blob: d737eec570eb382f07f4d5178b0365a4b32e44ec [file] [log] [blame]
//===- PPCInstructionSelector.cpp --------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the InstructionSelector class for
/// PowerPC.
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCRegisterBankInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "ppc-gisel"
using namespace llvm;
namespace {
#define GET_GLOBALISEL_PREDICATE_BITSET
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATE_BITSET
class PPCInstructionSelector : public InstructionSelector {
public:
PPCInstructionSelector(const PPCTargetMachine &TM, const PPCSubtarget &STI,
const PPCRegisterBankInfo &RBI);
bool select(MachineInstr &I) override;
static const char *getName() { return DEBUG_TYPE; }
private:
/// tblgen generated 'select' implementation that is used as the initial
/// selector for the patterns that do not require complex C++.
bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
bool selectFPToInt(MachineInstr &I, MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const;
bool selectIntToFP(MachineInstr &I, MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const;
bool selectZExt(MachineInstr &I, MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const;
std::optional<bool> selectI64ImmDirect(MachineInstr &I,
MachineBasicBlock &MBB,
MachineRegisterInfo &MRI, Register Reg,
uint64_t Imm) const;
bool selectI64Imm(MachineInstr &I, MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const;
const PPCSubtarget &STI;
const PPCInstrInfo &TII;
const PPCRegisterInfo &TRI;
const PPCRegisterBankInfo &RBI;
#define GET_GLOBALISEL_PREDICATES_DECL
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_DECL
#define GET_GLOBALISEL_TEMPORARIES_DECL
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_DECL
};
} // end anonymous namespace
#define GET_GLOBALISEL_IMPL
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_IMPL
PPCInstructionSelector::PPCInstructionSelector(const PPCTargetMachine &TM,
const PPCSubtarget &STI,
const PPCRegisterBankInfo &RBI)
: STI(STI), TII(*STI.getInstrInfo()), TRI(*STI.getRegisterInfo()), RBI(RBI),
#define GET_GLOBALISEL_PREDICATES_INIT
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
#include "PPCGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_INIT
{
}
static const TargetRegisterClass *getRegClass(LLT Ty, const RegisterBank *RB) {
if (RB->getID() == PPC::GPRRegBankID) {
if (Ty.getSizeInBits() == 64)
return &PPC::G8RCRegClass;
if (Ty.getSizeInBits() <= 32)
return &PPC::GPRCRegClass;
}
if (RB->getID() == PPC::FPRRegBankID) {
if (Ty.getSizeInBits() == 32)
return &PPC::F4RCRegClass;
if (Ty.getSizeInBits() == 64)
return &PPC::F8RCRegClass;
}
if (RB->getID() == PPC::CRRegBankID) {
if (Ty.getSizeInBits() == 1)
return &PPC::CRBITRCRegClass;
if (Ty.getSizeInBits() == 4)
return &PPC::CRRCRegClass;
}
llvm_unreachable("Unknown RegBank!");
}
static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
const RegisterBankInfo &RBI) {
Register DstReg = I.getOperand(0).getReg();
if (DstReg.isPhysical())
return true;
const RegisterBank *DstRegBank = RBI.getRegBank(DstReg, MRI, TRI);
const TargetRegisterClass *DstRC =
getRegClass(MRI.getType(DstReg), DstRegBank);
// No need to constrain SrcReg. It will get constrained when we hit another of
// its use or its defs.
// Copies do not have constraints.
if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
<< " operand\n");
return false;
}
return true;
}
static unsigned selectLoadStoreOp(unsigned GenericOpc, unsigned RegBankID,
unsigned OpSize) {
const bool IsStore = GenericOpc == TargetOpcode::G_STORE;
switch (RegBankID) {
case PPC::GPRRegBankID:
switch (OpSize) {
case 32:
return IsStore ? PPC::STW : PPC::LWZ;
case 64:
return IsStore ? PPC::STD : PPC::LD;
default:
llvm_unreachable("Unexpected size!");
}
break;
case PPC::FPRRegBankID:
switch (OpSize) {
case 32:
return IsStore ? PPC::STFS : PPC::LFS;
case 64:
return IsStore ? PPC::STFD : PPC::LFD;
default:
llvm_unreachable("Unexpected size!");
}
break;
default:
llvm_unreachable("Unexpected register bank!");
}
return GenericOpc;
}
bool PPCInstructionSelector::selectIntToFP(MachineInstr &I,
MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const {
if (!STI.hasDirectMove() || !STI.isPPC64() || !STI.hasFPCVT())
return false;
const DebugLoc &DbgLoc = I.getDebugLoc();
const Register DstReg = I.getOperand(0).getReg();
const Register SrcReg = I.getOperand(1).getReg();
Register MoveReg = MRI.createVirtualRegister(&PPC::VSFRCRegClass);
// For now, only handle the case for 64 bit integer.
