim",
cl::desc("Enable the redundant copy elimination pass"), cl::init(true),
cl::Hidden);
// FIXME: Unify control over GlobalMerge.
static cl::opt<cl::boolOrDefault>
EnableGlobalMerge("riscv-enable-global-merge", cl::Hidden,
cl::desc("Enable the global merge pass"));
static cl::opt<bool>
EnableMachineCombiner("riscv-enable-machine-combiner",
cl::desc("Enable the machine combiner pass"),
cl::init(true), cl::Hidden);
static cl::opt<unsigned> RVVVectorBitsMaxOpt(
"riscv-v-vector-bits-max",
cl::desc("Assume V extension vector registers are at most this big, "
"with zero meaning no maximum size is assumed."),
cl::init(0), cl::Hidden);
static cl::opt<int> RVVVectorBitsMinOpt(
"riscv-v-vector-bits-min",
cl::desc("Assume V extension vector registers are at least this big, "
"with zero meaning no minimum size is assumed. A value of -1 "
"means use Zvl*b extension. This is primarily used to enable "
"autovectorization with fixed width vectors."),
cl::init(-1), cl::Hidden);
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVTarget() {
RegisterTargetMachine<RISCVTargetMachine> X(getTheRISCV32Target());
RegisterTargetMachine<RISCVTargetMachine> Y(getTheRISCV64Target());
auto *PR = PassRegistry::getPassRegistry();
initializeGlobalISel(*PR);
initializeRISCVMakeCompressibleOptPass(*PR);
initializeRISCVGatherScatterLoweringPass(*PR);
initializeRISCVCodeGenPreparePass(*PR);
initializeRISCVMergeBaseOffsetOptPass(*PR);
initializeRISCVSExtWRemovalPass(*PR);
initializeRISCVStripWSuffixPass(*PR);
initializeRISCVPreRAExpandPseudoPass(*PR);
initializeRISCVExpandPseudoPass(*PR);
initializeRISCVInsertVSETVLIPass(*PR);
initializeRISCVDAGToDAGISelPass(*PR);
}
static StringRef computeDataLayout(const Triple &TT) {
if (TT.isArch64Bit())
return "e-m:e-p:64:64-i64:64-i128:128-n32:64-S128";
assert(TT.isArch32Bit() && "only RV32 and RV64 are currently supported");
return "e-m:e-p:32:32-i64:64-n32-S128";
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
std::optional<Reloc::Model> RM) {
return RM.value_or(Reloc::Static);
}
RISCVTargetMachine::RISCVTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
std::optional<Reloc::Model> RM,
std::optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options,
getEffectiveRelocModel(TT, RM),
getEffectiveCodeModel(CM, CodeModel::Small), OL),
TLOF(std::make_unique<RISCVELFTargetObjectFile>()) {
initAsmInfo();
// RISC-V supports the MachineOutliner.
setMachineOutliner(true);
setSupportsDefaultOutlining(true);
}
const RISCVSubtarget *
RISCVTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute TuneAttr = F.getFnAttribute("tune-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU =
CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
std::string TuneCPU =
TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
std::string FS =
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
unsigned RVVBitsMin = RVVVectorBitsMinOpt;
unsigned RVVBitsMax = RVVVectorBitsMaxOpt;
Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange);
if (VScaleRangeAttr.isValid()) {
if (!RVVVectorBitsMinOpt.getNumOccurrences())
RVVBitsMin = VScaleRangeAttr.getVScaleRangeMin() * RISCV::RVVBitsPerBlock;
std::optional<unsigned> VScaleMax = VScaleRangeAttr.getVScaleRangeMax();
if (VScaleMax.has_value() && !RVVVectorBitsMaxOpt.getNumOccurrences())
RVVBitsMax = *VScaleMax * RISCV::RVVBitsPerBlock;
}
if (RVVBitsMin != -1U) {
// FIXME: Change to >= 32 when VLEN = 32 is supported.
assert((RVVBitsMin == 0 || (RVVBitsMin >= 64 && RVVBitsMin <= 65536 &&
isPowerOf2_32(RVVBitsMin))) &&
"V or Zve* extension requires vector length to be in the range of "
"64 to 65536 and a power 2!");
assert((RVVBitsMax >= RVVBitsMin || RVVBitsMax == 0) &&
"Minimum V extension vector length should not be larger than its "
"maximum!");
}
assert((RVVBitsMax == 0 || (RVVBitsMax >= 64 && RVVBitsMax <= 65536 &&
isPowerOf2_32(RVVBitsMax))) &&
"V or Zve* extension requires vector length to be in the range of "
"64 to 65536 and a power 2!");
if (RVVBitsMin != -1U) {
if (RVVBitsMax != 0) {
RVVBitsMin = std::min(RVVBitsMin, RVVBitsMax);
RVVBitsMax = std::max(RVVBitsMin, RVVBitsMax);
}
RVVBitsMin =
PowerOf2Floor((RVVBitsMin < 64 || RVVBitsMin > 65536) ? 0 : RVVBitsMin);
}
RVVBitsMax =
PowerOf2Floor((RVVBitsMax < 64 || RVVBitsMax > 65536) ? 0 : RVVBitsMax);
SmallString<512> Key;
Key += "RVVMin";
Key += std::to_string(RVVBitsMin);
Key += "RVVMax";
Key += std::to_string(RVVBitsMax);
Key += CPU;
Key += TuneCPU;
Key += FS;
auto &I = SubtargetMap[Key];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
auto ABIName = Options.MCOptions.getABIName();
if (const MDString *ModuleTargetABI = dyn_cast_or_null<MDString>(
F.getParent()->getModuleFlag("target-abi"))) {
auto TargetABI = RISCVABI::getTargetABI(ABIName);
if (TargetABI != RISCVABI::ABI_Unknown &&
ModuleTargetABI->getString() != ABIName) {
report_fatal_error("-target-abi option != target-abi module flag");
}
ABIName = ModuleTargetABI->getString();
}
I = std::make_unique<RISCVSubtarget>(
TargetTriple, CPU, TuneCPU, FS, ABIName, RVVBitsMin, RVVBitsMax, *this);
}
return I.get();
}
MachineFunctionInfo *RISCVTargetMachine::createMachineFunctionInfo(
BumpPtrAllocator &Allocator, const Function &F,
const TargetSubtargetInfo *STI) const {
return RISCVMachineFunctionInfo::create<RISCVMachineFunctionInfo>(Allocator,
F, STI);
}
TargetTransformInfo
RISCVTargetMachine::getTargetTransformInfo(const Function &F) const {
return TargetTransformInfo(RISCVTTIImpl(this, F));
}
// A RISC-V hart has a single byte-addressable address space of 2^XLEN bytes
// for all memory accesses, so it is reasonable to assume that an
// implementation has no-op address space casts. If an implementation makes a
// change to this, they can override it here.