BuildMI(MBB, I, DbgLoc, TII.get(PPC::MTVSRD), MoveReg).addReg(SrcReg);
bool IsSingle = MRI.getType(DstReg).getSizeInBits() == 32;
bool IsSigned = I.getOpcode() == TargetOpcode::G_SITOFP;
unsigned ConvOp = IsSingle ? (IsSigned ? PPC::XSCVSXDSP : PPC::XSCVUXDSP)
: (IsSigned ? PPC::XSCVSXDDP : PPC::XSCVUXDDP);
MachineInstr *MI =
BuildMI(MBB, I, DbgLoc, TII.get(ConvOp), DstReg).addReg(MoveReg);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
}
bool PPCInstructionSelector::selectFPToInt(MachineInstr &I,
MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const {
if (!STI.hasDirectMove() || !STI.isPPC64() || !STI.hasFPCVT())
return false;
const DebugLoc &DbgLoc = I.getDebugLoc();
const Register DstReg = I.getOperand(0).getReg();
const Register SrcReg = I.getOperand(1).getReg();
Register CopyReg = MRI.createVirtualRegister(&PPC::VSFRCRegClass);
BuildMI(MBB, I, DbgLoc, TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
Register ConvReg = MRI.createVirtualRegister(&PPC::VSFRCRegClass);
bool IsSigned = I.getOpcode() == TargetOpcode::G_FPTOSI;
// single-precision is stored as double-precision on PPC in registers, so
// always use double-precision convertions.
unsigned ConvOp = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS;
BuildMI(MBB, I, DbgLoc, TII.get(ConvOp), ConvReg).addReg(CopyReg);
MachineInstr *MI =
BuildMI(MBB, I, DbgLoc, TII.get(PPC::MFVSRD), DstReg).addReg(ConvReg);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
}
bool PPCInstructionSelector::selectZExt(MachineInstr &I, MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const {
const Register DstReg = I.getOperand(0).getReg();
const LLT DstTy = MRI.getType(DstReg);
const RegisterBank *DstRegBank = RBI.getRegBank(DstReg, MRI, TRI);
const Register SrcReg = I.getOperand(1).getReg();
assert(DstTy.getSizeInBits() == 64 && "Unexpected dest size!");
assert(MRI.getType(SrcReg).getSizeInBits() == 32 && "Unexpected src size!");
Register ImpDefReg =
MRI.createVirtualRegister(getRegClass(DstTy, DstRegBank));
BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
ImpDefReg);
Register NewDefReg =
MRI.createVirtualRegister(getRegClass(DstTy, DstRegBank));
BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::INSERT_SUBREG),
NewDefReg)
.addReg(ImpDefReg)
.addReg(SrcReg)
.addImm(PPC::sub_32);
MachineInstr *MI =
BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), DstReg)
.addReg(NewDefReg)
.addImm(0)
.addImm(32);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
}
// For any 32 < Num < 64, check if the Imm contains at least Num consecutive
// zeros and return the number of bits by the left of these consecutive zeros.
static uint32_t findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
uint32_t HiTZ = countTrailingZeros<uint32_t>(Hi_32(Imm));
uint32_t LoLZ = countLeadingZeros<uint32_t>(Lo_32(Imm));
if ((HiTZ + LoLZ) >= Num)
return (32 + HiTZ);
return 0;
}
// Direct materialization of 64-bit constants by enumerated patterns.
// Similar to PPCISelDAGToDAG::selectI64ImmDirect().
std::optional<bool> PPCInstructionSelector::selectI64ImmDirect(MachineInstr &I,
MachineBasicBlock &MBB,
MachineRegisterInfo &MRI,
Register Reg,
uint64_t Imm) const {
unsigned TZ = countTrailingZeros<uint64_t>(Imm);
unsigned LZ = countLeadingZeros<uint64_t>(Imm);
unsigned TO = countTrailingOnes<uint64_t>(Imm);
unsigned LO = countLeadingOnes<uint64_t>(Imm);
uint32_t Hi32 = Hi_32(Imm);
uint32_t Lo32 = Lo_32(Imm);
uint32_t Shift = 0;
// Following patterns use 1 instructions to materialize the Imm.
// 1-1) Patterns : {zeros}{15-bit valve}
// {ones}{15-bit valve}
if (isInt<16>(Imm))
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), Reg)
.addImm(Imm)
.constrainAllUses(TII, TRI, RBI);
// 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
// {ones}{15-bit valve}{16 zeros}
if (TZ > 15 && (LZ > 32 || LO > 32))
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LIS8), Reg)
.addImm((Imm >> 16) & 0xffff)
.constrainAllUses(TII, TRI, RBI);
// Following patterns use 2 instructions to materialize the Imm.
assert(LZ < 64 && "Unexpected leading zeros here.");
// Count of ones follwing the leading zeros.
unsigned FO = countLeadingOnes<uint64_t>(Imm << LZ);
// 2-1) Patterns : {zeros}{31-bit value}
// {ones}{31-bit value}
if (isInt<32>(Imm)) {
uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(Opcode), TmpReg)
.addImm((Imm >> 16) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(Imm & 0xffff)
.constrainAllUses(TII, TRI, RBI);
}
// 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
// {zeros}{15-bit value}{zeros}
// {zeros}{ones}{15-bit value}
// {ones}{15-bit value}{zeros}
// We can take advantage of LI's sign-extension semantics to generate leading
// ones, and then use RLDIC to mask off the ones in both sides after rotation.
if ((LZ + FO + TZ) > 48) {
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), TmpReg)
.addImm((Imm >> TZ) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDIC), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(TZ)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 2-3) Pattern : {zeros}{15-bit value}{ones}
// Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
// therefore we can take advantage of LI's sign-extension semantics, and then
// mask them off after rotation.
//
// +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+
// |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1|
// +------------------------+ +------------------------+
// 63 0 63 0
// Imm (Imm >> (48 - LZ) & 0xffff)
// +----sext-----|--16-bit--+ +clear-|-----------------+
// |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111|
// +------------------------+ +------------------------+
// 63 0 63 0
// LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ
if ((LZ + TO) > 48) {
// Since the immediates with (LZ > 32) have been handled by previous
// patterns, here we have (LZ <= 32) to make sure we will not shift right
// the Imm by a negative value.
assert(LZ <= 32 && "Unexpected shift value.");
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), TmpReg)
.addImm(Imm >> (48 - LZ) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(48 - LZ)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
// {ones}{15-bit value}{ones}
// We can take advantage of LI's sign-extension semantics to generate leading
// ones, and then use RLDICL to mask off the ones in left sides (if required)
// after rotation.
//
// +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+
// |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb|
// +------------------------+ +------------------------+
// 63 0 63 0
// Imm (Imm >> TO) & 0xffff
// +----sext-----|--16-bit--+ +LZ|---------------------+
// |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111|
// +------------------------+ +------------------------+
// 63 0 63 0
// LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ
if ((LZ + FO + TO) > 48) {
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), TmpReg)
.addImm((Imm >> TO) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(TO)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
// If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
// value, we can use LI for Lo16 without generating leading ones then add the
// Hi16(in Lo32).
if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), TmpReg)
.addImm(Lo32 & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORIS8), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(Lo32 >> 16)
.constrainAllUses(TII, TRI, RBI);
}
// 2-6) Patterns : {******}{49 zeros}{******}
// {******}{49 ones}{******}
// If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
// bits remain on both sides. Rotate right the Imm to construct an int<16>
// value, use LI for int<16> value and then use RLDICL without mask to rotate
// it back.
//
// 1) findContiguousZerosAtLeast(Imm, 49)
// +------|--zeros-|------+ +---ones--||---15 bit--+
// |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb|
// +----------------------+ +----------------------+
// 63 0 63 0
//
// 2) findContiguousZerosAtLeast(~Imm, 49)
// +------|--ones--|------+ +---ones--||---15 bit--+
// |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb|
// +----------------------+ +----------------------+
// 63 0 63 0
if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
(Shift = findContiguousZerosAtLeast(~Imm, 49))) {
uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LI8), TmpReg)
.addImm(RotImm & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(Shift)
.addImm(0)
.constrainAllUses(TII, TRI, RBI);
}
// Following patterns use 3 instructions to materialize the Imm.