bool RISCVTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DstAS) const {
return true;
}
namespace {
class RISCVPassConfig : public TargetPassConfig {
public:
RISCVPassConfig(RISCVTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
RISCVTargetMachine &getRISCVTargetMachine() const {
return getTM<RISCVTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
const RISCVSubtarget &ST = C->MF->getSubtarget<RISCVSubtarget>();
if (ST.hasMacroFusion()) {
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
DAG->addMutation(createRISCVMacroFusionDAGMutation());
return DAG;
}
return nullptr;
}
ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext *C) const override {
const RISCVSubtarget &ST = C->MF->getSubtarget<RISCVSubtarget>();
if (ST.hasMacroFusion()) {
ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
DAG->addMutation(createRISCVMacroFusionDAGMutation());
return DAG;
}
return nullptr;
}
void addIRPasses() override;
bool addPreISel() override;
bool addInstSelector() override;
bool addIRTranslator() override;
bool addLegalizeMachineIR() override;
bool addRegBankSelect() override;
bool addGlobalInstructionSelect() override;
void addPreEmitPass() override;
void addPreEmitPass2() override;
void addPreSched2() override;
void addMachineSSAOptimization() override;
void addPreRegAlloc() override;
void addPostRegAlloc() override;
};
} // namespace
TargetPassConfig *RISCVTargetMachine::createPassConfig(PassManagerBase &PM) {
return new RISCVPassConfig(*this, PM);
}
void RISCVPassConfig::addIRPasses() {
addPass(createAtomicExpandPass());
if (getOptLevel() != CodeGenOpt::None)
addPass(createRISCVGatherScatterLoweringPass());
if (getOptLevel() != CodeGenOpt::None)
addPass(createRISCVCodeGenPreparePass());
TargetPassConfig::addIRPasses();
}
bool RISCVPassConfig::addPreISel() {
if (TM->getOptLevel() != CodeGenOpt::None) {
// Add a barrier before instruction selection so that we will not get
// deleted block address after enabling default outlining. See D99707 for
// more details.
addPass(createBarrierNoopPass());
}
if (EnableGlobalMerge == cl::BOU_TRUE) {
addPass(createGlobalMergePass(TM, /* MaxOffset */ 2047,
/* OnlyOptimizeForSize */ false,
/* MergeExternalByDefault */ true));
}
return false;
}
bool RISCVPassConfig::addInstSelector() {
addPass(createRISCVISelDag(getRISCVTargetMachine(), getOptLevel()));
return false;
}
bool RISCVPassConfig::addIRTranslator() {
addPass(new IRTranslator(getOptLevel()));
return false;
}
bool RISCVPassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
bool RISCVPassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
bool RISCVPassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect(getOptLevel()));
return false;
}
void RISCVPassConfig::addPreSched2() {}
void RISCVPassConfig::addPreEmitPass() {
addPass(&BranchRelaxationPassID);
addPass(createRISCVMakeCompressibleOptPass());
}
void RISCVPassConfig::addPreEmitPass2() {
addPass(createRISCVExpandPseudoPass());
// Schedule the expansion of AMOs at the last possible moment, avoiding the
// possibility for other passes to break the requirements for forward
// progress in the LR/SC block.
addPass(createRISCVExpandAtomicPseudoPass());
}
void RISCVPassConfig::addMachineSSAOptimization() {
TargetPassConfig::addMachineSSAOptimization();
if (EnableMachineCombiner)
addPass(&MachineCombinerID);
if (TM->getTargetTriple().getArch() == Triple::riscv64) {
addPass(createRISCVSExtWRemovalPass());
addPass(createRISCVStripWSuffixPass());
}
}
void RISCVPassConfig::addPreRegAlloc() {
addPass(createRISCVPreRAExpandPseudoPass());
if (TM->getOptLevel() != CodeGenOpt::None)
addPass(createRISCVMergeBaseOffsetOptPass());
addPass(createRISCVInsertVSETVLIPass());
}
void RISCVPassConfig::addPostRegAlloc() {
if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination)
addPass(createRISCVRedundantCopyEliminationPass());
}
yaml::MachineFunctionInfo *
RISCVTargetMachine::createDefaultFuncInfoYAML() const {
return new yaml::RISCVMachineFunctionInfo();
}
yaml::MachineFunctionInfo *
RISCVTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
const auto *MFI = MF.getInfo<RISCVMachineFunctionInfo>();
return new yaml::RISCVMachineFunctionInfo(*MFI);
}
bool RISCVTargetMachine::parseMachineFunctionInfo(
const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
SMDiagnostic &Error, SMRange &SourceRange) const {
const auto &YamlMFI =
static_cast<const yaml::RISCVMachineFunctionInfo &>(MFI);
PFS.MF.getInfo<RISCVMachineFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
return false;
}