// 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
// {zeros}{31-bit value}{zeros}
// {zeros}{ones}{31-bit value}
// {ones}{31-bit value}{zeros}
// We can take advantage of LIS's sign-extension semantics to generate leading
// ones, add the remaining bits with ORI, and then use RLDIC to mask off the
// ones in both sides after rotation.
if ((LZ + FO + TZ) > 32) {
uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
Register Tmp2Reg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(Opcode), TmpReg)
.addImm(ImmHi16)
.constrainAllUses(TII, TRI, RBI))
return false;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Tmp2Reg)
.addReg(TmpReg, RegState::Kill)
.addImm((Imm >> TZ) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDIC), Reg)
.addReg(Tmp2Reg, RegState::Kill)
.addImm(TZ)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 3-2) Pattern : {zeros}{31-bit value}{ones}
// Shift right the Imm by (32 - LZ) bits to construct a negative 32 bits
// value, therefore we can take advantage of LIS's sign-extension semantics,
// add the remaining bits with ORI, and then mask them off after rotation.
// This is similar to Pattern 2-3, please refer to the diagram there.
if ((LZ + TO) > 32) {
// Since the immediates with (LZ > 32) have been handled by previous
// patterns, here we have (LZ <= 32) to make sure we will not shift right
// the Imm by a negative value.
assert(LZ <= 32 && "Unexpected shift value.");
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
Register Tmp2Reg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LIS8), TmpReg)
.addImm((Imm >> (48 - LZ)) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Tmp2Reg)
.addReg(TmpReg, RegState::Kill)
.addImm((Imm >> (32 - LZ)) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(Tmp2Reg, RegState::Kill)
.addImm(32 - LZ)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
// {ones}{31-bit value}{ones}
// We can take advantage of LIS's sign-extension semantics to generate leading
// ones, add the remaining bits with ORI, and then use RLDICL to mask off the
// ones in left sides (if required) after rotation.
// This is similar to Pattern 2-4, please refer to the diagram there.
if ((LZ + FO + TO) > 32) {
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
Register Tmp2Reg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::LIS8), TmpReg)
.addImm((Imm >> (TO + 16)) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Tmp2Reg)
.addReg(TmpReg, RegState::Kill)
.addImm((Imm >> TO) & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(Tmp2Reg, RegState::Kill)
.addImm(TO)
.addImm(LZ)
.constrainAllUses(TII, TRI, RBI);
}
// 3-4) Patterns : High word == Low word
if (Hi32 == Lo32) {
// Handle the first 32 bits.
uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
Register Tmp2Reg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(Opcode), TmpReg)
.addImm(ImmHi16)
.constrainAllUses(TII, TRI, RBI))
return false;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Tmp2Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(Lo32 & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDIMI), Reg)
.addReg(Tmp2Reg)
.addReg(Tmp2Reg, RegState::Kill)
.addImm(32)
.addImm(0)
.constrainAllUses(TII, TRI, RBI);
}
// 3-5) Patterns : {******}{33 zeros}{******}
// {******}{33 ones}{******}
// If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
// bits remain on both sides. Rotate right the Imm to construct an int<32>
// value, use LIS + ORI for int<32> value and then use RLDICL without mask to
// rotate it back.
// This is similar to Pattern 2-6, please refer to the diagram there.
if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
(Shift = findContiguousZerosAtLeast(~Imm, 33))) {
uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
Register TmpReg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
Register Tmp2Reg = MRI.createVirtualRegister(&PPC::G8RCRegClass);
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(Opcode), TmpReg)
.addImm(ImmHi16)
.constrainAllUses(TII, TRI, RBI))
return false;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), Tmp2Reg)
.addReg(TmpReg, RegState::Kill)
.addImm(RotImm & 0xffff)
.constrainAllUses(TII, TRI, RBI))
return false;
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::RLDICL), Reg)
.addReg(Tmp2Reg, RegState::Kill)
.addImm(Shift)
.addImm(0)
.constrainAllUses(TII, TRI, RBI);
}
// If we end up here then no instructions were inserted.
return std::nullopt;
}
// Derived from PPCISelDAGToDAG::selectI64Imm().
// TODO: Add support for prefixed instructions.
bool PPCInstructionSelector::selectI64Imm(MachineInstr &I,
MachineBasicBlock &MBB,
MachineRegisterInfo &MRI) const {
assert(I.getOpcode() == TargetOpcode::G_CONSTANT && "Unexpected G code");
Register DstReg = I.getOperand(0).getReg();
int64_t Imm = I.getOperand(1).getCImm()->getValue().getZExtValue();
// No more than 3 instructions are used if we can select the i64 immediate
// directly.
if (std::optional<bool> Res = selectI64ImmDirect(I, MBB, MRI, DstReg, Imm)) {
I.eraseFromParent();
return *Res;
}
// Calculate the last bits as required.
uint32_t Hi16 = (Lo_32(Imm) >> 16) & 0xffff;
uint32_t Lo16 = Lo_32(Imm) & 0xffff;
Register Reg =
(Hi16 || Lo16) ? MRI.createVirtualRegister(&PPC::G8RCRegClass) : DstReg;
// Handle the upper 32 bit value.
std::optional<bool> Res =
selectI64ImmDirect(I, MBB, MRI, Reg, Imm & 0xffffffff00000000);
if (!Res || !*Res)
return false;
// Add in the last bits as required.
if (Hi16) {
Register TmpReg =
Lo16 ? MRI.createVirtualRegister(&PPC::G8RCRegClass) : DstReg;
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORIS8), TmpReg)
.addReg(Reg, RegState::Kill)
.addImm(Hi16)
.constrainAllUses(TII, TRI, RBI))
return false;
Reg = TmpReg;
}
if (Lo16) {
if (!BuildMI(MBB, I, I.getDebugLoc(), TII.get(PPC::ORI8), DstReg)
.addReg(Reg, RegState::Kill)
.addImm(Lo16)
.constrainAllUses(TII, TRI, RBI))
return false;
}
I.eraseFromParent();
return true;
}
bool PPCInstructionSelector::select(MachineInstr &I) {
auto &MBB = *I.getParent();
auto &MF = *MBB.getParent();
auto &MRI = MF.getRegInfo();
if (!isPreISelGenericOpcode(I.getOpcode())) {
if (I.isCopy())
return selectCopy(I, TII, MRI, TRI, RBI);
return true;
}
if (selectImpl(I, *CoverageInfo))
return true;
unsigned Opcode = I.getOpcode();
switch (Opcode) {
default:
return false;
case TargetOpcode::G_LOAD:
case TargetOpcode::G_STORE: {
GLoadStore &LdSt = cast<GLoadStore>(I);
LLT PtrTy = MRI.getType(LdSt.getPointerReg());
if (PtrTy != LLT::pointer(0, 64)) {
LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
<< ", expected: " << LLT::pointer(0, 64) << '\n');
return false;
}
auto SelectLoadStoreAddressingMode = [&]() -> MachineInstr * {
const unsigned NewOpc = selectLoadStoreOp(
I.getOpcode(), RBI.getRegBank(LdSt.getReg(0), MRI, TRI)->getID(),
LdSt.getMemSizeInBits());
if (NewOpc == I.getOpcode())
return nullptr;
// For now, simply use DForm with load/store addr as base and 0 as imm.
// FIXME: optimize load/store with some specific address patterns.
I.setDesc(TII.get(NewOpc));
Register AddrReg = I.getOperand(1).getReg();
bool IsKill = I.getOperand(1).isKill();
I.getOperand(1).ChangeToImmediate(0);
I.addOperand(*I.getParent()->getParent(),
MachineOperand::CreateReg(AddrReg, /* isDef */ false,
/* isImp */ false, IsKill));
return &I;
};
MachineInstr *LoadStore = SelectLoadStoreAddressingMode();
if (!LoadStore)
return false;
return constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
}
case TargetOpcode::G_SITOFP:
case TargetOpcode::G_UITOFP:
return selectIntToFP(I, MBB, MRI);
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI:
return selectFPToInt(I, MBB, MRI);
// G_SEXT will be selected in tb-gen pattern.
case TargetOpcode::G_ZEXT:
return selectZExt(I, MBB, MRI);
case TargetOpcode::G_CONSTANT:
return selectI64Imm(I, MBB, MRI);
}
return false;
}
namespace llvm {
InstructionSelector *
createPPCInstructionSelector(const PPCTargetMachine &TM,
const PPCSubtarget &Subtarget,
const PPCRegisterBankInfo &RBI) {
return new PPCInstructionSelector(TM, Subtarget, RBI);
}
} // end namespace llvm